liger-kernel-nightly 0.6.0.dev20250718050347__py3-none-any.whl → 0.6.0.dev20250718080702__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/ops/fused_add_rms_norm.py +412 -0
- liger_kernel/transformers/__init__.py +5 -0
- liger_kernel/transformers/functional.py +5 -0
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/model/smollm3.py +189 -0
- liger_kernel/transformers/monkey_patch.py +73 -0
- {liger_kernel_nightly-0.6.0.dev20250718050347.dist-info → liger_kernel_nightly-0.6.0.dev20250718080702.dist-info}/METADATA +1 -1
- {liger_kernel_nightly-0.6.0.dev20250718050347.dist-info → liger_kernel_nightly-0.6.0.dev20250718080702.dist-info}/RECORD +12 -9
- {liger_kernel_nightly-0.6.0.dev20250718050347.dist-info → liger_kernel_nightly-0.6.0.dev20250718080702.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.6.0.dev20250718050347.dist-info → liger_kernel_nightly-0.6.0.dev20250718080702.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.6.0.dev20250718050347.dist-info → liger_kernel_nightly-0.6.0.dev20250718080702.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.6.0.dev20250718050347.dist-info → liger_kernel_nightly-0.6.0.dev20250718080702.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,412 @@
|
|
1
|
+
import math
|
2
|
+
import operator
|
3
|
+
|
4
|
+
import torch
|
5
|
+
import triton
|
6
|
+
import triton.language as tl
|
7
|
+
|
8
|
+
from liger_kernel.ops.utils import calculate_settings
|
9
|
+
from liger_kernel.ops.utils import compare_version
|
10
|
+
from liger_kernel.ops.utils import ensure_contiguous
|
11
|
+
from liger_kernel.ops.utils import torch_to_triton_dtype
|
12
|
+
|
13
|
+
if compare_version("triton", operator.ge, "3.0.0"):
|
14
|
+
try:
|
15
|
+
# typical import path with dispatch available
|
16
|
+
from triton.language.extra.libdevice import rsqrt
|
17
|
+
except ModuleNotFoundError:
|
18
|
+
# for working with NGC containers
|
19
|
+
from triton.language.extra.cuda.libdevice import rsqrt
|
20
|
+
else:
|
21
|
+
from triton.language.math import rsqrt
|
22
|
+
|
23
|
+
|
24
|
+
_CASTING_MODE_NONE: tl.constexpr = tl.constexpr(-1)
|
25
|
+
_CASTING_MODE_LLAMA: tl.constexpr = tl.constexpr(0)
|
26
|
+
_CASTING_MODE_GEMMA: tl.constexpr = tl.constexpr(1)
|
27
|
+
|
28
|
+
|
29
|
+
@triton.jit
|
30
|
+
def _fused_add_rms_norm_forward_kernel(
|
31
|
+
Y_ptr,
|
32
|
+
Y_row_stride,
|
33
|
+
S_ptr, # output residual
|
34
|
+
S_row_stride,
|
35
|
+
X_ptr,
|
36
|
+
X_row_stride,
|
37
|
+
R_ptr, # input residual
|
38
|
+
R_row_stride,
|
39
|
+
W_ptr,
|
40
|
+
W_row_stride,
|
41
|
+
RSTD_ptr,
|
42
|
+
RSTD_row_stride,
|
43
|
+
n_cols,
|
44
|
+
eps,
|
45
|
+
offset,
|
46
|
+
casting_mode: tl.constexpr, # constexpr so the `if` blocks can be optimized out
|
47
|
+
BLOCK_SIZE: tl.constexpr,
|
48
|
+
):
|
49
|
+
"""
|
50
|
+
This kernel computes the following:
|
51
|
+
1. hidden_states = residual + hidden_states
|
52
|
+
2. residual = hidden_states
|
53
|
+
3. hidden_states = rmsnorm(hidden_states)
|
54
|
+
|
55
|
+
This is a commonly used pattern in the decoder layers of LLMs.
|
56
|
+
Some examples:
|
57
|
+
1. https://github.com/huggingface/transformers/blob/0dc2df5ddafe3cb5824ad24e85beba13e0aa6726/src/transformers/models/qwen3/modeling_qwen3.py#L271
|
58
|
+
2. https://github.com/huggingface/transformers/blob/0dc2df5ddafe3cb5824ad24e85beba13e0aa6726/src/transformers/models/llama4/modeling_llama4.py#L393
|
59
|
+
|
60
|
+
This kernel is inspired by the rms_norm forward kernel, and is adapted to support the residual addition in the forward pass.
|
61
|
+
The backward pass is also adapted to support the residual addition in the backward pass.
|
62
|
+
"""
|
63
|
+
|
64
|
+
row_idx = tl.program_id(0).to(tl.int64)
|
65
|
+
col_offsets = tl.arange(0, BLOCK_SIZE)
|
66
|
+
mask = col_offsets < n_cols
|
67
|
+
|
68
|
+
Y_ptr += row_idx * Y_row_stride
|
69
|
+
S_ptr += row_idx * S_row_stride
|
70
|
+
X_ptr += row_idx * X_row_stride
|
71
|
+
R_ptr += row_idx * R_row_stride
|
72
|
+
RSTD_ptr += row_idx * RSTD_row_stride
|
73
|
+
|
74
|
+
X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0)
|
75
|
+
R_row = tl.load(R_ptr + col_offsets, mask=mask, other=0)
|
76
|
+
S_row = X_row + R_row
|
77
|
+
tl.store(S_ptr + col_offsets, S_row, mask=mask)
|
78
|
+
S_row_dtype = S_row.dtype
|
79
|
+
W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0)
|
80
|
+
|
81
|
+
# On Llama, only rstd is computed on fp32
|
82
|
+
if casting_mode == _CASTING_MODE_LLAMA:
|
83
|
+
S_row = S_row.to(tl.float32)
|
84
|
+
|
85
|
+
# Gemma computes everything on fp32, and then casts back the output to the original dtype
|
86
|
+
if casting_mode == _CASTING_MODE_GEMMA:
|
87
|
+
W_row = W_row.to(tl.float32)
|
88
|
+
S_row = S_row.to(tl.float32)
|
89
|
+
|
90
|
+
if casting_mode == _CASTING_MODE_NONE:
|
91
|
+
eps = eps.to(S_row_dtype)
|
92
|
+
offset = offset.to(S_row_dtype)
|
93
|
+
|
94
|
+
mean_square = tl.sum(S_row * S_row, axis=0) / n_cols
|
95
|
+
rstd = rsqrt(mean_square + eps)
