liger-kernel-nightly 0.6.1.dev20250805235815__py3-none-any.whl → 0.6.1.dev20250809233744__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/transformers/__init__.py +4 -0
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/phi3.py +8 -145
- liger_kernel/transformers/monkey_patch.py +10 -20
- {liger_kernel_nightly-0.6.1.dev20250805235815.dist-info → liger_kernel_nightly-0.6.1.dev20250809233744.dist-info}/METADATA +1 -1
- {liger_kernel_nightly-0.6.1.dev20250805235815.dist-info → liger_kernel_nightly-0.6.1.dev20250809233744.dist-info}/RECORD +11 -9
- {liger_kernel_nightly-0.6.1.dev20250805235815.dist-info → liger_kernel_nightly-0.6.1.dev20250809233744.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.6.1.dev20250805235815.dist-info → liger_kernel_nightly-0.6.1.dev20250809233744.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.6.1.dev20250805235815.dist-info → liger_kernel_nightly-0.6.1.dev20250809233744.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.6.1.dev20250805235815.dist-info → liger_kernel_nightly-0.6.1.dev20250809233744.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,225 @@
|
|
1
|
+
import torch
|
2
|
+
import triton
|
3
|
+
import triton.language as tl
|
4
|
+
|
5
|
+
|
6
|
+
def _prepare_freqs(freqs_cis: torch.Tensor, seq_len: int, head_dim_half: int):
|
7
|
+
# Split or unpack complex frequencies into real and imag parts
|
8
|
+
if freqs_cis.is_complex():
|
9
|
+
freqs_real = freqs_cis.real
|
10
|
+
freqs_imag = freqs_cis.imag
|
11
|
+
else:
|
12
|
+
# Already split: last dim should be 2*head_dim_half
|
13
|
+
if freqs_cis.shape[-1] == 2 * head_dim_half:
|
14
|
+
freqs_real = freqs_cis[..., :head_dim_half]
|
15
|
+
freqs_imag = freqs_cis[..., head_dim_half:]
|
16
|
+
else:
|
17
|
+
raise ValueError(
|
18
|
+
f"Unexpected freqs_cis shape for non-complex input: {freqs_cis.shape}, expected last dim = {2 * head_dim_half}"
|
19
|
+
)
|
20
|
+
|
21
|
+
# Canonicalize to shape (seq_len, head_dim_half):
|
22
|
+
# 1) Ensure the last dimension is head_dim_half
|
23
|
+
if freqs_real.shape[-1] != head_dim_half:
|
24
|
+
raise ValueError(f"Unexpected last dim for freqs: {freqs_real.shape[-1]} (expected {head_dim_half})")
|
25
|
+
# 2) Flatten all leading dims to a single row dimension
|
26
|
+
freqs_real = freqs_real.reshape(-1, head_dim_half)
|
27
|
+
freqs_imag = freqs_imag.reshape(-1, head_dim_half)
|
28
|
+
# 3) If we have fewer rows than seq_len, allow broadcasting when single row
|
29
|
+
if freqs_real.shape[0] < seq_len:
|
30
|
+
if freqs_real.shape[0] == 1:
|
31
|
+
freqs_real = freqs_real.expand(seq_len, -1)
|
32
|
+
freqs_imag = freqs_imag.expand(seq_len, -1)
|
33
|
+
else:
|
34
|
+
raise ValueError(f"Insufficient rows in freqs: {freqs_real.shape[0]} < seq_len={seq_len}")
|
35
|
+
# 4) If we have more rows than seq_len (e.g., batch present), take the first seq_len rows
|
36
|
+
elif freqs_real.shape[0] > seq_len:
|
37
|
+
freqs_real = freqs_real[:seq_len]
|
38
|
+
freqs_imag = freqs_imag[:seq_len]
|
39
|
+
|
40
|
+
return freqs_real, freqs_imag
|
41
|
+
|
42
|
+
|
43
|
+
def _maybe_to_dtype(t: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
|
44
|
+
return t if t.dtype == dtype else t.to(dtype)
|
45
|
+
|
46
|
+
|
47
|
+
def _maybe_contiguous(t: torch.Tensor) -> torch.Tensor:
|
48
|
+
