liger-kernel-nightly 0.6.1.dev20250809233505__py3-none-any.whl → 0.6.1.dev20250809233744__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -5,131 +5,12 @@ from typing import Union
5
5
 
6
6
  import torch
7
7
 
8
- from torch.nn import CrossEntropyLoss
8
+ from transformers.modeling_outputs import BaseModelOutputWithPast
9
9
  from transformers.modeling_outputs import CausalLMOutputWithPast
10
- from transformers.utils.deprecation import deprecate_kwarg
11
10
 
12
- from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
13
11
  from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
14
12
 
15
13
 
16
- def lce_forward_deprecated(
17
- self,
18
- input_ids: torch.LongTensor = None,
19
- attention_mask: Optional[torch.Tensor] = None,
20
- position_ids: Optional[torch.LongTensor] = None,
21
- past_key_values: Optional[List[torch.FloatTensor]] = None,
22
- inputs_embeds: Optional[torch.FloatTensor] = None,
23
- labels: Optional[torch.LongTensor] = None,
24
- use_cache: Optional[bool] = None,
25
- output_attentions: Optional[bool] = None,
26
- output_hidden_states: Optional[bool] = None,
27
- return_dict: Optional[bool] = None,
28
- cache_position: Optional[torch.LongTensor] = None,
29
- skip_logits: Optional[bool] = None,
30
- ) -> Union[Tuple, CausalLMOutputWithPast]:
31
- r"""
32
- Copy paste phi3 forward from transfomers v4.44.2 but replace torch cross entropy with liger fused linear cross entropy
33
-
34
-
35
- Args:
36
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
37
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
38
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
39
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
40
-
41
- Returns:
42
-
43
- Example:
44
-
45
- ```python
46
- >>> from transformers import AutoTokenizer, Phi3ForCausalLM
47
-
48
- >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
49
- >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
50
-
51
- >>> prompt = "This is an example script ."
52
- >>> inputs = tokenizer(prompt, return_tensors="pt")
53
-
54
- >>> # Generate
55
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
56
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
57
- 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
58
- ```"""
59
-
60
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
61
- output_hidden_states = (
62
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
63
- )
64
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
65
-
66
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
67
- outputs = self.model(
68
- input_ids=input_ids,
69
- attention_mask=attention_mask,
70
- position_ids=position_ids,
71
- past_key_values=past_key_values,
72
- inputs_embeds=inputs_embeds,
73
- use_cache=use_cache,
74
- output_attentions=output_attentions,
75
- output_hidden_states=output_hidden_states,
76
- return_dict=return_dict,
77
- )
78
-
79
- hidden_states = outputs[0]
80
-
81
- loss = None
82
- logits = None
83
-
84
- if skip_logits and labels is None:
85
- raise ValueError("skip_logits is True, but labels is None")
86
-
87
- if skip_logits is None:
88
- # By default, if in training mode, don't materialize logits
89
- skip_logits = self.training and labels is not None
90
-
91
- if skip_logits:
92
- shift_hidden_states = hidden_states[..., :-1, :].contiguous()
93
- shift_labels = labels[..., 1:].contiguous()
94
-
95
- # flatten tokens
96
- shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
97
- shift_labels = shift_labels.view(-1)
98
-
99
- lce = LigerFusedLinearCrossEntropyLoss()
100
- loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
101
- else:
102
- logits = self.lm_head(hidden_states)
103
-
104
- loss = None
105
- if labels is not None:
106
- # Upcast to float if we need to compute the loss to avoid potential precision issues
107
- logits = logits.float()
108
- # Shift so that tokens < n predict n
109
- shift_logits = logits[..., :-1, :].contiguous()
110
- shift_labels = labels[..., 1:].contiguous()
111
- # Flatten the tokens
112
- loss_fct = CrossEntropyLoss()
113
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
114
- shift_labels = shift_labels.view(-1)
115
- # Enable model parallelism
116
- shift_labels = shift_labels.to(shift_logits.device)
117
- loss = loss_fct(shift_logits, shift_labels)
118
-
119
- if not return_dict:
120
- output = (logits,) + outputs[1:]
121
- return (loss,) + output if loss is not None else output
122
-
123
- return CausalLMOutputWithPast(
124
- loss=loss,
125
- logits=logits,
126
- past_key_values=outputs.past_key_values,
127
- hidden_states=outputs.hidden_states,
128
- attentions=outputs.attentions,
129
- )
130
-
131
-
132
- @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
133
14
  def lce_forward(
134
15
  self,
135
16
  input_ids: torch.LongTensor = None,
@@ -148,36 +29,21 @@ def lce_forward(
148
29
  **kwargs,
149
30
  ) -> Union[Tuple, CausalLMOutputWithPast]:
150
31
  r"""
151
- Args:
152
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
153
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
154
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
155
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
156
-
157
- logits_to_keep (`int` or `torch.Tensor`, *optional*):
158
- If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
159
- `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
160
- token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
161
- If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
162
- This is useful when using packed tensor format (single dimension for batch and sequence length).
163
-
164
- Returns:
165
-
166
32
  Example:
167
33
 