|
96
|
+
|
97
|
+
# We can save time by caching rms with minimal memory overhead
|
98
|
+
# because rms is much smaller compared to X_row, as rms is for each row.
|
99
|
+
# However, on the computation side, it can save 4 operations (*, sum, /, sqrt).
|
100
|
+
tl.store(RSTD_ptr, rstd)
|
101
|
+
|
102
|
+
S_row = S_row * rstd
|
103
|
+
|
104
|
+
# On Llama, the multiplication with the weight is done on the original dtype
|
105
|
+
if casting_mode == _CASTING_MODE_LLAMA:
|
106
|
+
S_row = S_row.to(S_row_dtype)
|
107
|
+
|
108
|
+
Y_row = S_row * (offset + W_row)
|
109
|
+
|
110
|
+
if casting_mode == _CASTING_MODE_GEMMA:
|
111
|
+
Y_row = Y_row.to(S_row_dtype)
|
112
|
+
|
113
|
+
tl.store(Y_ptr + col_offsets, Y_row, mask=mask)
|
114
|
+
|
115
|
+
|
116
|
+
@triton.jit
|
117
|
+
def _fused_add_rms_norm_backward_kernel(
|
118
|
+
dY_ptr,
|
119
|
+
dY_row_stride,
|
120
|
+
dS_out_ptr,
|
121
|
+
dS_out_row_stride,
|
122
|
+
dX_ptr,
|
123
|
+
dX_row_stride,
|
124
|
+
X_ptr,
|
125
|
+
X_row_stride,
|
126
|
+
X_dtype: tl.constexpr,
|
127
|
+
W_ptr,
|
128
|
+
W_row_stride,
|
129
|
+
RSTD_ptr,
|
130
|
+
RSTD_row_stride,
|
131
|
+
dW_ptr,
|
132
|
+
dW_row_stride,
|
133
|
+
n_rows,
|
134
|
+
n_cols,
|
135
|
+
offset,
|
136
|
+
rows_per_program: tl.constexpr,
|
137
|
+
casting_mode: tl.constexpr,
|
138
|
+
BLOCK_SIZE: tl.constexpr,
|
139
|
+
has_dS_out: tl.constexpr,
|
140
|
+
):
|
141
|
+
"""
|
142
|
+
This kernel is adapted from the rms_norm backward kernel, and is adapted to support the residual
|
143
|
+
addition in the backward pass. For the following code pattern:
|
144
|
+
1. hidden_states = residual + hidden_states
|
145
|
+
2. residual = hidden_states
|
146
|
+
3. hidden_states = rmsnorm(hidden_states)
|
147
|
+
|
148
|
+
The gradient of hidden_states and residual comes out be exactly same. The value of this gradient is
|
149
|
+
the sum of the gradient of the hidden_states in step 3 and the gradient of the residual in step 2.
|
150
|
+
|
151
|
+
The backward pass computation logic is same as the rms_norm backward kernel, except that the gradient
|
152
|
+
of the hidden_states in step 3 and the gradient of the residual in step 2 are summed up.
|
153
|
+
"""
|
154
|
+
|
155
|
+
row_block_id = tl.program_id(0).to(tl.int64)
|
156
|
+
row_start = row_block_id * rows_per_program
|
157
|
+
row_end = min((row_block_id + 1) * rows_per_program, n_rows)
|
158
|
+
col_offsets = tl.arange(0, BLOCK_SIZE)
|
159
|
+
mask = col_offsets < n_cols
|
160
|
+
|
161
|
+
dW_row = tl.zeros((BLOCK_SIZE,), dtype=tl.float32)
|
162
|
+
|
163
|
+
dY_ptr += row_start * dY_row_stride
|
164
|
+
dX_ptr += row_start * dX_row_stride
|
165
|
+
if has_dS_out:
|
166
|
+
dS_out_ptr += row_start * dS_out_row_stride
|
167
|
+
|
168
|
+
X_ptr += row_start * X_row_stride
|
169
|
+
RSTD_ptr += row_start
|
170
|
+
|
171
|
+
W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0.0)
|
172
|
+
W_row = W_row + offset
|
173
|
+
|
174
|
+
for _ in range(row_start, row_end):
|
175
|
+
dY_row = tl.load(dY_ptr + col_offsets, mask=mask, other=0.0)
|
176
|
+
X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0.0)
|
177
|
+
|
178
|
+
# Get cached rms
|
179
|
+
rstd_row = tl.load(RSTD_ptr)
|
180
|
+
|
181
|
+
X_row = X_row.to(tl.float32)
|
182
|
+
|
183
|
+
# Different bacward graphs for different casting modes
|
184
|
+
if casting_mode == _CASTING_MODE_LLAMA:
|
185
|
+
m = (dY_row * W_row).to(tl.float32)
|
186
|
+
|
187
|
+
elif casting_mode == _CASTING_MODE_GEMMA:
|
188
|
+
dY_row = dY_row.to(tl.float32)
|
189
|
+
m = dY_row * W_row
|
190
|
+
else:
|
191
|
+
m = dY_row * W_row
|
192
|
+
|
193
|
+
dX_row = rstd_row * m
|
194
|
+
|
195
|
+
if has_dS_out:
|
196
|
+
dS_out_row = tl.load(dS_out_ptr + col_offsets, mask=mask, other=0.0)
|
197
|
+