return t if t.is_contiguous() else t.contiguous()
|
49
|
+
|
50
|
+
|
51
|
+
def _cast_and_contiguous(q, k, freqs_real, freqs_imag):
|
52
|
+
# Choose compute dtype: use fp32 only when inputs are fp32; otherwise keep input dtype for performance
|
53
|
+
compute_dtype = torch.float32 if q.dtype == torch.float32 else q.dtype
|
54
|
+
|
55
|
+
# Make sure q/k share the same dtype before casting to compute dtype
|
56
|
+
if k.dtype != q.dtype:
|
57
|
+
k = k.to(q.dtype)
|
58
|
+
|
59
|
+
q = _maybe_contiguous(_maybe_to_dtype(q, compute_dtype))
|
60
|
+
k = _maybe_contiguous(_maybe_to_dtype(k, compute_dtype))
|
61
|
+
freqs_real = _maybe_contiguous(_maybe_to_dtype(freqs_real, compute_dtype))
|
62
|
+
freqs_imag = _maybe_contiguous(_maybe_to_dtype(freqs_imag, compute_dtype))
|
63
|
+
return q, k, freqs_real, freqs_imag
|
64
|
+
|
65
|
+
|
66
|
+
@triton.jit
|
67
|
+
def _llama4_rope_kernel(
|
68
|
+
q_ptr,
|
69
|
+
k_ptr,
|
70
|
+
freqs_real_ptr,
|
71
|
+
freqs_imag_ptr,
|
72
|
+
q_row_stride,
|
73
|
+
k_row_stride,
|
74
|
+
q_head_stride,
|
75
|
+
k_head_stride,
|
76
|
+
freqs_row_stride,
|
77
|
+
seq_len,
|
78
|
+
batch_size,
|
79
|
+
imag_sign,
|
80
|
+
head_dim_half: tl.constexpr,
|
81
|
+
n_q_heads: tl.constexpr,
|
82
|
+
n_k_heads: tl.constexpr,
|
83
|
+
BLOCK_SIZE: tl.constexpr,
|
84
|
+
):
|
85
|
+
"""
|
86
|
+
H100-optimized RoPE kernel with improved parallelization across heads and dimensions.
|
87
|
+
Grid: (batch*seq, head)
|
88
|
+
"""
|
89
|
+
# 2D grid
|
90
|
+
pid_bs = tl.program_id(0) # over batch*seq
|
91
|
+
pid_h = tl.program_id(1) # over heads
|
92
|
+
|
93
|
+
batch_idx = pid_bs // seq_len
|
94
|
+
seq_idx = pid_bs % seq_len
|
95
|
+
|
96
|
+
# Bounds check
|
97
|
+
if batch_idx >= batch_size or seq_idx >= seq_len:
|
98
|
+
return
|
99
|
+
|
100
|
+
# Base pointers for this (batch, seq) position
|
101
|
+
base_offset = batch_idx * seq_len + seq_idx
|
102
|
+
q_base = q_ptr + base_offset * q_row_stride
|
103
|
+
k_base = k_ptr + base_offset * k_row_stride
|
104
|
+
|
105
|
+
# Tiling over dim/2
|
106
|
+
for d_start in tl.static_range(0, head_dim_half, BLOCK_SIZE):
|
107
|
+
d_indices = d_start + tl.arange(0, BLOCK_SIZE)
|
108
|
+
mask_d = d_indices < head_dim_half
|
109
|
+
|
110
|
+
# Load frequencies once per tile (freqs layout: [seq_len, head_dim_half])
|
111
|
+
freq_idx = d_indices
|
112
|
+
freqs_real = tl.load(freqs_real_ptr + seq_idx * freqs_row_stride + freq_idx, mask=mask_d, other=0.0)
|
113
|
+
freqs_imag = tl.load(freqs_imag_ptr + seq_idx * freqs_row_stride + freq_idx, mask=mask_d, other=0.0)
|
114
|
+
freqs_imag = freqs_imag * imag_sign
|
115
|
+
|
116
|
+
# Process one query head per program in pid_h
|
117
|
+
if pid_h < n_q_heads:
|
118
|
+
q_head_ptr = q_base + pid_h * q_head_stride
|
119
|
+
q_real = tl.load(q_head_ptr + d_indices * 2, mask=mask_d, other=0.0)
|
120
|
+
q_imag = tl.load(q_head_ptr + d_indices * 2 + 1, mask=mask_d, other=0.0)
|
121
|
+
|
122
|
+
# Complex multiply with FMAs: (a+ib)*(c+i d) = (a*c - b*d) + i(a*d + b*c)
|
123
|
+
new_q_real = tl.math.fma(q_real, freqs_real, -(q_imag * freqs_imag))
|
124
|
+
new_q_imag = tl.math.fma(q_real, freqs_imag, q_imag * freqs_real)
|
125
|
+
|
126
|
+
tl.store(q_head_ptr + d_indices * 2, new_q_real, mask=mask_d)
|
127
|
+
tl.store(q_head_ptr + d_indices * 2 + 1, new_q_imag, mask=mask_d)
