liger-kernel-nightly 0.6.1.dev20250805235740__py3-none-any.whl → 0.6.1.dev20250809233505__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/transformers/__init__.py +4 -0
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/monkey_patch.py +4 -2
- {liger_kernel_nightly-0.6.1.dev20250805235740.dist-info → liger_kernel_nightly-0.6.1.dev20250809233505.dist-info}/METADATA +2 -2
- {liger_kernel_nightly-0.6.1.dev20250805235740.dist-info → liger_kernel_nightly-0.6.1.dev20250809233505.dist-info}/RECORD +10 -8
- {liger_kernel_nightly-0.6.1.dev20250805235740.dist-info → liger_kernel_nightly-0.6.1.dev20250809233505.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.6.1.dev20250805235740.dist-info → liger_kernel_nightly-0.6.1.dev20250809233505.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.6.1.dev20250805235740.dist-info → liger_kernel_nightly-0.6.1.dev20250809233505.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.6.1.dev20250805235740.dist-info → liger_kernel_nightly-0.6.1.dev20250809233505.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,225 @@
|
|
1
|
+
import torch
|
2
|
+
import triton
|
3
|
+
import triton.language as tl
|
4
|
+
|
5
|
+
|
6
|
+
def _prepare_freqs(freqs_cis: torch.Tensor, seq_len: int, head_dim_half: int):
|
7
|
+
# Split or unpack complex frequencies into real and imag parts
|
8
|
+
if freqs_cis.is_complex():
|
9
|
+
freqs_real = freqs_cis.real
|
10
|
+
freqs_imag = freqs_cis.imag
|
11
|
+
else:
|
12
|
+
# Already split: last dim should be 2*head_dim_half
|
13
|
+
if freqs_cis.shape[-1] == 2 * head_dim_half:
|
14
|
+
freqs_real = freqs_cis[..., :head_dim_half]
|
15
|
+
freqs_imag = freqs_cis[..., head_dim_half:]
|
16
|
+
else:
|
17
|
+
raise ValueError(
|
18
|
+
f"Unexpected freqs_cis shape for non-complex input: {freqs_cis.shape}, expected last dim = {2 * head_dim_half}"
|
19
|
+
)
|
20
|
+
|
21
|
+
# Canonicalize to shape (seq_len, head_dim_half):
|
22
|
+
# 1) Ensure the last dimension is head_dim_half
|
23
|
+
if freqs_real.shape[-1] != head_dim_half:
|
24
|
+
raise ValueError(f"Unexpected last dim for freqs: {freqs_real.shape[-1]} (expected {head_dim_half})")
|
25
|
+
# 2) Flatten all leading dims to a single row dimension
|
26
|
+
freqs_real = freqs_real.reshape(-1, head_dim_half)
|
27
|
+
freqs_imag = freqs_imag.reshape(-1, head_dim_half)
|
28
|
+
# 3) If we have fewer rows than seq_len, allow broadcasting when single row
|
29
|
+
if freqs_real.shape[0] < seq_len:
|
30
|
+
if freqs_real.shape[0] == 1:
|
31
|
+
freqs_real = freqs_real.expand(seq_len, -1)
|
32
|
+
freqs_imag = freqs_imag.expand(seq_len, -1)
|
33
|
+
else:
|
34
|
+
raise ValueError(f"Insufficient rows in freqs: {freqs_real.shape[0]} < seq_len={seq_len}")
|
35
|
+
# 4) If we have more rows than seq_len (e.g., batch present), take the first seq_len rows
|
36
|
+
elif freqs_real.shape[0] > seq_len:
|
37
|
+