dX_row += (rstd_row) * (
|
198
|
+
-(1 / n_cols) * rstd_row * rstd_row * tl.sum(m * X_row, axis=0) * X_row
|
199
|
+
) + dS_out_row
|
200
|
+
dS_out_ptr += dS_out_row_stride
|
201
|
+
else:
|
202
|
+
dX_row += (rstd_row) * (-(1 / n_cols) * rstd_row * rstd_row * tl.sum(m * X_row, axis=0) * X_row)
|
203
|
+
|
204
|
+
# calculate the gradient of W
|
205
|
+
if casting_mode == _CASTING_MODE_LLAMA:
|
206
|
+
dW_row += dY_row * (X_row * rstd_row).to(X_dtype)
|
207
|
+
else:
|
208
|
+
# here X_row is already in fp32 (see previous if block)
|
209
|
+
dW_row += dY_row * (X_row * rstd_row)
|
210
|
+
|
211
|
+
tl.store(dX_ptr + col_offsets, dX_row.to(X_dtype), mask=mask)
|
212
|
+
|
213
|
+
dY_ptr += dY_row_stride
|
214
|
+
dX_ptr += dX_row_stride
|
215
|
+
X_ptr += X_row_stride
|
216
|
+
RSTD_ptr += RSTD_row_stride
|
217
|
+
|
218
|
+
tl.store(dW_ptr + row_block_id * dW_row_stride + col_offsets, dW_row, mask=mask)
|
219
|
+
|
220
|
+
|
221
|
+
_str_to_casting_mode = {
|
222
|
+
"llama": _CASTING_MODE_LLAMA.value,
|
223
|
+
"gemma": _CASTING_MODE_GEMMA.value,
|
224
|
+
"none": _CASTING_MODE_NONE.value,
|
225
|
+
}
|
226
|
+
|
227
|
+
|
228
|
+
def fused_add_rms_norm_forward(X, R, W, eps, offset, casting_mode):
|
229
|
+
if not isinstance(casting_mode, int):
|
230
|
+
assert casting_mode in _str_to_casting_mode, f"Invalid casting mode: {casting_mode}"
|
231
|
+
casting_mode = _str_to_casting_mode[casting_mode]
|
232
|
+
else:
|
233
|
+
assert casting_mode in _str_to_casting_mode.values(), f"Invalid casting mode: {casting_mode}"
|
234
|
+
|
235
|
+
shape = X.shape
|
236
|
+
dim = shape[-1]
|
237
|
+
X = X.view(-1, dim)
|
238
|
+
R = R.view(-1, dim)
|
239
|
+
n_rows, n_cols = X.shape
|
240
|
+
BLOCK_SIZE, num_warps = calculate_settings(n_cols)
|
241
|
+
|
242
|
+
Y = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
|
243
|
+
S = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
|
244
|
+
# RSTD is to cache rstd for each row
|
245
|
+
# RSTD is always computed/stored in fp32 if we are using Llama or Gemma casting mode
|
246
|
+
rstd_dtype = torch.float32 if casting_mode in (_CASTING_MODE_LLAMA.value, _CASTING_MODE_GEMMA.value) else X.dtype
|
247
|
+
RSTD = torch.empty(n_rows, dtype=rstd_dtype, device=X.device)
|
248
|
+
|
249
|
+
# Check constraints.
|
250
|
+
assert X.shape[1] == W.shape[0], "Incompatible hidden size dimension between tensor1.shape[1] and tensor2.shape[0]"
|
251
|
+
|
252
|
+
# XPU-specific optimization
|
253
|
+
kernel_args = {}
|
254
|
+
if X.device.type == "xpu":
|
255
|
+
kernel_args["grf_mode"] = "large"
|
256
|
+
|
257
|
+
# TODO: add _block_fused_add_rms_norm_forward_kernel
|
258
|
+
_fused_add_rms_norm_forward_kernel[(n_rows,)](
|
259
|
+
Y,
|
260
|
+
Y.stride(0),
|
261
|
+
S,
|
262
|
+
S.stride(0),
|
263
|
+
X,
|
264
|
+
X.stride(0),
|
265
|
+
R,
|
266
|
+
R.stride(0),
|
267
|
+
W,
|
268
|
+
W.stride(0),
|
269
|
+
RSTD,
|
270
|
+
RSTD.stride(0),
|
271
|
+
n_cols,
|
272
|
+
eps,
|
273
|
+
offset,
|
274
|
+
casting_mode,
|
275
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
276
|
+
num_warps=num_warps,
|
277
|
+
**kernel_args, # XPU-specific optimization
|
278
|
+
)
|
279
|
+
|
280
|
+
return Y.view(*shape), S.view(*shape), RSTD, BLOCK_SIZE, num_warps, casting_mode
|
281
|
+
|
282
|
+
|
283
|
+
def fused_add_rms_norm_backward(dY, dS_out, S, W, RSTD, offset, casting_mode, BLOCK_SIZE, num_warps, in_place):
|
284
|
+
shape = dY.shape
|
285
|
+
dim = shape[-1]
|
286
|
+
dY = dY.view(-1, dim)
|
287
|
+
dS_out = dS_out.view(-1, dim)
|
288
|
+
S = S.view(-1, dim)
|
289
|
+
n_rows, n_cols = dY.shape
|
290
|
+
|
291
|
+
sm_count = 1
|
292
|
+
if S.device.type == "cuda":
|
293
|
+
sm_count = torch.cuda.get_device_properties(S.device).multi_processor_count
|
294
|
+
elif S.device.type == "xpu":