|
128
|
+
|
129
|
+
# Process one key head per program in pid_h
|
130
|
+
if pid_h < n_k_heads:
|
131
|
+
k_head_ptr = k_base + pid_h * k_head_stride
|
132
|
+
k_real = tl.load(k_head_ptr + d_indices * 2, mask=mask_d, other=0.0)
|
133
|
+
k_imag = tl.load(k_head_ptr + d_indices * 2 + 1, mask=mask_d, other=0.0)
|
134
|
+
|
135
|
+
new_k_real = tl.math.fma(k_real, freqs_real, -(k_imag * freqs_imag))
|
136
|
+
new_k_imag = tl.math.fma(k_real, freqs_imag, k_imag * freqs_real)
|
137
|
+
|
138
|
+
tl.store(k_head_ptr + d_indices * 2, new_k_real, mask=mask_d)
|
139
|
+
tl.store(k_head_ptr + d_indices * 2 + 1, new_k_imag, mask=mask_d)
|
140
|
+
|
141
|
+
|
142
|
+
def _select_kernel_meta(head_dim_half: int):
|
143
|
+
# Heuristic tuning for block size and num_warps
|
144
|
+
if head_dim_half >= 256:
|
145
|
+
return 128, 8
|
146
|
+
if head_dim_half >= 96:
|
147
|
+
return 128, 4
|
148
|
+
if head_dim_half >= 48:
|
149
|
+
return 64, 4
|
150
|
+
if head_dim_half >= 24:
|
151
|
+
return 32, 2
|
152
|
+
return 16, 2
|
153
|
+
|
154
|
+
|
155
|
+
def llama4_rope_forward(q, k, freqs_cis, BLOCK_SIZE: int = None, imag_sign: float = 1.0):
|
156
|
+
# Save original dtype for casting back
|
157
|
+
original_dtype = q.dtype
|
158
|
+
|
159
|
+
batch_size, seq_len, n_q_heads, head_dim = q.shape
|
160
|
+
_, _, n_k_heads, _ = k.shape
|
161
|
+
head_dim_half = head_dim // 2
|
162
|
+
|
163
|
+
# Prepare frequencies
|
164
|
+
freqs_real, freqs_imag = _prepare_freqs(freqs_cis, seq_len, head_dim_half)
|
165
|
+
|
166
|
+
# Cast to appropriate dtype and make contiguous only when needed
|
167
|
+
q, k, freqs_real, freqs_imag = _cast_and_contiguous(q, k, freqs_real, freqs_imag)
|
168
|
+
|
169
|
+
# H100-optimized meta-params
|
170
|
+
if BLOCK_SIZE is None:
|
171
|
+
BLOCK_SIZE, num_warps = _select_kernel_meta(head_dim_half)
|
172
|
+
else:
|
173
|
+
# Provide a default num_warps if caller pins BLOCK_SIZE
|
174
|
+
_, num_warps = _select_kernel_meta(head_dim_half)
|
175
|
+
|
176
|
+
# 2D grid: one program per (batch, seq, head)
|
177
|
+
n_heads_max = max(n_q_heads, n_k_heads)
|
178
|
+
grid = (batch_size * seq_len, n_heads_max)
|
179
|
+
|
180
|
+
# Launch kernel
|
181
|
+
_llama4_rope_kernel[grid](
|
182
|
+
q,
|
183
|
+
k,
|
184
|
+
freqs_real,
|
185
|
+
freqs_imag,
|
186
|
+
q.stride(1),
|
187
|
+
k.stride(1),
|
188
|
+
q.stride(2),
|
189
|
+
k.stride(2),
|
190
|
+
freqs_real.stride(0),
|
191
|
+
seq_len,
|
192
|
+
batch_size,
|
193
|
+
imag_sign,
|
194
|
+
head_dim_half,
|
195
|
+
n_q_heads,
|
196
|
+
n_k_heads,
|
197
|
+
BLOCK_SIZE,
|
198
|
+
num_warps=num_warps,
|
199
|
+
num_stages=2,
|
200
|
+
)
|
201
|
+
|
202
|
+
# Cast back to original dtype only if it differs from compute dtype
|
203
|
+
if q.dtype != original_dtype:
|
204
|
+
q = q.to(original_dtype)
|
205
|
+
if k.dtype != original_dtype:
|
206
|
+
k = k.to(original_dtype)
|
207
|
+
|
208
|
+
return q, k
|
209
|
+
|
210
|
+
|
211
|
+
class LigerLlama4RopeFunction(torch.autograd.Function):
|
212
|
+
@staticmethod
|
213
|
+
def forward(ctx, q, k, freqs_cis, BLOCK_SIZE: int = None):
|
214
|
+
q_out, k_out = llama4_rope_forward(q, k, freqs_cis, BLOCK_SIZE, imag_sign=1.0)
|
215
|
+
ctx.save_for_backward(freqs_cis.detach() if isinstance(freqs_cis, torch.Tensor) else freqs_cis)
|
216
|
+
ctx.BLOCK_SIZE = BLOCK_SIZE