freqs_real = freqs_real[:seq_len]
|
38
|
+
freqs_imag = freqs_imag[:seq_len]
|
39
|
+
|
40
|
+
return freqs_real, freqs_imag
|
41
|
+
|
42
|
+
|
43
|
+
def _maybe_to_dtype(t: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
|
44
|
+
return t if t.dtype == dtype else t.to(dtype)
|
45
|
+
|
46
|
+
|
47
|
+
def _maybe_contiguous(t: torch.Tensor) -> torch.Tensor:
|
48
|
+
return t if t.is_contiguous() else t.contiguous()
|
49
|
+
|
50
|
+
|
51
|
+
def _cast_and_contiguous(q, k, freqs_real, freqs_imag):
|
52
|
+
# Choose compute dtype: use fp32 only when inputs are fp32; otherwise keep input dtype for performance
|
53
|
+
compute_dtype = torch.float32 if q.dtype == torch.float32 else q.dtype
|
54
|
+
|
55
|
+
# Make sure q/k share the same dtype before casting to compute dtype
|
56
|
+
if k.dtype != q.dtype:
|
57
|
+
k = k.to(q.dtype)
|
58
|
+
|
59
|
+
q = _maybe_contiguous(_maybe_to_dtype(q, compute_dtype))
|
60
|
+
k = _maybe_contiguous(_maybe_to_dtype(k, compute_dtype))
|
61
|
+
freqs_real = _maybe_contiguous(_maybe_to_dtype(freqs_real, compute_dtype))
|
62
|
+
freqs_imag = _maybe_contiguous(_maybe_to_dtype(freqs_imag, compute_dtype))
|
63
|
+
return q, k, freqs_real, freqs_imag
|
64
|
+
|
65
|
+
|
66
|
+
@triton.jit
|
67
|
+
def _llama4_rope_kernel(
|
68
|
+
q_ptr,
|
69
|
+
k_ptr,
|
70
|
+
freqs_real_ptr,
|
71
|
+
freqs_imag_ptr,
|
72
|
+
q_row_stride,
|
73
|
+
k_row_stride,
|
74
|
+
q_head_stride,
|
75
|
+
k_head_stride,
|
76
|
+
freqs_row_stride,
|
77
|
+
seq_len,
|
78
|
+
batch_size,
|
79
|
+
imag_sign,
|
80
|
+
head_dim_half: tl.constexpr,
|
81
|
+
n_q_heads: tl.constexpr,
|
82
|
+
n_k_heads: tl.constexpr,
|
83
|
+
BLOCK_SIZE: tl.constexpr,
|
84
|
+
):
|
85
|
+
"""
|
86
|
+
H100-optimized RoPE kernel with improved parallelization across heads and dimensions.
|
87
|
+
Grid: (batch*seq, head)
|
88
|
+
"""
|
89
|
+
# 2D grid
|
90
|
+
pid_bs = tl.program_id(0) # over batch*seq
|
91
|
+
pid_h = tl.program_id(1) # over heads
|
92
|
+
|
93
|
+
batch_idx = pid_bs // seq_len
|
94
|
+
seq_idx = pid_bs % seq_len
|
95
|
+
|
96
|
+
# Bounds check
|
97
|
+
if batch_idx >= batch_size or seq_idx >= seq_len:
|
98
|
+
return
|
99
|
+
|
100
|
+
# Base pointers for this (batch, seq) position
|
101
|
+
base_offset = batch_idx * seq_len + seq_idx
|
102
|
+
q_base = q_ptr + base_offset * q_row_stride
|
103
|
+
k_base = k_ptr + base_offset * k_row_stride
|
104
|
+
|
105
|
+
# Tiling over dim/2
|
106
|
+
for d_start in tl.static_range(0, head_dim_half, BLOCK_SIZE):
|
107
|
+
d_indices = d_start + tl.arange(0, BLOCK_SIZE)
|
108
|
+
mask_d = d_indices < head_dim_half
|
109
|
+
|
110
|
+
# Load frequencies once per tile (freqs layout: [seq_len, head_dim_half])
|
111
|
+
freq_idx = d_indices
|
112
|
+
freqs_real = tl.load(freqs_real_ptr + seq_idx * freqs_row_stride + freq_idx, mask=mask_d, other=0.0)
|
113
|
+