|
295
|
+
sm_count = torch.xpu.get_device_properties(S.device).gpu_eu_count
|
296
|
+
|
297
|
+
# fp32 for numerical stability especially.
|
298
|
+
_dW = torch.empty((sm_count, n_cols), dtype=torch.float32, device=W.device)
|
299
|
+
|
300
|
+
if n_cols > BLOCK_SIZE:
|
301
|
+
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
302
|
+
rows_per_program = math.ceil(n_rows / sm_count)
|
303
|
+
grid = (sm_count,)
|
304
|
+
|
305
|
+
if in_place is True:
|
306
|
+
dX = dY
|
307
|
+
else:
|
308
|
+
dX = torch.empty_like(dY)
|
309
|
+
|
310
|
+
# XPU-specific optimization
|
311
|
+
kernel_args = {}
|
312
|
+
if S.device.type == "xpu":
|
313
|
+
kernel_args["grf_mode"] = "large"
|
314
|
+
|
315
|
+
# TODO: add _block_fused_add_rms_norm_backward_kernel
|
316
|
+
_fused_add_rms_norm_backward_kernel[grid](
|
317
|
+
dY,
|
318
|
+
dY.stride(0),
|
319
|
+
dS_out,
|
320
|
+
dS_out.stride(0),
|
321
|
+
dX,
|
322
|
+
dX.stride(0),
|
323
|
+
S,
|
324
|
+
S.stride(0),
|
325
|
+
torch_to_triton_dtype[S.dtype],
|
326
|
+
W,
|
327
|
+
W.stride(0),
|
328
|
+
RSTD,
|
329
|
+
RSTD.stride(0),
|
330
|
+
_dW,
|
331
|
+
_dW.stride(0),
|
332
|
+
n_rows,
|
333
|
+
n_cols,
|
334
|
+
offset,
|
335
|
+
rows_per_program,
|
336
|
+
casting_mode,
|
337
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
338
|
+
num_warps=num_warps,
|
339
|
+
has_dS_out=dS_out is not None,
|
340
|
+
**kernel_args, # XPU-specific optimization
|
341
|
+
)
|
342
|
+
|
343
|
+
dX = dX.view(*shape)
|
344
|
+
dW = _dW.sum(dim=0).to(W.dtype)
|
345
|
+
|
346
|
+
return dX, dX, dW # dR is equal to dX
|
347
|
+
|
348
|
+
|
349
|
+
class LigerFusedAddRMSNormFunction(torch.autograd.Function):
|
350
|
+
"""
|
351
|
+
Performs a fused operation that first adds a residual tensor to the hidden_states tensor (`X`), then applies RMSNorm (Root Mean Square Normalization) to the result using the weight tensor `W`, with optional offset and casting mode.
|
352
|
+
|
353
|
+
This class implements the following sequence, commonly used in transformer decoder layers:
|
354
|
+
1. hidden_states = residual + hidden_states
|
355
|
+
2. residual = hidden_states (after addition)
|
356
|
+
3. hidden_states = rmsnorm(hidden_states)
|
357
|
+
|
358
|
+
Both the normalized hidden_states and the updated residual are returned as outputs.
|
359
|
+
|
360
|
+
Some models use an 'offset' to shift the weight tensor `W` by a constant value. For example, Gemma
|
361
|
+
uses an offset of 1.0, so the computation becomes `(X / RMS(X)) * (W + 1.0)` instead of the usual
|
362
|
+
`(X / RMS(X)) * W`. You can pass the offset value as an argument to the forward function.
|
363
|
+
|
364
|
+
In addition, different models cast their inputs at different places during RMSNorm computation. For
|
365
|
+
example, Gemma casts everything to fp32 before starting the computation, while Llama casts only the
|
366
|
+
inverse RMS to fp32. You can specify the casting mode using the `casting_mode` argument. We currently
|
367
|
+
support the following casting modes (they match HuggingFace Transformers' implementations):
|
368
|
+
- 'llama': matches the Llama implementation, where only the inverse RMS is computed on fp32.
|
369
|
+
- 'gemma': matches the Gemma implementation, where everything is cast to fp32, then computed, then cast back to the original dtype.
|
370
|
+
- 'none': no casting is done. The computation is done in the original dtype. This saves memory and is slightly faster, but has more error w.r.t. the original implementation.
|
371
|
+
|
372
|
+
The `in_place` option determines whether to modify dY in-place to store dX. This defaults to `True` to save memory.
|
373
|
+
"""
|
374
|
+
|
375
|
+
@staticmethod
|
376
|
+
@ensure_contiguous
|
377
|
+
def forward(ctx, X, R, W, eps, offset=0.0, casting_mode="llama", in_place=False):
|
378
|
+
"""
|
379
|
+
X: (B, T, H) or (BxT, H)
|
380
|
+
W: (H,)
|
381
|
+
"""
|
382
|
+
# TODO: add row_mode
|
383
|
+
Y, S, RSTD, BLOCK_SIZE, num_warps, casting_mode = fused_add_rms_norm_forward(X, R, W, eps, offset, casting_mode)
|
384
|
+
ctx.offset = offset
|
385
|
+
ctx.casting_mode = casting_mode
|
386
|
+
ctx.in_place = in_place
|
387
|
+
ctx.BLOCK_SIZE = BLOCK_SIZE
|
388
|
+
ctx.num_warps = num_warps
|
389
|
+
ctx.save_for_backward(S, W, RSTD)
|
390
|
+
return Y, S
|
391
|
+
|
392
|
+
@staticmethod
|
393
|
+
@ensure_contiguous
|
394
|
+
def backward(ctx, dY, dS_out):
|
395
|
+
"""
|
396
|
+
Y: (B, T, H) or (BxT, H)
|
397
|
+
"""
|
398
|
+
S, W, RSTD = ctx.saved_tensors
|
399
|
+
dX, dR, dW = fused_add_rms_norm_backward(
|
400
|
+
dY,
|
401
|
+
dS_out,
|
402
|
+
S,
|
403
|
+
W,
|
404
|
+
RSTD,
|
405
|
+
ctx.offset,
|
406
|
+
ctx.casting_mode,
|
407
|
+
ctx.BLOCK_SIZE,
|
408
|
+
ctx.num_warps,
|
409
|
+
ctx.in_place,
|
410
|
+
)
|
411
|
+
|
412
|
+
return dX, dR, dW, None, None, None, None, None
|
@@ -5,6 +5,7 @@ from typing import TYPE_CHECKING
|
|
5
5
|
# Always-safe imports (independent of 'transformers')
|
6
6
|
from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss # noqa: F401