|
217
|
+
return q_out, k_out
|
218
|
+
|
219
|
+
@staticmethod
|
220
|
+
def backward(ctx, dq, dk):
|
221
|
+
(freqs_cis,) = ctx.saved_tensors
|
222
|
+
BLOCK_SIZE = getattr(ctx, "BLOCK_SIZE", None)
|
223
|
+
# Use imag_sign=-1.0 for conjugate without materializing a new tensor
|
224
|
+
dq_out, dk_out = llama4_rope_forward(dq, dk, freqs_cis, BLOCK_SIZE, imag_sign=-1.0)
|
225
|
+
return dq_out, dk_out, None
|
@@ -11,6 +11,8 @@ from liger_kernel.transformers.fused_linear_jsd import LigerFusedLinearJSD # no
|
|
11
11
|
from liger_kernel.transformers.geglu import LigerGEGLUMLP # noqa: F401
|
12
12
|
from liger_kernel.transformers.jsd import LigerJSD # noqa: F401
|
13
13
|
from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
|
14
|
+
from liger_kernel.transformers.llama4_rope import liger_llama4_text_rotary_pos_emb # noqa: F401
|
15
|
+
from liger_kernel.transformers.llama4_rope import liger_llama4_vision_rotary_pos_emb # noqa: F401
|
14
16
|
from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
|
15
17
|
from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
|
16
18
|
from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F401
|
@@ -125,6 +127,8 @@ __all__ = [
|
|
125
127
|
"LigerFusedAddRMSNorm",
|
126
128
|
"LigerRMSNorm",
|
127
129
|
"liger_rotary_pos_emb",
|
130
|
+
"liger_llama4_text_rotary_pos_emb",
|
131
|
+
"liger_llama4_vision_rotary_pos_emb",
|
128
132
|
"LigerBlockSparseTop2MLP",
|
129
133
|
"LigerPhi3SwiGLUMLP",
|
130
134
|
"LigerQwen3MoeSwiGLUMLP",
|
@@ -0,0 +1,93 @@
|
|
1
|
+
"""
|
2
|
+
Liger Kernel implementation of Llama4 Rotary Position Embedding (RoPE).
|
3
|
+
Supports both text and vision RoPE variants with fused operations for optimal performance.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import torch
|
7
|
+
|
8
|
+
from liger_kernel.ops.llama4_rope import LigerLlama4RopeFunction
|
9
|
+
|
10
|
+
|
11
|
+
def liger_llama4_text_rotary_pos_emb(
|
12
|
+
xq: torch.Tensor,
|
13
|
+
xk: torch.Tensor,
|
14
|
+
freqs_cis: torch.Tensor,
|
15
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
16
|
+
"""
|
17
|
+
Liger-optimized implementation of Llama4 text rotary position embedding.
|
18
|
+
|
19
|
+
This implementation uses a fused Triton kernel for complex multiplication,
|
20
|
+
providing significant performance improvements over the original PyTorch implementation.
|
21
|
+
|
22
|
+
Args:
|
23
|
+
xq (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
24
|
+
xk (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
25
|
+
freqs_cis (torch.Tensor): Complex frequency tensor from Llama4TextRotaryEmbedding
|
26
|
+
|
27
|
+
Returns:
|
28
|
+
Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
|
29
|
+
"""
|
30
|
+
# Use fused Triton kernel for complex RoPE
|
31
|
+
return LigerLlama4RopeFunction.apply(xq, xk, freqs_cis)
|
32
|
+
|
33
|
+
|
34
|
+
def liger_llama4_vision_rotary_pos_emb(
|
35
|
+
query: torch.Tensor,
|
36
|
+
key: torch.Tensor,
|
37
|
+
freqs_ci: torch.Tensor,
|
38
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
39
|
+
"""
|
40
|
+
Liger-optimized implementation of Llama4 vision rotary position embedding.
|
41
|
+
|
42
|
+
This implementation uses the same fused Triton kernel as text RoPE,
|
43
|
+
providing performance improvements for vision transformer attention.
