liger-kernel-nightly 0.6.1.dev20250819145841__py3-none-any.whl → 0.6.1.dev20250819173444__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -10,11 +10,15 @@ from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinea
10
10
  from liger_kernel.transformers.fused_linear_jsd import LigerFusedLinearJSD # noqa: F401
11
11
  from liger_kernel.transformers.geglu import LigerGEGLUMLP # noqa: F401
12
12
  from liger_kernel.transformers.jsd import LigerJSD # noqa: F401
13
+ from liger_kernel.transformers.kl_div import LigerKLDIVLoss # noqa: F401
13
14
  from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
14
15
  from liger_kernel.transformers.llama4_rope import liger_llama4_text_rotary_pos_emb # noqa: F401
15
16
  from liger_kernel.transformers.llama4_rope import liger_llama4_vision_rotary_pos_emb # noqa: F401
17
+ from liger_kernel.transformers.multi_token_attention import LigerMultiTokenAttention # noqa: F401
16
18
  from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
17
19
  from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
20
+ from liger_kernel.transformers.softmax import LigerSoftmax # noqa: F401
21
+ from liger_kernel.transformers.sparsemax import LigerSparsemax # noqa: F401
18
22
  from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F401
19
23
  from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
20
24
  from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP # noqa: F401
@@ -31,6 +35,7 @@ if TYPE_CHECKING:
31
35
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3 # noqa: F401
32
36
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3_text # noqa: F401
33
37
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
38
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
34
39
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
35
40
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
36
41
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
@@ -89,6 +94,7 @@ def __getattr__(name: str):
89
94
  "apply_liger_kernel_to_gemma3",
90
95
  "apply_liger_kernel_to_gemma3_text",
91
96
  "apply_liger_kernel_to_glm4",
97
+ "apply_liger_kernel_to_glm4v",
92
98
  "apply_liger_kernel_to_granite",
93
99
  "apply_liger_kernel_to_llama",
94
100
  "apply_liger_kernel_to_llava",
@@ -134,6 +140,10 @@ __all__ = [
134
140
  "LigerQwen3MoeSwiGLUMLP",
135
141
  "LigerSwiGLUMLP",
136
142
  "LigerTVDLoss",
143
+ "LigerKLDIVLoss",
144
+ "LigerMultiTokenAttention",
145
+ "LigerSoftmax",
146
+ "LigerSparsemax",
137
147
  ]
138
148
 
139
149
  # Add transformer-dependent symbols only if available
@@ -148,6 +158,7 @@ if _TRANSFORMERS_AVAILABLE:
148
158
  "apply_liger_kernel_to_gemma3",
149
159
  "apply_liger_kernel_to_gemma3_text",
150
160
  "apply_liger_kernel_to_glm4",
161
+ "apply_liger_kernel_to_glm4v",
151
162
  "apply_liger_kernel_to_granite",
152
163
  "apply_liger_kernel_to_llama",
153
164
  "apply_liger_kernel_to_llava",
@@ -0,0 +1,5 @@
1
+ from liger_kernel.transformers.experimental.embedding import LigerEmbedding # noqa: F401
2
+
3
+ __all__ = [
4
+ "LigerEmbedding",
5
+ ]
@@ -0,0 +1,150 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.modeling_outputs import CausalLMOutputWithPast
9
+ from transformers.utils.deprecation import deprecate_kwarg
10
+
11
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
12
+
13
+
14
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
15
+ def lce_forward(
16
+ self,
17
+ input_ids: torch.LongTensor = None,
18
+ attention_mask: Optional[torch.Tensor] = None,
19
+ position_ids: Optional[torch.LongTensor] = None,
20
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
21
+ inputs_embeds: Optional[torch.FloatTensor] = None,
22
+ labels: Optional[torch.LongTensor] = None,
23
+ use_cache: Optional[bool] = None,
24
+ output_attentions: Optional[bool] = None,
25
+ output_hidden_states: Optional[bool] = None,
26
+ return_dict: Optional[bool] = None,
27
+ cache_position: Optional[torch.LongTensor] = None,
28
+ logits_to_keep: Union[int, torch.Tensor] = 0,
29
+ skip_logits: Optional[bool] = None,
30
+ **kwargs,
31
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
32
+ r"""
33
+ Args:
34
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
35
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
36
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
37
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
38
+
39
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
40
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
41
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
42
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
43
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
44
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
45
+
46
+ Returns:
47
+
48
+ Example:
49
+
50
+ ```python
51
+ >>> from PIL import Image
52
+ >>> from transformers import AutoTokenizer, Glm4vForConditionalGeneration
53
+
54
+ >>> MODEL_PATH = "THUDM/GLM-4.1V-9B-Thinking"
55
+ >>> messages = [
56
+ {