freqs_imag = tl.load(freqs_imag_ptr + seq_idx * freqs_row_stride + freq_idx, mask=mask_d, other=0.0)
|
114
|
+
freqs_imag = freqs_imag * imag_sign
|
115
|
+
|
116
|
+
# Process one query head per program in pid_h
|
117
|
+
if pid_h < n_q_heads:
|
118
|
+
q_head_ptr = q_base + pid_h * q_head_stride
|
119
|
+
q_real = tl.load(q_head_ptr + d_indices * 2, mask=mask_d, other=0.0)
|
120
|
+
q_imag = tl.load(q_head_ptr + d_indices * 2 + 1, mask=mask_d, other=0.0)
|
121
|
+
|
122
|
+
# Complex multiply with FMAs: (a+ib)*(c+i d) = (a*c - b*d) + i(a*d + b*c)
|
123
|
+
new_q_real = tl.math.fma(q_real, freqs_real, -(q_imag * freqs_imag))
|
124
|
+
new_q_imag = tl.math.fma(q_real, freqs_imag, q_imag * freqs_real)
|
125
|
+
|
126
|
+
tl.store(q_head_ptr + d_indices * 2, new_q_real, mask=mask_d)
|
127
|
+
tl.store(q_head_ptr + d_indices * 2 + 1, new_q_imag, mask=mask_d)
|
128
|
+
|
129
|
+
# Process one key head per program in pid_h
|
130
|
+
if pid_h < n_k_heads:
|
131
|
+
k_head_ptr = k_base + pid_h * k_head_stride
|
132
|
+
k_real = tl.load(k_head_ptr + d_indices * 2, mask=mask_d, other=0.0)
|
133
|
+
k_imag = tl.load(k_head_ptr + d_indices * 2 + 1, mask=mask_d, other=0.0)
|
134
|
+
|
135
|
+
new_k_real = tl.math.fma(k_real, freqs_real, -(k_imag * freqs_imag))
|
136
|
+
new_k_imag = tl.math.fma(k_real, freqs_imag, k_imag * freqs_real)
|
137
|
+
|
138
|
+
tl.store(k_head_ptr + d_indices * 2, new_k_real, mask=mask_d)
|
139
|
+
tl.store(k_head_ptr + d_indices * 2 + 1, new_k_imag, mask=mask_d)
|
140
|
+
|
141
|
+
|
142
|
+
def _select_kernel_meta(head_dim_half: int):
|
143
|
+
# Heuristic tuning for block size and num_warps
|
144
|
+
if head_dim_half >= 256:
|
145
|
+
return 128, 8
|
146
|
+
if head_dim_half >= 96:
|
147
|
+
return 128, 4
|
148
|
+
if head_dim_half >= 48:
|
149
|
+
return 64, 4
|
150
|
+
if head_dim_half >= 24:
|
151
|
+
return 32, 2
|
152
|
+
return 16, 2
|
153
|
+
|
154
|
+
|
155
|
+
def llama4_rope_forward(q, k, freqs_cis, BLOCK_SIZE: int = None, imag_sign: float = 1.0):
|
156
|
+
# Save original dtype for casting back
|
157
|
+
original_dtype = q.dtype
|
158
|
+
|
159
|
+
batch_size, seq_len, n_q_heads, head_dim = q.shape
|
160
|
+
_, _, n_k_heads, _ = k.shape
|
161
|
+
head_dim_half = head_dim // 2
|
162
|
+
|
163
|
+
# Prepare frequencies
|
164
|
+
freqs_real, freqs_imag = _prepare_freqs(freqs_cis, seq_len, head_dim_half)
|
165
|
+
|
166
|
+
# Cast to appropriate dtype and make contiguous only when needed
|
167
|
+
q, k, freqs_real, freqs_imag = _cast_and_contiguous(q, k, freqs_real, freqs_imag)
|
168
|
+
|
169
|
+
# H100-optimized meta-params
|
170
|
+
if BLOCK_SIZE is None:
|
171
|
+
BLOCK_SIZE, num_warps = _select_kernel_meta(head_dim_half)
|
172
|
+
else:
|
173
|
+
# Provide a default num_warps if caller pins BLOCK_SIZE
|
174
|
+
_, num_warps = _select_kernel_meta(head_dim_half)
|
175
|
+
|
176
|
+
# 2D grid: one program per (batch, seq, head)
|
177
|