|
44
|
+
|
45
|
+
Args:
|
46
|
+
query (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
47
|
+
key (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
48
|
+
freqs_ci (torch.Tensor): Complex frequency tensor for 2D positions
|
49
|
+
|
50
|
+
Returns:
|
51
|
+
Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
|
52
|
+
"""
|
53
|
+
# Handle broadcasting for vision RoPE
|
54
|
+
if freqs_ci.dim() == 3:
|
55
|
+
try:
|
56
|
+
# Try the regular 3D expansion
|
57
|
+
freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
|
58
|
+
except RuntimeError as e:
|
59
|
+
if "expand" in str(e) and "4" in str(e):
|
60
|
+
# The tensor is actually 4D internally, handle it differently
|
61
|
+
freqs_ci = freqs_ci.squeeze(1) # Remove the middle dimension
|
62
|
+
freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
|
63
|
+
else:
|
64
|
+
raise e
|
65
|
+
elif freqs_ci.dim() == 4: # (1, seq_len, 1, head_dim//2) - already properly shaped
|
66
|
+
# Squeeze the middle dimension to get (1, seq_len, head_dim//2)
|
67
|
+
freqs_ci = freqs_ci.squeeze(2)
|
68
|
+
elif freqs_ci.dim() == 2: # (seq_len, head_dim//2) - needs expansion
|
69
|
+
freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
|
70
|
+
else:
|
71
|
+
raise ValueError(f"Unexpected freqs_ci shape: {freqs_ci.shape}")
|
72
|
+
|
73
|
+
# Use the same fused kernel as text RoPE
|
74
|
+
return LigerLlama4RopeFunction.apply(query, key, freqs_ci)
|
75
|
+
|
76
|
+
|
77
|
+
# Note: We only patch the functions, not the classes
|
78
|
+
# The original Llama4TextRotaryEmbedding and Llama4VisionRotaryEmbedding classes remain unchanged
|
79
|
+
|
80
|
+
|
81
|
+
# Convenience functions for monkey patching
|
82
|
+
def apply_liger_llama4_rope_full(modeling_module):
|
83
|
+
"""
|
84
|
+
Apply Liger optimizations to Llama4 RoPE functions.
|
85
|
+
|
86
|
+
Args:
|
87
|
+
modeling_module: The transformers modeling module to patch
|
88
|
+
"""
|
89
|
+
# Replace the text RoPE function
|
90
|
+
modeling_module.apply_rotary_emb = liger_llama4_text_rotary_pos_emb
|
91
|
+
|
92
|
+
# Replace the vision RoPE function
|
93
|
+
modeling_module.vision_apply_rotary_emb = liger_llama4_vision_rotary_pos_emb
|
@@ -5,131 +5,12 @@ from typing import Union
|
|
5
5
|
|
6
6
|
import torch
|
7
7
|
|
8
|
-
from
|
8
|
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
9
9
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
10
|
-
from transformers.utils.deprecation import deprecate_kwarg
|
11
10
|
|
12
|
-
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
13
11
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
14
12
|
|
15
13
|
|
16
|
-
def lce_forward_deprecated(
|
17
|
-
self,
|
18
|
-
input_ids: torch.LongTensor = None,
|
19
|
-
attention_mask: Optional[torch.Tensor] = None,
|
20
|
-
position_ids: Optional[torch.LongTensor] = None,
|
21
|
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
22
|
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
23
|
-
labels: Optional[torch.LongTensor] = None,
|
24
|
-
use_cache: Optional[bool] = None,
|
25
|
-
output_attentions: Optional[bool] = None,
|
26
|
-
output_hidden_states: Optional[bool] = None,
|
27
|
-
return_dict: Optional[bool] = None,
|
28
|
-
cache_position: Optional[torch.LongTensor] = None,
|
29
|
-
skip_logits: Optional[bool] = None,
|
30
|
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
31
|
-
r"""
|
32
|
-
Copy paste phi3 forward from transfomers v4.44.2 but replace torch cross entropy with liger fused linear cross entropy
|
33
|
-
|
34
|
-
|
35
|
-
Args:
|
36
|
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
37
|
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
38
|
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
39
|
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
40
|
-
|
41
|
-
Returns:
|
42
|
-
|
43
|
-
Example:
|
44
|
-
|
45
|
-
```python
|
46
|
-
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
|
47
|
-
|
48
|
-
>>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
49
|
-
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
50
|
-
|
51
|
-
>>> prompt = "This is an example script ."