57
+ "role": "user",
58
+ "content": [
59
+ {
60
+ "type": "image",
61
+ "url": "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png"
62
+ },
63
+ {
64
+ "type": "text",
65
+ "text": "describe this image"
66
+ }
67
+ ],
68
+ }
69
+ ]
70
+ >>> processor = AutoProcessor.from_pretrained(MODEL_PATH, use_fast=True)
71
+ >>> model = Glm4vForConditionalGeneration.from_pretrained(
72
+ pretrained_model_name_or_path=MODEL_PATH,
73
+ torch_dtype=torch.bfloat16,
74
+ device_map="auto",
75
+ )
76
+ >>> inputs = processor.apply_chat_template(
77
+ messages,
78
+ tokenize=True,
79
+ add_generation_prompt=True,
80
+ return_dict=True,
81
+ return_tensors="pt"
82
+ ).to(model.device)
83
+ >>> generated_ids = model.generate(**inputs, max_new_tokens=8192)
84
+ output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False)
85
+ <think>Got it, let's describe the image. First, there's a vintage car, specifically a Volkswagen Beetle
86
+ ```"""
87
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
88
+ output_hidden_states = (
89
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
90
+ )
91
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
92
+
93
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
94
+ outputs = self.model(
95
+ input_ids=input_ids,
96
+ attention_mask=attention_mask,
97
+ position_ids=position_ids,
98
+ past_key_values=past_key_values,
99
+ inputs_embeds=inputs_embeds,
100
+ use_cache=use_cache,
101
+ output_attentions=output_attentions,
102
+ output_hidden_states=output_hidden_states,
103
+ return_dict=return_dict,
104
+ cache_position=cache_position,
105
+ **kwargs,
106
+ )
107
+
108
+ hidden_states = outputs[0]
109
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
110
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
111
+ kept_hidden_states = hidden_states[:, slice_indices, :]
112
+
113
+ shift_labels = kwargs.pop("shift_labels", None)
114
+ logits = None
115
+ loss = None
116
+
117
+ if skip_logits and labels is None and shift_labels is None:
118
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
119
+
120
+ if skip_logits is None:
121
+ # By default, if in training mode, don't materialize logits
122
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
123
+
124
+ if skip_logits:
125
+ loss = LigerForCausalLMLoss(
126
+ hidden_states=kept_hidden_states,
127
+ lm_head_weight=self.lm_head.weight,
128
+ labels=labels,
129
+ shift_labels=shift_labels,
130
+ hidden_size=self.config.hidden_size,
131
+ **kwargs,
132
+ )
133
+
134
+ else:
135
+ logits = self.lm_head(kept_hidden_states)
136
+ if labels is not None:
137
+ loss = self.loss_function(
138
+ logits=logits,
139
+ labels=labels,
140
+ vocab_size=self.config.vocab_size,
141
+ **kwargs,
142
+ )
143
+
144
+ return CausalLMOutputWithPast(
145
+ loss=loss,
146
+ logits=logits,
147
+ past_key_values=outputs.past_key_values,
148
+ hidden_states=outputs.hidden_states,
149
+ attentions=outputs.attentions,
150
+ )
@@ -1839,6 +1839,95 @@ def apply_liger_kernel_to_glm4(
1839
1839
  _patch_rms_norm_module(decoder_layer.post_mlp_layernorm, in_place=False)
1840
1840
 
1841
1841
 
1842
+ def apply_liger_kernel_to_glm4v(
1843
+ rope: bool = False,
1844
+ cross_entropy: bool = False,
1845
+ fused_linear_cross_entropy: bool = True,
1846
+ rms_norm: bool = True,
1847
+ swiglu: bool = True,
1848
+ model: PreTrainedModel = None,
1849
+ ) -> None:
1850
+ """
1851
+ Apply Liger kernels to replace original implementation in HuggingFace GLM-4v models.
1852
+
1853
+ Args:
1854
+ rope (bool): Whether to apply Liger's rotary position embedding. Default is False.
1855
+ cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
1856
+ fused_linear_cross_entropy (bool):
1857
+ Whether to apply Liger's fused linear cross entropy loss. Default is True.
1858
+ `cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
1859
+ If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
1860
+ rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
1861
+ swiglu (bool): Whether to apply Liger's SwiGLU Glm4MLP. Default is True.
1862
+ model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
1863
+ loaded. Default is None.
1864
+ """
1865
+ assert not (cross_entropy and fused_linear_cross_entropy), (
1866
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
1867
+ )
1868
+
1869
+ from transformers.models.glm4v import modeling_glm4v
1870
+ from transformers.models.glm4v.modeling_glm4v import Glm4vForConditionalGeneration
1871
+ from transformers.models.glm4v.modeling_glm4v import Glm4vModel
1872
+ from transformers.models.glm4v.modeling_glm4v import Glm4vTextModel
1873
+ from transformers.models.glm4v.modeling_glm4v import Glm4vVisionModel
1874
+
1875
+ from liger_kernel.transformers.model.glm4v import lce_forward as glm4v_lce_forward
1876
+ from liger_kernel.transformers.rms_norm import LigerRMSNormForGlm4
1877
+
1878
+ if rope:
1879
+ raise NotImplementedError("liger_rotary_pos_emb is not available for Glm4 models.")