+
n_heads_max = max(n_q_heads, n_k_heads)
|
178
|
+
grid = (batch_size * seq_len, n_heads_max)
|
179
|
+
|
180
|
+
# Launch kernel
|
181
|
+
_llama4_rope_kernel[grid](
|
182
|
+
q,
|
183
|
+
k,
|
184
|
+
freqs_real,
|
185
|
+
freqs_imag,
|
186
|
+
q.stride(1),
|
187
|
+
k.stride(1),
|
188
|
+
q.stride(2),
|
189
|
+
k.stride(2),
|
190
|
+
freqs_real.stride(0),
|
191
|
+
seq_len,
|
192
|
+
batch_size,
|
193
|
+
imag_sign,
|
194
|
+
head_dim_half,
|
195
|
+
n_q_heads,
|
196
|
+
n_k_heads,
|
197
|
+
BLOCK_SIZE,
|
198
|
+
num_warps=num_warps,
|
199
|
+
num_stages=2,
|
200
|
+
)
|
201
|
+
|
202
|
+
# Cast back to original dtype only if it differs from compute dtype
|
203
|
+
if q.dtype != original_dtype:
|
204
|
+
q = q.to(original_dtype)
|
205
|
+
if k.dtype != original_dtype:
|
206
|
+
k = k.to(original_dtype)
|
207
|
+
|
208
|
+
return q, k
|
209
|
+
|
210
|
+
|
211
|
+
class LigerLlama4RopeFunction(torch.autograd.Function):
|
212
|
+
@staticmethod
|
213
|
+
def forward(ctx, q, k, freqs_cis, BLOCK_SIZE: int = None):
|
214
|
+
q_out, k_out = llama4_rope_forward(q, k, freqs_cis, BLOCK_SIZE, imag_sign=1.0)
|
215
|
+
ctx.save_for_backward(freqs_cis.detach() if isinstance(freqs_cis, torch.Tensor) else freqs_cis)
|
216
|
+
ctx.BLOCK_SIZE = BLOCK_SIZE
|
217
|
+
return q_out, k_out
|
218
|
+
|
219
|
+
@staticmethod
|
220
|
+
def backward(ctx, dq, dk):
|
221
|
+
(freqs_cis,) = ctx.saved_tensors
|
222
|
+
BLOCK_SIZE = getattr(ctx, "BLOCK_SIZE", None)
|
223
|
+
# Use imag_sign=-1.0 for conjugate without materializing a new tensor
|
224
|
+
dq_out, dk_out = llama4_rope_forward(dq, dk, freqs_cis, BLOCK_SIZE, imag_sign=-1.0)
|
225
|
+
return dq_out, dk_out, None
|
@@ -11,6 +11,8 @@ from liger_kernel.transformers.fused_linear_jsd import LigerFusedLinearJSD # no
|
|
11
11
|
from liger_kernel.transformers.geglu import LigerGEGLUMLP # noqa: F401
|
12
12
|
from liger_kernel.transformers.jsd import LigerJSD # noqa: F401
|
13
13
|
from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
|
14
|
+
from liger_kernel.transformers.llama4_rope import liger_llama4_text_rotary_pos_emb # noqa: F401
|
15
|
+
from liger_kernel.transformers.llama4_rope import liger_llama4_vision_rotary_pos_emb # noqa: F401
|
14
16
|
from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
|
15
17
|
from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
|
16
18
|
from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F401
|
@@ -125,6 +127,8 @@ __all__ = [
|
|
125
127
|
"LigerFusedAddRMSNorm",
|
126
128
|
"LigerRMSNorm",
|
127
129
|
"liger_rotary_pos_emb",
|
130
|
+
"liger_llama4_text_rotary_pos_emb",
|
131
|
+
"liger_llama4_vision_rotary_pos_emb",
|
128
132
|
"LigerBlockSparseTop2MLP",
|
129
133
|
"LigerPhi3SwiGLUMLP",
|
130
134
|
"LigerQwen3MoeSwiGLUMLP",
|
@@ -0,0 +1,93 @@
|
|
1
|
+
"""
|
2
|
+
Liger Kernel implementation of Llama4 Rotary Position Embedding (RoPE).