|
52
|
-
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
53
|
-
|
54
|
-
>>> # Generate
|
55
|
-
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
56
|
-
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
57
|
-
'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
|
58
|
-
```"""
|
59
|
-
|
60
|
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
61
|
-
output_hidden_states = (
|
62
|
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
63
|
-
)
|
64
|
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
65
|
-
|
66
|
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
67
|
-
outputs = self.model(
|
68
|
-
input_ids=input_ids,
|
69
|
-
attention_mask=attention_mask,
|
70
|
-
position_ids=position_ids,
|
71
|
-
past_key_values=past_key_values,
|
72
|
-
inputs_embeds=inputs_embeds,
|
73
|
-
use_cache=use_cache,
|
74
|
-
output_attentions=output_attentions,
|
75
|
-
output_hidden_states=output_hidden_states,
|
76
|
-
return_dict=return_dict,
|
77
|
-
)
|
78
|
-
|
79
|
-
hidden_states = outputs[0]
|
80
|
-
|
81
|
-
loss = None
|
82
|
-
logits = None
|
83
|
-
|
84
|
-
if skip_logits and labels is None:
|
85
|
-
raise ValueError("skip_logits is True, but labels is None")
|
86
|
-
|
87
|
-
if skip_logits is None:
|
88
|
-
# By default, if in training mode, don't materialize logits
|
89
|
-
skip_logits = self.training and labels is not None
|
90
|
-
|
91
|
-
if skip_logits:
|
92
|
-
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
93
|
-
shift_labels = labels[..., 1:].contiguous()
|
94
|
-
|
95
|
-
# flatten tokens
|
96
|
-
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
97
|
-
shift_labels = shift_labels.view(-1)
|
98
|
-
|
99
|
-
lce = LigerFusedLinearCrossEntropyLoss()
|
100
|
-
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
101
|
-
else:
|
102
|
-
logits = self.lm_head(hidden_states)
|
103
|
-
|
104
|
-
loss = None
|
105
|
-
if labels is not None:
|
106
|
-
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
107
|
-
logits = logits.float()
|
108
|
-
# Shift so that tokens < n predict n
|
109
|
-
shift_logits = logits[..., :-1, :].contiguous()
|
110
|
-
shift_labels = labels[..., 1:].contiguous()
|
111
|
-
# Flatten the tokens
|
112
|
-
loss_fct = CrossEntropyLoss()
|
113
|
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
114
|
-
shift_labels = shift_labels.view(-1)
|
115
|
-
# Enable model parallelism
|
116
|
-
shift_labels = shift_labels.to(shift_logits.device)
|
117
|
-
loss = loss_fct(shift_logits, shift_labels)
|
118
|
-
|
119
|
-
if not return_dict:
|
120
|
-
output = (logits,) + outputs[1:]
|
121
|
-
return (loss,) + output if loss is not None else output
|
122
|
-
|
123
|
-
return CausalLMOutputWithPast(
|
124
|
-
loss=loss,
|
125
|
-
logits=logits,
|
126
|
-
past_key_values=outputs.past_key_values,
|
127
|
-
hidden_states=outputs.hidden_states,
|
128
|
-
attentions=outputs.attentions,
|
129
|
-
)
|
130
|
-
|
131
|
-
|
132
|
-
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
133
14
|
def lce_forward(
|
134
15
|
self,
|
135
16
|
input_ids: torch.LongTensor = None,
|
@@ -148,36 +29,21 @@ def lce_forward(
|
|
148
29
|
**kwargs,
|
149
30
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
150
31
|
r"""
|
151
|
-
Args:
|
152
|
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
153
|
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
154
|
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
155
|
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
156
|
-
|
157
|
-
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
158
|
-
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
159
|
-
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
160
|
-
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
161
|
-
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
162
|
-
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
163
|
-
|
164
|
-
Returns:
|
165
|
-
|
166
32
|
Example:
|
167
33
|
|
168
34
|
```python
|
169
35
|
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
|
170
36
|
|
171
|
-
>>> model = Phi3ForCausalLM.from_pretrained("
|
172
|
-
>>> tokenizer = AutoTokenizer.from_pretrained("
|
37
|
+
>>> model = Phi3ForCausalLM.from_pretrained("meta-phi3/Phi3-2-7b-hf")
|
38
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-phi3/Phi3-2-7b-hf")
|
173