|
7
7
|
from liger_kernel.transformers.dyt import LigerDyT # noqa: F401
|
8
|
+
from liger_kernel.transformers.fused_add_rms_norm import LigerFusedAddRMSNorm # noqa: F401
|
8
9
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss # noqa: F401
|
9
10
|
from liger_kernel.transformers.fused_linear_jsd import LigerFusedLinearJSD # noqa: F401
|
10
11
|
from liger_kernel.transformers.geglu import LigerGEGLUMLP # noqa: F401
|
@@ -43,6 +44,7 @@ if TYPE_CHECKING:
|
|
43
44
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
|
44
45
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
|
45
46
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
|
47
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smollm3 # noqa: F401
|
46
48
|
|
47
49
|
|
48
50
|
# Check if 'transformers' is installed
|
@@ -100,6 +102,7 @@ def __getattr__(name: str):
|
|
100
102
|
"apply_liger_kernel_to_qwen2_vl",
|
101
103
|
"apply_liger_kernel_to_qwen3",
|
102
104
|
"apply_liger_kernel_to_qwen3_moe",
|
105
|
+
"apply_liger_kernel_to_smollm3",
|
103
106
|
}
|
104
107
|
|
105
108
|
if name in monkey_patch_symbols:
|
@@ -119,6 +122,7 @@ __all__ = [
|
|
119
122
|
"LigerGEGLUMLP",
|
120
123
|
"LigerJSD",
|
121
124
|
"LigerLayerNorm",
|
125
|
+
"LigerFusedAddRMSNorm",
|
122
126
|
"LigerRMSNorm",
|
123
127
|
"liger_rotary_pos_emb",
|
124
128
|
"LigerBlockSparseTop2MLP",
|
@@ -155,5 +159,6 @@ if _TRANSFORMERS_AVAILABLE:
|
|
155
159
|
"apply_liger_kernel_to_qwen2_vl",
|
156
160
|
"apply_liger_kernel_to_qwen3",
|
157
161
|
"apply_liger_kernel_to_qwen3_moe",
|
162
|
+
"apply_liger_kernel_to_smollm3",
|
158
163
|
]
|
159
164
|
)
|
@@ -2,6 +2,7 @@ from typing import Optional
|
|
2
2
|
|
3
3
|
from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
|
4
4
|
from liger_kernel.ops.dyt import LigerDyTFunction
|
5
|
+
from liger_kernel.ops.fused_add_rms_norm import LigerFusedAddRMSNormFunction
|
5
6
|
from liger_kernel.ops.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyFunction
|
6
7
|
from liger_kernel.ops.fused_linear_jsd import LigerFusedLinearJSDFunction
|
7
8
|
from liger_kernel.ops.fused_neighborhood_attention import LigerFusedNeighborhoodAttentionFunction
|
@@ -253,6 +254,10 @@ def liger_rms_norm(X, W, eps, offset: float = 0.0, casting_mode: str = "llama",
|
|
253
254
|
return LigerRMSNormFunction.apply(X, W, eps, offset, casting_mode, in_place)
|
254
255
|
|
255
256
|
|
257
|
+
def liger_fused_add_rms_norm(X, R, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True):
|
258
|
+
return LigerFusedAddRMSNormFunction.apply(X, R, W, eps, offset, casting_mode, in_place)
|
259
|
+
|
260
|
+
|
256
261
|
def liger_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
257
262
|
return LigerRopeFunction.apply(q, k, cos, sin, position_ids, unsqueeze_dim)
|
258
263
|
|
@@ -0,0 +1,39 @@
|
|
1
|
+
import torch
|
2
|
+
import torch.nn as nn
|
3
|
+
|
4
|
+
from liger_kernel.ops.fused_add_rms_norm import LigerFusedAddRMSNormFunction
|
5
|
+
|
6
|
+
|
7
|
+
class LigerFusedAddRMSNorm(nn.Module):
|
8
|
+
def __init__(
|
9
|
+
self,
|
10
|
+
hidden_size,
|
11
|
+
eps=1e-6,
|
12
|
+
offset=0.0,
|
13
|
+
casting_mode="llama",
|
14
|
+
init_fn="ones",
|
15
|
+
in_place=False,
|
16
|
+
):
|
17
|
+
super().__init__()
|
18
|
+
assert init_fn in [
|
19
|
+
"ones",
|
20
|
+
"zeros",
|
21
|
+
], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
|
22
|
+
self.weight = nn.Parameter(torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size))
|
23
|
+
self.variance_epsilon, self.offset, self.casting_mode, self.in_place = (eps, offset, casting_mode, in_place)
|
24
|
+
|
25
|
+
def forward(self, hidden_states, residual):
|
26
|
+
return LigerFusedAddRMSNormFunction.apply(
|
27
|
+
hidden_states,
|
28
|
+
residual,
|
29
|
+
self.weight,
|
30
|
+
self.variance_epsilon,
|
31
|
+
self.offset,
|
32
|
+
self.casting_mode,
|
33
|
+
self.in_place,
|
34
|
+
)
|
35
|
+
|
36
|
+
def extra_repr(self):
|
37
|
+
return (
|
38
|
+
f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}, offset={self.offset}, in_place={self.in_place}"
|
39
|
+
)
|
@@ -0,0 +1,189 @@
|
|
1
|
+
from typing import TYPE_CHECKING
|
2
|
+
from typing import List
|
3
|
+
from typing import Optional
|
4
|
+
from typing import Tuple
|
5
|
+
from typing import Union
|
6
|
+
|
7
|
+
import torch
|
8
|
+
|
9
|
+
from torch.distributed.fsdp import FullyShardedDataParallel
|
10
|
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
11
|
+
from transformers.utils.deprecation import deprecate_kwarg
|
12
|
+
|
13
|
+
from liger_kernel.transformers.fsdp import _FSDPForwardRedirection
|
14
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
15
|
+
from liger_kernel.utils import PEFT_AVAILABLE
|
16
|
+
|
17
|
+
if TYPE_CHECKING:
|
18
|
+
from transformers.cache_utils import Cache
|
19
|
+
|
20
|
+
if PEFT_AVAILABLE:
|
21
|
+
from peft.utils.other import ModulesToSaveWrapper
|
22
|
+
|
23
|
+
|
24
|
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
25
|
+
def lce_forward(
|
26
|
+
self,
|
27
|