168
34
  ```python
169
35
  >>> from transformers import AutoTokenizer, Phi3ForCausalLM
170
36
 
171
- >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
172
- >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
37
+ >>> model = Phi3ForCausalLM.from_pretrained("meta-phi3/Phi3-2-7b-hf")
38
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-phi3/Phi3-2-7b-hf")
173
39
 
174
- >>> prompt = "This is an example script ."
40
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
175
41
  >>> inputs = tokenizer(prompt, return_tensors="pt")
176
42
 
177
43
  >>> # Generate
178
44
  >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
179
45
  >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
180
- 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
46
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
181
47
  ```"""
182
48
 
183
49
  output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
@@ -186,21 +52,18 @@ def lce_forward(
186
52
  )
187
53
  return_dict = return_dict if return_dict is not None else self.config.use_return_dict
188
54
 
189
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
190
- outputs = self.model(
55
+ outputs: BaseModelOutputWithPast = self.model(
191
56
  input_ids=input_ids,
192
57
  attention_mask=attention_mask,
193
58
  position_ids=position_ids,
194
59
  past_key_values=past_key_values,
195
60
  inputs_embeds=inputs_embeds,
196
61
  use_cache=use_cache,
197
- output_attentions=output_attentions,
198
- output_hidden_states=output_hidden_states,
199
- return_dict=return_dict,
62
+ cache_position=cache_position,
200
63
  **kwargs,
201
64
  )
202
65
 
203
- hidden_states = outputs[0]
66
+ hidden_states = outputs.last_hidden_state
204
67
  # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
205
68
  slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
206
69
  kept_hidden_states = hidden_states[:, slice_indices, :]
@@ -26,7 +26,6 @@ from liger_kernel.transformers.model.mistral import lce_forward as mistral_lce_f
26
26
  from liger_kernel.transformers.model.mixtral import lce_forward as mixtral_lce_forward
27
27
  from liger_kernel.transformers.model.mixtral import lce_forward_deprecated as mixtral_lce_forward_deprecated
28
28
  from liger_kernel.transformers.model.phi3 import lce_forward as phi3_lce_forward
29
- from liger_kernel.transformers.model.phi3 import lce_forward_deprecated as phi3_lce_forward_deprecated
30
29
  from liger_kernel.transformers.model.qwen2 import lce_forward as qwen2_lce_forward
31
30
  from liger_kernel.transformers.model.qwen2 import lce_forward_deprecated as qwen2_lce_forward_deprecated
32
31
  from liger_kernel.transformers.model.smollm3 import lce_forward as smollm3_lce_forward
@@ -1677,25 +1676,14 @@ def apply_liger_kernel_to_phi3(
1677
1676
  if swiglu:
1678
1677
  modeling_phi3.Phi3MLP = LigerPhi3SwiGLUMLP
1679
1678
  if cross_entropy:
1680
- if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
1681
- from transformers.loss.loss_utils import nn
1679
+ from transformers.loss.loss_utils import nn
1682
1680
 
1683
- nn.functional.cross_entropy = liger_cross_entropy
1684
- else:
1685
- logger.warning(TRANSFORMER_DEPRECATION_WARNING)
1686
- modeling_phi3.CrossEntropyLoss = LigerCrossEntropyLoss
1681
+ nn.functional.cross_entropy = liger_cross_entropy
1687
1682
  if fused_linear_cross_entropy:
1688
- if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
1689
- if model is not None:
1690
- model.forward = MethodType(phi3_lce_forward, model)
1691
- else:
1692
- modeling_phi3.Phi3ForCausalLM.forward = phi3_lce_forward
1693
- else: # if version < 4.46.1
1694
- logger.warning(TRANSFORMER_DEPRECATION_WARNING)
1695
- if model is not None:
1696
- model.forward = MethodType(phi3_lce_forward_deprecated, model)
1697
- else:
1698
- modeling_phi3.Phi3ForCausalLM.forward = phi3_lce_forward_deprecated
1683
+ if model is not None:
1684
+ model.forward = MethodType(phi3_lce_forward, model)
1685
+ else:
1686
+ modeling_phi3.Phi3ForCausalLM.forward = phi3_lce_forward
1699
1687
 