|
3
|
+
Supports both text and vision RoPE variants with fused operations for optimal performance.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import torch
|
7
|
+
|
8
|
+
from liger_kernel.ops.llama4_rope import LigerLlama4RopeFunction
|
9
|
+
|
10
|
+
|
11
|
+
def liger_llama4_text_rotary_pos_emb(
|
12
|
+
xq: torch.Tensor,
|
13
|
+
xk: torch.Tensor,
|
14
|
+
freqs_cis: torch.Tensor,
|
15
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
16
|
+
"""
|
17
|
+
Liger-optimized implementation of Llama4 text rotary position embedding.
|
18
|
+
|
19
|
+
This implementation uses a fused Triton kernel for complex multiplication,
|
20
|
+
providing significant performance improvements over the original PyTorch implementation.
|
21
|
+
|
22
|
+
Args:
|
23
|
+
xq (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
24
|
+
xk (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
25
|
+
freqs_cis (torch.Tensor): Complex frequency tensor from Llama4TextRotaryEmbedding
|
26
|
+
|
27
|
+
Returns:
|
28
|
+
Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
|
29
|
+
"""
|
30
|
+
# Use fused Triton kernel for complex RoPE
|
31
|
+
return LigerLlama4RopeFunction.apply(xq, xk, freqs_cis)
|
32
|
+
|
33
|
+
|
34
|
+
def liger_llama4_vision_rotary_pos_emb(
|
35
|
+
query: torch.Tensor,
|
36
|
+
key: torch.Tensor,
|
37
|
+
freqs_ci: torch.Tensor,
|
38
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
39
|
+
"""
|
40
|
+
Liger-optimized implementation of Llama4 vision rotary position embedding.
|
41
|
+
|
42
|
+
This implementation uses the same fused Triton kernel as text RoPE,
|
43
|
+
providing performance improvements for vision transformer attention.
|
44
|
+
|
45
|
+
Args:
|
46
|
+
query (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
47
|
+
key (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
48
|
+
freqs_ci (torch.Tensor): Complex frequency tensor for 2D positions
|
49
|
+
|
50
|
+
Returns:
|
51
|
+
Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
|
52
|
+
"""
|
53
|
+
# Handle broadcasting for vision RoPE
|
54
|
+
if freqs_ci.dim() == 3:
|
55
|
+
try:
|
56
|
+
# Try the regular 3D expansion
|
57
|
+
freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
|
58
|
+
except RuntimeError as e:
|
59
|
+
if "expand" in str(e) and "4" in str(e):
|
60
|
+
# The tensor is actually 4D internally, handle it differently
|
61
|
+
freqs_ci = freqs_ci.squeeze(1) # Remove the middle dimension
|
62
|
+
freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
|
63
|
+
else:
|
64
|
+
raise e
|
65
|
+
elif freqs_ci.dim() == 4: # (1, seq_len, 1, head_dim//2) - already properly shaped
|
66
|
+
# Squeeze the middle dimension to get (1, seq_len, head_dim//2)
|
67
|
+
freqs_ci = freqs_ci.squeeze(2)
|
68
|
+
elif freqs_ci.dim() == 2: # (seq_len, head_dim//2) - needs expansion
|
69
|
+
freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
|
70
|
+
else:
|
71
|
+
raise ValueError(f"Unexpected freqs_ci shape: {freqs_ci.shape}")
|
72
|
+
|
73
|
+
# Use the same fused kernel as text RoPE
|
74
|
+
return LigerLlama4RopeFunction.apply(query, key, freqs_ci)
|
75
|
+
|
76
|
+
|
77
|
+
# Note: We only patch the functions, not the classes
|
78
|
+
# The original Llama4TextRotaryEmbedding and Llama4VisionRotaryEmbedding classes remain unchanged
|
79
|
+
|
80
|
+
|
81
|
+
# Convenience functions for monkey patching
|
82
|
+
def apply_liger_llama4_rope_full(modeling_module):
|
83
|
+
"""
|
84
|
+
Apply Liger optimizations to Llama4 RoPE functions.