39
|
|
174
|
-
>>> prompt = "
|
40
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
175
41
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
176
42
|
|
177
43
|
>>> # Generate
|
178
44
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
179
45
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
180
|
-
|
46
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
181
47
|
```"""
|
182
48
|
|
183
49
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
@@ -186,21 +52,18 @@ def lce_forward(
|
|
186
52
|
)
|
187
53
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
188
54
|
|
189
|
-
|
190
|
-
outputs = self.model(
|
55
|
+
outputs: BaseModelOutputWithPast = self.model(
|
191
56
|
input_ids=input_ids,
|
192
57
|
attention_mask=attention_mask,
|
193
58
|
position_ids=position_ids,
|
194
59
|
past_key_values=past_key_values,
|
195
60
|
inputs_embeds=inputs_embeds,
|
196
61
|
use_cache=use_cache,
|
197
|
-
|
198
|
-
output_hidden_states=output_hidden_states,
|
199
|
-
return_dict=return_dict,
|
62
|
+
cache_position=cache_position,
|
200
63
|
**kwargs,
|
201
64
|
)
|
202
65
|
|
203
|
-
hidden_states = outputs
|
66
|
+
hidden_states = outputs.last_hidden_state
|
204
67
|
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
205
68
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
206
69
|
kept_hidden_states = hidden_states[:, slice_indices, :]
|
@@ -26,7 +26,6 @@ from liger_kernel.transformers.model.mistral import lce_forward as mistral_lce_f
|
|
26
26
|
from liger_kernel.transformers.model.mixtral import lce_forward as mixtral_lce_forward
|
27
27
|
from liger_kernel.transformers.model.mixtral import lce_forward_deprecated as mixtral_lce_forward_deprecated
|
28
28
|
from liger_kernel.transformers.model.phi3 import lce_forward as phi3_lce_forward
|
29
|
-
from liger_kernel.transformers.model.phi3 import lce_forward_deprecated as phi3_lce_forward_deprecated
|
30
29
|
from liger_kernel.transformers.model.qwen2 import lce_forward as qwen2_lce_forward
|
31
30
|
from liger_kernel.transformers.model.qwen2 import lce_forward_deprecated as qwen2_lce_forward_deprecated
|
32
31
|
from liger_kernel.transformers.model.smollm3 import lce_forward as smollm3_lce_forward
|
@@ -449,7 +448,7 @@ def apply_liger_kernel_to_llava(
|
|
449
448
|
|
450
449
|
|
451
450
|
def apply_liger_kernel_to_llama4(
|
452
|
-
rope: bool =
|
451
|
+
rope: bool = True,
|
453
452
|
cross_entropy: bool = False,
|
454
453
|
fused_linear_cross_entropy: bool = True,
|
455
454
|
rms_norm: bool = True,
|
@@ -485,7 +484,9 @@ def apply_liger_kernel_to_llama4(
|
|
485
484
|
from liger_kernel.transformers.model.llama4 import lce_forward as llama4_lce_forward
|
486
485
|
|
487
486
|
if rope:
|
488
|
-
|
487
|
+
from liger_kernel.transformers.llama4_rope import apply_liger_llama4_rope_full
|
488
|
+
|
489
|
+
apply_liger_llama4_rope_full(modeling_llama4)
|
489
490
|
if rms_norm:
|
490
491
|
modeling_llama4.Llama4TextRMSNorm = LigerRMSNorm
|
491
492
|
if swiglu:
|
@@ -1675,25 +1676,14 @@ def apply_liger_kernel_to_phi3(
|
|
1675
1676
|
if swiglu:
|
1676
1677
|
modeling_phi3.Phi3MLP = LigerPhi3SwiGLUMLP
|
1677
1678
|
if cross_entropy:
|
1678
|
-
|
1679
|
-
from transformers.loss.loss_utils import nn
|
1679
|
+
from transformers.loss.loss_utils import nn
|
1680
1680
|
|
1681
|
-
|
1682
|
-
else:
|
1683
|
-
logger.warning(TRANSFORMER_DEPRECATION_WARNING)
|
1684
|
-
modeling_phi3.CrossEntropyLoss = LigerCrossEntropyLoss
|
1681
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
1685
1682
|
if fused_linear_cross_entropy:
|
1686
|
-
if
|
1687
|
-
|
1688
|
-
|
1689
|
-
|
1690
|
-
modeling_phi3.Phi3ForCausalLM.forward = phi3_lce_forward
|
1691
|
-
else: # if version < 4.46.1
|
1692
|
-
logger.warning(TRANSFORMER_DEPRECATION_WARNING)
|
1693
|
-
if model is not None:
|
1694
|
-
model.forward = MethodType(phi3_lce_forward_deprecated, model)
|
1695
|
-
else:
|
1696
|
-
modeling_phi3.Phi3ForCausalLM.forward = phi3_lce_forward_deprecated
|
1683
|
+
if model is not None:
|
1684
|
+
model.forward = MethodType(phi3_lce_forward, model)
|
1685
|
+
else:
|
1686
|
+
modeling_phi3.Phi3ForCausalLM.forward = phi3_lce_forward
|
1697
1687
|
|
1698
1688
|
if model is not None:
|
1699
1689
|
# The model instance already exists, so we need to additionally patch the
|