+
input_ids: torch.LongTensor = None,
|
28
|
+
attention_mask: Optional[torch.Tensor] = None,
|
29
|
+
position_ids: Optional[torch.LongTensor] = None,
|
30
|
+
past_key_values: Optional[Union["Cache", List[torch.FloatTensor]]] = None,
|
31
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
32
|
+
labels: Optional[torch.LongTensor] = None,
|
33
|
+
use_cache: Optional[bool] = None,
|
34
|
+
output_attentions: Optional[bool] = None,
|
35
|
+
output_hidden_states: Optional[bool] = None,
|
36
|
+
return_dict: Optional[bool] = None,
|
37
|
+
cache_position: Optional[torch.LongTensor] = None,
|
38
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
39
|
+
skip_logits: Optional[bool] = None,
|
40
|
+
**kwargs,
|
41
|
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
42
|
+
r"""
|
43
|
+
Args:
|
44
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
45
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
46
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
47
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
48
|
+
|
49
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
50
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
51
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
52
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
53
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
54
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
55
|
+
|
56
|
+
Returns:
|
57
|
+
|
58
|
+
Example:
|
59
|
+
|
60
|
+
```python
|
61
|
+
>>> from transformers import AutoTokenizer, Smollm3ForCausalLM
|
62
|
+
|
63
|
+
>>> model = Smollm3ForCausalLM.from_pretrained("HuggingFaceTB/SmolLM3-3B")
|
64
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
|
65
|
+
|
66
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
67
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
68
|
+
|
69
|
+
>>> # Generate
|
70
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
71
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
72
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
73
|
+
```"""
|
74
|
+
|
75
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
76
|
+
output_hidden_states = (
|
77
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
78
|
+
)
|
79
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
80
|
+
|
81
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
82
|
+
outputs = self.model(
|
83
|
+
input_ids=input_ids,
|
84
|
+
attention_mask=attention_mask,
|
85
|
+
position_ids=position_ids,
|
86
|
+
past_key_values=past_key_values,
|
87
|
+
inputs_embeds=inputs_embeds,
|
88
|
+
use_cache=use_cache,
|
89
|
+
output_attentions=output_attentions,
|
90
|
+
output_hidden_states=output_hidden_states,
|
91
|
+
return_dict=return_dict,
|
92
|
+
cache_position=cache_position,
|
93
|
+
**kwargs,
|
94
|
+
)
|
95
|
+
|
96
|
+
hidden_states = outputs[0]
|
97
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
98
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
99
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
100
|
+
|
101
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
102
|
+
logits = None
|
103
|
+
loss = None
|
104
|
+
# if in training mode, don't materialize logits
|
105
|
+
if skip_logits and labels is None and shift_labels is None:
|
106
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
107
|
+
|
108
|
+
if skip_logits is None:
|
109
|
+
# By default, if in training mode, don't materialize logits
|
110
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
111
|
+
|
112
|
+
if skip_logits:
|
113
|
+
loss = lce_maybe_trainable_lm_head(
|
114
|
+
self,
|
115
|
+
hidden_states=kept_hidden_states,
|
116
|
+
hidden_size=self.config.hidden_size,
|
117
|
+
labels=labels,
|
118
|
+
shift_labels=shift_labels,
|
119
|
+
**kwargs,
|
120
|
+
)
|
121
|
+
|
122
|
+
else:
|
123
|
+
logits = self.lm_head(kept_hidden_states)
|
124
|
+
if labels is not None:
|
125
|
+
loss = self.loss_function(
|
126
|
+
logits=logits,
|
127
|
+
labels=labels,
|
128
|
+
vocab_size=self.config.vocab_size,
|
129
|
+
**kwargs,
|
130
|
+
)
|
131
|
+
|
132
|
+
if not return_dict:
|
133
|
+
output = (logits,) + outputs[1:]
|
134
|
+
return (loss,) + output if loss is not None else output
|
135
|
+
|
136
|
+
return CausalLMOutputWithPast(
|
137
|
+
loss=loss,
|
138
|
+
logits=logits,
|
139
|
+
past_key_values=outputs.past_key_values,
|
140
|
+
hidden_states=outputs.hidden_states,
|
141
|
+
attentions=outputs.attentions,
|
142
|
+
)
|
143
|
+
|
144
|
+
|
145
|
+
def lce_maybe_trainable_lm_head(self, hidden_states, hidden_size, labels, shift_labels, **loss_kwargs):
|
146
|
+
lm_head = self.lm_head
|
147
|
+
|
148
|
+
# Unwrap the module if lm_head has been added as trainable module in PEFT LoRA configuration,
|
149
|
+
# i.e. listed in the modules_to_save field of LoraConfig, so the lm_head weights are read
|
150
|
+
# from the unwrapped module.
|
151
|
+
# See https://huggingface.co/docs/peft/package_reference/lora for reference.
|
152
|
+
if PEFT_AVAILABLE and isinstance(lm_head, ModulesToSaveWrapper):