|
85
|
+
|
86
|
+
Args:
|
87
|
+
modeling_module: The transformers modeling module to patch
|
88
|
+
"""
|
89
|
+
# Replace the text RoPE function
|
90
|
+
modeling_module.apply_rotary_emb = liger_llama4_text_rotary_pos_emb
|
91
|
+
|
92
|
+
# Replace the vision RoPE function
|
93
|
+
modeling_module.vision_apply_rotary_emb = liger_llama4_vision_rotary_pos_emb
|
@@ -449,7 +449,7 @@ def apply_liger_kernel_to_llava(
|
|
449
449
|
|
450
450
|
|
451
451
|
def apply_liger_kernel_to_llama4(
|
452
|
-
rope: bool =
|
452
|
+
rope: bool = True,
|
453
453
|
cross_entropy: bool = False,
|
454
454
|
fused_linear_cross_entropy: bool = True,
|
455
455
|
rms_norm: bool = True,
|
@@ -485,7 +485,9 @@ def apply_liger_kernel_to_llama4(
|
|
485
485
|
from liger_kernel.transformers.model.llama4 import lce_forward as llama4_lce_forward
|
486
486
|
|
487
487
|
if rope:
|
488
|
-
|
488
|
+
from liger_kernel.transformers.llama4_rope import apply_liger_llama4_rope_full
|
489
|
+
|
490
|
+
apply_liger_llama4_rope_full(modeling_llama4)
|
489
491
|
if rms_norm:
|
490
492
|
modeling_llama4.Llama4TextRMSNorm = LigerRMSNorm
|
491
493
|
if swiglu:
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: liger_kernel_nightly
|
3
|
-
Version: 0.6.1.
|
3
|
+
Version: 0.6.1.dev20250809233505
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
@@ -397,7 +397,7 @@ loss.backward()
|
|
397
397
|
</a>
|
398
398
|
</div>
|
399
399
|
<div style="display: block;">
|
400
|
-
<a href="https://github.com/linkedin/Liger-Kernel/actions/workflows/
|
400
|
+
<a href="https://github.com/linkedin/Liger-Kernel/actions/workflows/intel-ci.yml">
|
401
401
|
<img src="https://github.com/linkedin/Liger-Kernel/actions/workflows/intel-ci.yml/badge.svg?event=schedule" alt="Build">
|
402
402
|
</a>
|
403
403
|
</div>
|
@@ -29,6 +29,7 @@ liger_kernel/ops/grpo_loss.py,sha256=anRnv7k1-AV3pCC6_TqP0GMg78YYUfRAJrbpx6PVhl0
|
|
29
29
|
liger_kernel/ops/jsd.py,sha256=onHp5T3MbvJaVz5Vup7Ww6EQp_HTaZeayTjJk6FgQMY,7042
|
30
30
|
liger_kernel/ops/kl_div.py,sha256=ZjGdDLKWksHT9dZ0xF_TDgAkj5cuMTwwT5tr9E-_24o,8734
|
31
31
|
liger_kernel/ops/layer_norm.py,sha256=BHPDuaogMTfIJkBJdqLZbOQouNWTf3fJVyOQOD7blCE,9901
|
32
|
+
liger_kernel/ops/llama4_rope.py,sha256=-aqdZzllklTN8b9--e-TsWY_ntGCN8-tyseT4x0bd8s,8223
|
32
33
|
liger_kernel/ops/multi_token_attention.py,sha256=Oz_RXDp-OSS_R_HuGmaETHdAJ7Toda_70OfE7TXMUlY,7645
|
33
34
|
liger_kernel/ops/qwen2vl_mrope.py,sha256=3GExhYpLgB4VUtyZyjRk8XjEur3W4EWF6HQ67ML5vBU,8481
|
34
35
|
liger_kernel/ops/rms_norm.py,sha256=DtvsWN5YktFAoc0JYSAwVeoZfryBFJlX-ipU7ooP01A,18891
|
@@ -40,7 +41,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