1880
+ if rms_norm:
1881
+ modeling_glm4v.Glm4vRMSNorm = LigerRMSNormForGlm4
1882
+ if cross_entropy:
1883
+ from transformers.loss.loss_utils import nn
1884
+
1885
+ nn.functional.cross_entropy = liger_cross_entropy
1886
+ if fused_linear_cross_entropy:
1887
+ if model is not None:
1888
+ model.forward = MethodType(glm4v_lce_forward, model)
1889
+ else:
1890
+ modeling_glm4v.Glm4vForConditionalGeneration.forward = glm4v_lce_forward
1891
+
1892
+ if model is not None:
1893
+ # The model instance already exists, so we need to additionally patch the
1894
+ # instance variables that reference already-instantiated modules
1895
+ if isinstance(model, (Glm4vForConditionalGeneration, Glm4vModel)):
1896
+ # Note: language_model and visual properties can be accessed throught conditional class for BC.
1897
+ # Not sure if it is subject to changes in the future.
1898
+ # Reference: https://github.com/huggingface/transformers/blob/main/src/transformers/models/glm4v/modeling_glm4v.py#L1305
1899
+ text_model: Glm4vTextModel = model.language_model
1900
+ vision_model: Glm4vVisionModel = model.visual
1901
+ elif isinstance(model, Glm4vTextModel):
1902
+ text_model: Glm4vTextModel = model
1903
+ vision_model = None
1904
+ else:
1905
+ # Note: Currently there's no support for patching vision model only. Feel free to raise an issue if needed.
1906
+ raise TypeError(
1907
+ f"Unsupported glm4.1v model type. `model` must be `Glm4VLForConditionalGeneration`, `Glm4vVisionModel` or `Glm4vTextModel`. Got: {type(model)}"
1908
+ )
1909
+
1910
+ if vision_model is not None:
1911
+ for vision_block in vision_model.blocks:
1912
+ if rms_norm:
1913
+ _patch_rms_norm_module(vision_block.norm1)
1914
+ _patch_rms_norm_module(vision_block.norm2)
1915
+ if swiglu:
1916
+ _patch_swiglu_module(vision_block.mlp, LigerSwiGLUMLP)
1917
+
1918
+ if text_model is not None:
1919
+ if rms_norm:
1920
+ _patch_rms_norm_module(text_model.norm)
1921
+ for decoder_layer in text_model.layers:
1922
+ if swiglu:
1923
+ _patch_swiglu_module(decoder_layer.mlp, LigerPhi3SwiGLUMLP)
1924
+ if rms_norm:
1925
+ _patch_rms_norm_module(decoder_layer.input_layernorm)
1926
+ _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
1927
+ _patch_rms_norm_module(decoder_layer.post_self_attn_layernorm)
1928
+ _patch_rms_norm_module(decoder_layer.post_mlp_layernorm)
1929
+
1930
+
1842
1931
  # Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
1843
1932
  MODEL_TYPE_TO_APPLY_LIGER_FN = {
1844
1933
  "gemma": apply_liger_kernel_to_gemma,
@@ -1846,6 +1935,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
1846
1935
  "gemma3_text": apply_liger_kernel_to_gemma3_text,
1847
1936
  "gemma3": apply_liger_kernel_to_gemma3,
1848
1937
  "glm4": apply_liger_kernel_to_glm4,
1938
+ "glm4v": apply_liger_kernel_to_glm4v,
1849
1939
  "llama": apply_liger_kernel_to_llama,
1850
1940
  "llama4_text": apply_liger_kernel_to_llama4,
1851
1941
  "llama4": apply_liger_kernel_to_llama4,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.6.1.dev20250819145841
3
+ Version: 0.6.1.dev20250819173444
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -41,7 +41,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
41
41
  liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
42
42
  liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
43
43
  liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
44
- liger_kernel/transformers/__init__.py,sha256=YQ3ffAaZWLy266snmFFHHfoz4EX1AhcSfojXZhOs6h0,7842
44
+ liger_kernel/transformers/__init__.py,sha256=jkokP69dbCzUDTz-H6QowB5xNEflmgQ7Zv-_4MVuxpY,8440
45
45
  liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
46
46
  liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
47
47
  liger_kernel/transformers/dyt.py,sha256=i-4GPaMrl-jab9TVI5qN0-H9qycn_mCbV82ozU4nbmU,723