1700
1688
  if model is not None:
1701
1689
  # The model instance already exists, so we need to additionally patch the
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.6.1.dev20250809233505
3
+ Version: 0.6.1.dev20250809233744
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -58,7 +58,7 @@ liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCc
58
58
  liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
59
59
  liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
60
60
  liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
61
- liger_kernel/transformers/monkey_patch.py,sha256=jhQts3cl2XBpFFmqLmIkTSZrW0DKUvZT-o9KBT8GUdk,89285
61
+ liger_kernel/transformers/monkey_patch.py,sha256=zeYj1XhI1at_gWdKnvZqazT53uBy_YOV36ZuQfnhf20,88545
62
62
  liger_kernel/transformers/multi_token_attention.py,sha256=l9VDICK0dfmifUDW668hGscP8AHq2rYcM2oGUa3baRQ,1751
63
63
  liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
64
64
  liger_kernel/transformers/rms_norm.py,sha256=vkekcvTeWY8vL4H6hg3t0XeY0Ew_3OFMPHuzqlxPPVw,2719
@@ -83,7 +83,7 @@ liger_kernel/transformers/model/mixtral.py,sha256=VY-y73IyjcCyWyI7ahxXLw0fJrhgjY
83
83
  liger_kernel/transformers/model/mllama.py,sha256=my29NXk-p6ckQaP8qDIN8e318yI_9mQZHt38MV3SqLY,11280
84
84
  liger_kernel/transformers/model/olmo2.py,sha256=6L_bo-ZUgO1lYppdJneOtYxNIylQKS6BiGp13g7Uq9E,5259
85
85
  liger_kernel/transformers/model/paligemma.py,sha256=xuIx3oOwTgftU3jqLfWOxUxgCLBNJh0yNC21an9qDjo,18773
86
- liger_kernel/transformers/model/phi3.py,sha256=aOl1Pz2rp5jSahRKUHKFPgkdkgG28fnHPpOW2ZVnMPg,10124
86
+ liger_kernel/transformers/model/phi3.py,sha256=AwScxUe3LjmHHyQg4gW9bMoUI7uA6fUEMXJ3YhBiHtQ,4046
87
87
  liger_kernel/transformers/model/qwen2.py,sha256=3fpOTEOkniQmkCfN1KUa3KhseHJVzhj2Ht9FdYPUy-E,9962
88
88
  liger_kernel/transformers/model/qwen2_5_vl.py,sha256=zEVVwotCXnAm3RRc8-1Nc8uitSWrwW4B9dYY2uOZDwg,6331
89
89
  liger_kernel/transformers/model/qwen2_vl.py,sha256=5vK-vtCDpKZ2w33xYp2BS8kQYWUbKMqaiKvQcI27Mss,5884
@@ -94,9 +94,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
94
94
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
95
95
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
96
96
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
97
- liger_kernel_nightly-0.6.1.dev20250809233505.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
98
- liger_kernel_nightly-0.6.1.dev20250809233505.dist-info/METADATA,sha256=qHbWQzIZZO5GpWYdMYCwszuoocoVGcNxEh6_L4_J_YE,24504
99
- liger_kernel_nightly-0.6.1.dev20250809233505.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
100
- liger_kernel_nightly-0.6.1.dev20250809233505.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
101
- liger_kernel_nightly-0.6.1.dev20250809233505.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
102
- liger_kernel_nightly-0.6.1.dev20250809233505.dist-info/RECORD,,
97
+ liger_kernel_nightly-0.6.1.dev20250809233744.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
98
+ liger_kernel_nightly-0.6.1.dev20250809233744.dist-info/METADATA,sha256=nClPzQutLCx1b5T1KZGIsCPMTAaYbSw6PVkt9EJjhVw,24504
99
+ liger_kernel_nightly-0.6.1.dev20250809233744.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
100
+ liger_kernel_nightly-0.6.1.dev20250809233744.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
101
+ liger_kernel_nightly-0.6.1.dev20250809233744.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
102
+ liger_kernel_nightly-0.6.1.dev20250809233744.dist-info/RECORD,,