|
|
40
41
|
liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
|
41
42
|
liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
|
42
43
|
liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
|
43
|
-
liger_kernel/transformers/__init__.py,sha256=
|
44
|
+
liger_kernel/transformers/__init__.py,sha256=YQ3ffAaZWLy266snmFFHHfoz4EX1AhcSfojXZhOs6h0,7842
|
44
45
|
liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
|
45
46
|
liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
|
46
47
|
liger_kernel/transformers/dyt.py,sha256=i-4GPaMrl-jab9TVI5qN0-H9qycn_mCbV82ozU4nbmU,723
|
@@ -56,7 +57,8 @@ liger_kernel/transformers/grpo_loss.py,sha256=uAkUNKSnUGEOqa82L9w2e6AI1kcmG8K45-
|
|
56
57
|
liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
|
57
58
|
liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
|
58
59
|
liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
|
59
|
-
liger_kernel/transformers/
|
60
|
+
liger_kernel/transformers/llama4_rope.py,sha256=kS6PSHEwf3dS7hD7C7p8S0geugx2EMCiP0h0F7LsUoY,3639
|
61
|
+
liger_kernel/transformers/monkey_patch.py,sha256=jhQts3cl2XBpFFmqLmIkTSZrW0DKUvZT-o9KBT8GUdk,89285
|
60
62
|
liger_kernel/transformers/multi_token_attention.py,sha256=l9VDICK0dfmifUDW668hGscP8AHq2rYcM2oGUa3baRQ,1751
|
61
63
|
liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
|
62
64
|
liger_kernel/transformers/rms_norm.py,sha256=vkekcvTeWY8vL4H6hg3t0XeY0Ew_3OFMPHuzqlxPPVw,2719
|
@@ -92,9 +94,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
|
|
92
94
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
|
93
95
|
liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
|
94
96
|
liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
|
95
|
-
liger_kernel_nightly-0.6.1.
|
96
|
-
liger_kernel_nightly-0.6.1.
|
97
|
-
liger_kernel_nightly-0.6.1.
|
98
|
-
liger_kernel_nightly-0.6.1.
|
99
|
-
liger_kernel_nightly-0.6.1.
|
100
|
-
liger_kernel_nightly-0.6.1.
|
97
|
+
liger_kernel_nightly-0.6.1.dev20250809233505.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
98
|
+
liger_kernel_nightly-0.6.1.dev20250809233505.dist-info/METADATA,sha256=qHbWQzIZZO5GpWYdMYCwszuoocoVGcNxEh6_L4_J_YE,24504
|
99
|
+
liger_kernel_nightly-0.6.1.dev20250809233505.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
100
|
+
liger_kernel_nightly-0.6.1.dev20250809233505.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
|
101
|
+
liger_kernel_nightly-0.6.1.dev20250809233505.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
102
|
+
liger_kernel_nightly-0.6.1.dev20250809233505.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|