@@ -58,7 +58,7 @@ liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCc
58
58
  liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
59
59
  liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
60
60
  liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
61
- liger_kernel/transformers/monkey_patch.py,sha256=zeYj1XhI1at_gWdKnvZqazT53uBy_YOV36ZuQfnhf20,88545
61
+ liger_kernel/transformers/monkey_patch.py,sha256=pG3Yf0fMg4_0pAncc2wLtpdfXvmC5CROpNJ43-MmElM,93075
62
62
  liger_kernel/transformers/multi_token_attention.py,sha256=l9VDICK0dfmifUDW668hGscP8AHq2rYcM2oGUa3baRQ,1751
63
63
  liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
64
64
  liger_kernel/transformers/rms_norm.py,sha256=vkekcvTeWY8vL4H6hg3t0XeY0Ew_3OFMPHuzqlxPPVw,2719
@@ -68,12 +68,14 @@ liger_kernel/transformers/sparsemax.py,sha256=0lQA0UEOs4mu8CMruZ3VLhImxQVXJWhPsA
68
68
  liger_kernel/transformers/swiglu.py,sha256=LZ8YeLIdv2k46JleZMjzubGk98smt6t780kSgcVLsQk,3454
69
69
  liger_kernel/transformers/trainer_integration.py,sha256=W3ON51O5GkyzNJsItz0y5rKx-uy2f2cFfveZpqbUdhw,123
70
70
  liger_kernel/transformers/tvd.py,sha256=XrRfyJIqN6HFxXk8MYyFVZM1OLz3mtSbRZvWfZ_JerQ,450
71
+ liger_kernel/transformers/experimental/__init__.py,sha256=oQqk-f32JYgWEP9DJCj6ty6bbJSGrdXsFDQFwGeX6vI,127
71
72
  liger_kernel/transformers/experimental/embedding.py,sha256=2P0QYdlFyFrG5OqTzTa1wcRgDSyjBMv5i1a7BrDPDQw,881
72
73
  liger_kernel/transformers/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
73
74
  liger_kernel/transformers/model/gemma.py,sha256=mNX-mIwV6jI4zfbrUHp0C468pOmjzsL7mjXipGt-eS0,10007
74
75
  liger_kernel/transformers/model/gemma2.py,sha256=R_JFPyWTk7RyA7D05ZiIaNO5pX8gWcvfWf-6rdCRMxs,11296
75
76
  liger_kernel/transformers/model/gemma3.py,sha256=FKO4j3t4W_5uECRA1lhVnXC-It2GhirHm4tpCf9ApAc,12785
76
77
  liger_kernel/transformers/model/glm4.py,sha256=GlnEhdGJuDIqp2R9qC54biY3HwV1tWmfpJm6ijoAsrM,5257
78
+ liger_kernel/transformers/model/glm4v.py,sha256=zbV3agptEYpGAD0eeCRwIpJAhJUviTT5xQbbLlgpVnc,5957
77
79
  liger_kernel/transformers/model/llama.py,sha256=i8jJgyZsMKWQ-zKloETLugtwFpUOdaWxLDceciFXKd4,12832
78
80
  liger_kernel/transformers/model/llama4.py,sha256=IgbB8sTh3dlETQnaNNy1bZLuXy-Nt7qmeAjF27ydGpg,4210
79
81
  liger_kernel/transformers/model/llava.py,sha256=bLCioday_SOm69ogMDBhy_4UsVkH2-BSl93-EXY6-7I,15076
@@ -94,9 +96,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
94
96
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
95
97
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
96
98
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
97
- liger_kernel_nightly-0.6.1.dev20250819145841.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
98
- liger_kernel_nightly-0.6.1.dev20250819145841.dist-info/METADATA,sha256=h8wVtgQPQH2HPJAlAIPPzrkbR0YlZqpkKBLylhJXQdo,24504
99
- liger_kernel_nightly-0.6.1.dev20250819145841.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
100
- liger_kernel_nightly-0.6.1.dev20250819145841.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
101
- liger_kernel_nightly-0.6.1.dev20250819145841.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
102
- liger_kernel_nightly-0.6.1.dev20250819145841.dist-info/RECORD,,
99
+ liger_kernel_nightly-0.6.1.dev20250819173444.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
100
+ liger_kernel_nightly-0.6.1.dev20250819173444.dist-info/METADATA,sha256=OaVW-70Zf6I4qZbU4W9HcUlXza8L-zhHOmyViKLUftQ,24504
101
+ liger_kernel_nightly-0.6.1.dev20250819173444.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
102
+ liger_kernel_nightly-0.6.1.dev20250819173444.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
103
+ liger_kernel_nightly-0.6.1.dev20250819173444.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
104
+ liger_kernel_nightly-0.6.1.dev20250819173444.dist-info/RECORD,,