|
153
|
+
lm_head = lm_head.modules_to_save.default
|
154
|
+
|
155
|
+
# If FSDP is used and lm_head is trainable, e.g., during full fine-tuning or with LoRA,
|
156
|
+
# reading the lm_head module weights and calling the kernel must be done within FSDP forward pass
|
157
|
+
# so the module entire parameters are summoned and kept in memory during the kernel execution.
|
158
|
+
if isinstance(lm_head, FullyShardedDataParallel):
|
159
|
+
return _FSDPForwardRedirection()(
|
160
|
+
lm_head,
|
161
|
+
_liger_for_causal_lm_loss,
|
162
|
+
lm_head.module,
|
163
|
+
hidden_states,
|
164
|
+
hidden_size,
|
165
|
+
labels,
|
166
|
+
shift_labels,
|
167
|
+
**loss_kwargs,
|
168
|
+
)
|
169
|
+
|
170
|
+
# FSDP is not used so we can read the lm_head weights and call the kernel directly
|
171
|
+
return _liger_for_causal_lm_loss(
|
172
|
+
lm_head=self.lm_head,
|
173
|
+
hidden_states=hidden_states,
|
174
|
+
hidden_size=hidden_size,
|
175
|
+
labels=labels,
|
176
|
+
shift_labels=shift_labels,
|
177
|
+
**loss_kwargs,
|
178
|
+
)
|
179
|
+
|
180
|
+
|
181
|
+
def _liger_for_causal_lm_loss(lm_head, hidden_states, hidden_size, labels, shift_labels, **loss_kwargs):
|
182
|
+
return LigerForCausalLMLoss(
|
183
|
+
hidden_states=hidden_states,
|
184
|
+
lm_head_weight=lm_head.weight,
|
185
|
+
labels=labels,
|
186
|
+
hidden_size=hidden_size,
|
187
|
+
shift_labels=shift_labels,
|
188
|
+
**loss_kwargs,
|
189
|
+
)
|
@@ -29,6 +29,7 @@ from liger_kernel.transformers.model.phi3 import lce_forward as phi3_lce_forward
|
|
29
29
|
from liger_kernel.transformers.model.phi3 import lce_forward_deprecated as phi3_lce_forward_deprecated
|
30
30
|
from liger_kernel.transformers.model.qwen2 import lce_forward as qwen2_lce_forward
|
31
31
|
from liger_kernel.transformers.model.qwen2 import lce_forward_deprecated as qwen2_lce_forward_deprecated
|
32
|
+
from liger_kernel.transformers.model.smollm3 import lce_forward as smollm3_lce_forward
|
32
33
|
from liger_kernel.transformers.qwen2vl_mrope import liger_multimodal_rotary_pos_emb
|
33
34
|
from liger_kernel.transformers.rms_norm import LigerRMSNorm
|
34
35
|
from liger_kernel.transformers.rope import liger_rotary_pos_emb
|
@@ -290,6 +291,77 @@ def apply_liger_kernel_to_llama(
|
|
290
291
|
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
291
292
|
|
292
293
|
|
294
|
+
def apply_liger_kernel_to_smollm3(
|
295
|
+
rope: bool = True,
|
296
|
+
cross_entropy: bool = False,
|
297
|
+
fused_linear_cross_entropy: bool = True,
|
298
|
+
rms_norm: bool = True,
|
299
|
+
swiglu: bool = True,
|
300
|
+
model: PreTrainedModel = None,
|
301
|
+
) -> None:
|
302
|
+
"""
|
303
|
+
Apply Liger kernels to replace original implementation in HuggingFace SmolLM3 model
|
304
|
+
|
305
|
+
Args:
|
306
|
+
rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
|
307
|
+
cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
|
308
|
+
fused_linear_cross_entropy (bool):
|
309
|
+
Whether to apply Liger's fused linear cross entropy loss. Default is True.
|
310
|
+
`cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
|
311
|
+
If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
|
312
|
+
rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
|
313
|
+
swiglu (bool): Whether to apply Liger's SwiGLU MLP. Default is True.
|
314
|
+
model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
|
315
|
+
loaded. Default is None.
|
316
|
+
"""
|
317
|
+
|
318
|
+
assert not (cross_entropy and fused_linear_cross_entropy), (
|
319
|
+
"cross_entropy and fused_linear_cross_entropy cannot both be True."
|
320
|
+
)
|
321
|
+
|
322
|
+
from transformers.models.smollm3 import modeling_smollm3
|
323
|
+
from transformers.models.smollm3.modeling_smollm3 import SmolLM3Model
|
324
|
+
|
325
|
+
if rope:
|
326
|
+
modeling_smollm3.apply_rotary_pos_emb = liger_rotary_pos_emb
|
327
|
+
if rms_norm:
|
328
|
+
modeling_smollm3.SmolLM3RMSNorm = LigerRMSNorm
|
329
|
+
if swiglu:
|
330
|
+
modeling_smollm3.SmolLM3MLP = LigerSwiGLUMLP
|
331
|
+
|
332
|
+
if cross_entropy:
|
333
|
+
if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
|
334
|
+
from transformers.loss.loss_utils import nn
|
335
|
+
|
336
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
337
|
+
else:
|
338
|
+
logger.warning(TRANSFORMER_DEPRECATION_WARNING)
|
339
|
+
modeling_smollm3.CrossEntropyLoss = LigerCrossEntropyLoss
|
340
|
+
|
341
|
+
if fused_linear_cross_entropy:
|
342
|
+
if model is not None:
|
343
|
+
model.forward = MethodType(smollm3_lce_forward, model)
|
344
|
+
else:
|
345
|
+
modeling_smollm3.SmolLM3ForCausalLM.forward = smollm3_lce_forward
|
346
|
+
|
347
|
+
if model is not None:
|
348
|
+
# The model instance already exists, so we need to additionally patch the
|
349
|
+
# instance variables that reference already-instantiated modules (e.g. SmolLM3RMSNorm or SmolLM3MLP)
|
350
|
+
|
351
|
+
# get the base model from the model instance
|
352
|
+
base_model: SmolLM3Model = getattr(model, model.base_model_prefix, model)
|
353
|
+
|
354
|
+
if rms_norm:
|
355
|
+
_patch_rms_norm_module(base_model.norm)
|
356
|
+
|
357
|
+
for decoder_layer in base_model.layers:
|
358
|
+
if swiglu:
|
359
|
+
_patch_swiglu_module(decoder_layer.mlp, LigerSwiGLUMLP)
|
360
|
+
if rms_norm:
|
361
|
+
_patch_rms_norm_module(decoder_layer.input_layernorm)
|
362
|
+