@@ -29,6 +29,7 @@ liger_kernel/ops/grpo_loss.py,sha256=anRnv7k1-AV3pCC6_TqP0GMg78YYUfRAJrbpx6PVhl0
|
|
29
29
|
liger_kernel/ops/jsd.py,sha256=onHp5T3MbvJaVz5Vup7Ww6EQp_HTaZeayTjJk6FgQMY,7042
|
30
30
|
liger_kernel/ops/kl_div.py,sha256=ZjGdDLKWksHT9dZ0xF_TDgAkj5cuMTwwT5tr9E-_24o,8734
|
31
31
|
liger_kernel/ops/layer_norm.py,sha256=BHPDuaogMTfIJkBJdqLZbOQouNWTf3fJVyOQOD7blCE,9901
|
32
|
+
liger_kernel/ops/llama4_rope.py,sha256=-aqdZzllklTN8b9--e-TsWY_ntGCN8-tyseT4x0bd8s,8223
|
32
33
|
liger_kernel/ops/multi_token_attention.py,sha256=Oz_RXDp-OSS_R_HuGmaETHdAJ7Toda_70OfE7TXMUlY,7645
|
33
34
|
liger_kernel/ops/qwen2vl_mrope.py,sha256=3GExhYpLgB4VUtyZyjRk8XjEur3W4EWF6HQ67ML5vBU,8481
|
34
35
|
liger_kernel/ops/rms_norm.py,sha256=DtvsWN5YktFAoc0JYSAwVeoZfryBFJlX-ipU7ooP01A,18891
|
@@ -40,7 +41,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
|
|
40
41
|
liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
|
41
42
|
liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
|
42
43
|
liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
|
43
|
-
liger_kernel/transformers/__init__.py,sha256=
|
44
|
+
liger_kernel/transformers/__init__.py,sha256=YQ3ffAaZWLy266snmFFHHfoz4EX1AhcSfojXZhOs6h0,7842
|
44
45
|
liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
|
45
46
|
liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
|
46
47
|
liger_kernel/transformers/dyt.py,sha256=i-4GPaMrl-jab9TVI5qN0-H9qycn_mCbV82ozU4nbmU,723
|
@@ -56,7 +57,8 @@ liger_kernel/transformers/grpo_loss.py,sha256=uAkUNKSnUGEOqa82L9w2e6AI1kcmG8K45-
|
|
56
57
|
liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
|
57
58
|
liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
|
58
59
|
liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
|
59
|
-
liger_kernel/transformers/
|
60
|
+
liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
|
61
|
+
liger_kernel/transformers/monkey_patch.py,sha256=zeYj1XhI1at_gWdKnvZqazT53uBy_YOV36ZuQfnhf20,88545
|
60
62
|
liger_kernel/transformers/multi_token_attention.py,sha256=l9VDICK0dfmifUDW668hGscP8AHq2rYcM2oGUa3baRQ,1751
|
61
63
|
liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
|
62
64
|
liger_kernel/transformers/rms_norm.py,sha256=vkekcvTeWY8vL4H6hg3t0XeY0Ew_3OFMPHuzqlxPPVw,2719
|
@@ -81,7 +83,7 @@ liger_kernel/transformers/model/mixtral.py,sha256=VY-y73IyjcCyWyI7ahxXLw0fJrhgjY
|
|
81
83
|
liger_kernel/transformers/model/mllama.py,sha256=my29NXk-p6ckQaP8qDIN8e318yI_9mQZHt38MV3SqLY,11280
|
82
84
|
liger_kernel/transformers/model/olmo2.py,sha256=6L_bo-ZUgO1lYppdJneOtYxNIylQKS6BiGp13g7Uq9E,5259
|
83
85
|
liger_kernel/transformers/model/paligemma.py,sha256=xuIx3oOwTgftU3jqLfWOxUxgCLBNJh0yNC21an9qDjo,18773
|
84
|
-
liger_kernel/transformers/model/phi3.py,sha256=
|
86
|
+
liger_kernel/transformers/model/phi3.py,sha256=AwScxUe3LjmHHyQg4gW9bMoUI7uA6fUEMXJ3YhBiHtQ,4046
|
85
87
|
liger_kernel/transformers/model/qwen2.py,sha256=3fpOTEOkniQmkCfN1KUa3KhseHJVzhj2Ht9FdYPUy-E,9962
|
86
88
|
liger_kernel/transformers/model/qwen2_5_vl.py,sha256=zEVVwotCXnAm3RRc8-1Nc8uitSWrwW4B9dYY2uOZDwg,6331
|
87
89
|
liger_kernel/transformers/model/qwen2_vl.py,sha256=5vK-vtCDpKZ2w33xYp2BS8kQYWUbKMqaiKvQcI27Mss,5884
|
@@ -92,9 +94,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
|
|
92
94
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
|
93
95
|
liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
|
94
96
|
liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
|
95
|
-
liger_kernel_nightly-0.6.1.
|
96
|
-
liger_kernel_nightly-0.6.1.
|
97
|
-
liger_kernel_nightly-0.6.1.
|
98
|
-
liger_kernel_nightly-0.6.1.
|
99
|
-
liger_kernel_nightly-0.6.1.
|
100
|
-
liger_kernel_nightly-0.6.1.
|
97
|
+
liger_kernel_nightly-0.6.1.dev20250809233744.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
98
|
+
liger_kernel_nightly-0.6.1.dev20250809233744.dist-info/METADATA,sha256=nClPzQutLCx1b5T1KZGIsCPMTAaYbSw6PVkt9EJjhVw,24504
|
99
|
+
liger_kernel_nightly-0.6.1.dev20250809233744.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
100
|
+
liger_kernel_nightly-0.6.1.dev20250809233744.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
|
101
|
+
liger_kernel_nightly-0.6.1.dev20250809233744.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
102
|
+
liger_kernel_nightly-0.6.1.dev20250809233744.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|