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
363
|
+
|
364
|
+
|
293
365
|
def apply_liger_kernel_to_llava(
|
294
366
|
cross_entropy: bool = False,
|
295
367
|
fused_linear_cross_entropy: bool = True,
|
@@ -1801,6 +1873,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
1801
1873
|
"qwen2_vl_text": apply_liger_kernel_to_qwen2_vl,
|
1802
1874
|
"qwen2_5_vl": apply_liger_kernel_to_qwen2_5_vl,
|
1803
1875
|
"qwen2_5_vl_text": apply_liger_kernel_to_qwen2_5_vl,
|
1876
|
+
"smollm3": apply_liger_kernel_to_smollm3,
|
1804
1877
|
"phi3": apply_liger_kernel_to_phi3,
|
1805
1878
|
"paligemma": apply_liger_kernel_to_paligemma,
|
1806
1879
|
}
|
@@ -19,6 +19,7 @@ liger_kernel/chunked_loss/simpo_loss.py,sha256=fy2w8KbhMrBv7b1jdIeH3bBFxY52bPQPZ
|
|
19
19
|
liger_kernel/ops/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
20
20
|
liger_kernel/ops/cross_entropy.py,sha256=e8THGnhOcy_0SbOLABx67HEM7-B8a8pG7nDKbCRpQKM,19123
|
21
21
|
liger_kernel/ops/dyt.py,sha256=gCLz4S8aul8SY9nvIGaoK67aGb7U9MJRQdo3ONqmQYs,5417
|
22
|
+
liger_kernel/ops/fused_add_rms_norm.py,sha256=UBqmlqFCmhSAIpkNKd8rrfXatX7Z4J9bp2dX9A0lrJQ,14017
|
22
23
|
liger_kernel/ops/fused_linear_cross_entropy.py,sha256=5fbGhN85n3zf0uIdJ7PYHWIRzTf0VTFiS0ARtOmqIP0,11020
|
23
24
|
liger_kernel/ops/fused_linear_jsd.py,sha256=CSoprxb-YcJy-YUKiTcYkxN8sb9h2kdk_iHuncvSV5c,9683
|
24
25
|
liger_kernel/ops/fused_neighborhood_attention.py,sha256=vPi5xbnh6wxyZehaqo6Tuilqo2fN5SGDiONjnNmIKqs,35556
|
@@ -39,12 +40,13 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
|
|
39
40
|
liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
|
40
41
|
liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
|
41
42
|
liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
|
42
|
-
liger_kernel/transformers/__init__.py,sha256=
|
43
|
+
liger_kernel/transformers/__init__.py,sha256=VoHQp5emsAJAouql37RuvtGFeZCoMIHgoIxfsyYMTc8,7564
|
43
44
|
liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
|
44
45
|
liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
|
45
46
|
liger_kernel/transformers/dyt.py,sha256=i-4GPaMrl-jab9TVI5qN0-H9qycn_mCbV82ozU4nbmU,723
|
46
47
|
liger_kernel/transformers/fsdp.py,sha256=CUiyjTmjkjY7pLXQv8ly9rnzgXw6529csd9pvtJNMYc,3096
|
47
|
-
liger_kernel/transformers/functional.py,sha256=
|
48
|
+
liger_kernel/transformers/functional.py,sha256=PXnACWD7kzgge50RdOUuvtmOTS7DVkkrL7mm0cX5bOc,7734
|
49
|
+
liger_kernel/transformers/fused_add_rms_norm.py,sha256=7_Bzg-x6lLe6W1qG2DtjDALhEpNZlC6N5GppEs9cTYY,1199
|
48
50
|
liger_kernel/transformers/fused_linear_cross_entropy.py,sha256=O8Sg5BT81nTaY9fSGoOY9dOD9ekibwwiuXhdUHaxntQ,1742
|
49
51
|
liger_kernel/transformers/fused_linear_jsd.py,sha256=bZ4otCvWBuOnA5XdQL-FzZVItJlDt-ht9e_pG7PG93E,3999
|
50
52
|
liger_kernel/transformers/fused_neighborhood_attention.py,sha256=TxYDUAt9B6WSP14aJP66C_2Mbds2sSIPGnamhUSTrC8,7957
|
@@ -54,7 +56,7 @@ liger_kernel/transformers/grpo_loss.py,sha256=uAkUNKSnUGEOqa82L9w2e6AI1kcmG8K45-
|
|
54
56
|
liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
|
55
57
|
liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
|
56
58
|
liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
|
57
|
-
liger_kernel/transformers/monkey_patch.py,sha256=
|
59
|
+
liger_kernel/transformers/monkey_patch.py,sha256=VsN839y5QVEC6BD_-hCiShWLerQM2QDLDoKf2rq02I4,88990
|
58
60
|
liger_kernel/transformers/multi_token_attention.py,sha256=l9VDICK0dfmifUDW668hGscP8AHq2rYcM2oGUa3baRQ,1751
|
59
61
|
liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
|
60
62
|
liger_kernel/transformers/rms_norm.py,sha256=vkekcvTeWY8vL4H6hg3t0XeY0Ew_3OFMPHuzqlxPPVw,2719
|
@@ -85,13 +87,14 @@ liger_kernel/transformers/model/qwen2_5_vl.py,sha256=zEVVwotCXnAm3RRc8-1Nc8uitSW
|
|
85
87
|
liger_kernel/transformers/model/qwen2_vl.py,sha256=5vK-vtCDpKZ2w33xYp2BS8kQYWUbKMqaiKvQcI27Mss,5884
|
86
88
|
liger_kernel/transformers/model/qwen3.py,sha256=w2jBHuK9kK9EmOr5dnEIXNQXUgUSV_sJUkXSEwxLPHs,4885
|
87
89
|
liger_kernel/transformers/model/qwen3_moe.py,sha256=BkpfFH3fOH0yRfA7LF-AoHTLut2GV0Y4MOlkiIYewfU,5511
|
90
|
+
liger_kernel/transformers/model/smollm3.py,sha256=mqayvpwpMbp2yd_Ue7IPzy-dA4KHSDi_ROZW5vHCHfQ,7596
|
88
91
|
liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7HHWHwku25A-GYL0WU,193
|
89
92
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
|
90
93
|
liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
|
91
94
|
liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
|
92
|
-
liger_kernel_nightly-0.6.0.
|
93
|
-
liger_kernel_nightly-0.6.0.
|
94
|
-
liger_kernel_nightly-0.6.0.
|
95
|
-
liger_kernel_nightly-0.6.0.
|
96
|
-
liger_kernel_nightly-0.6.0.
|
97
|
-
liger_kernel_nightly-0.6.0.
|
95
|
+
liger_kernel_nightly-0.6.0.dev20250718080702.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
96
|
+
liger_kernel_nightly-0.6.0.dev20250718080702.dist-info/METADATA,sha256=mNkIMGPTMPdmmjDsW54kDe0WhPi8Ep0Cpt4koWQQuaE,24672
|
97
|
+
liger_kernel_nightly-0.6.0.dev20250718080702.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
98
|
+
liger_kernel_nightly-0.6.0.dev20250718080702.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
|
99
|
+
liger_kernel_nightly-0.6.0.dev20250718080702.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
100
|
+
liger_kernel_nightly-0.6.0.dev20250718080702.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|