liger-kernel-nightly 0.6.0.dev20250718045752__py3-none-any.whl → 0.6.0.dev20250718050840__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -43,6 +43,7 @@ if TYPE_CHECKING:
43
43
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
44
44
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
45
45
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
46
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smollm3 # noqa: F401
46
47
 
47
48
 
48
49
  # Check if 'transformers' is installed
@@ -100,6 +101,7 @@ def __getattr__(name: str):
100
101
  "apply_liger_kernel_to_qwen2_vl",
101
102
  "apply_liger_kernel_to_qwen3",
102
103
  "apply_liger_kernel_to_qwen3_moe",
104
+ "apply_liger_kernel_to_smollm3",
103
105
  }
104
106
 
105
107
  if name in monkey_patch_symbols:
@@ -155,5 +157,6 @@ if _TRANSFORMERS_AVAILABLE:
155
157
  "apply_liger_kernel_to_qwen2_vl",
156
158
  "apply_liger_kernel_to_qwen3",
157
159
  "apply_liger_kernel_to_qwen3_moe",
160
+ "apply_liger_kernel_to_smollm3",
158
161
  ]
159
162
  )
@@ -0,0 +1,189 @@
1
+ from typing import TYPE_CHECKING
2
+ from typing import List
3
+ from typing import Optional
4
+ from typing import Tuple
5
+ from typing import Union
6
+
7
+ import torch
8
+
9
+ from torch.distributed.fsdp import FullyShardedDataParallel
10
+ from transformers.modeling_outputs import CausalLMOutputWithPast
11
+ from transformers.utils.deprecation import deprecate_kwarg
12
+
13
+ from liger_kernel.transformers.fsdp import _FSDPForwardRedirection
14
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
15
+ from liger_kernel.utils import PEFT_AVAILABLE
16
+
17
+ if TYPE_CHECKING:
18
+ from transformers.cache_utils import Cache
19
+
20
+ if PEFT_AVAILABLE:
21
+ from peft.utils.other import ModulesToSaveWrapper
22
+
23
+
24
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
25
+ def lce_forward(
26
+ self,
27
+ input_ids: torch.LongTensor = None,
28
+ attention_mask: Optional[torch.Tensor] = None,
29
+ position_ids: Optional[torch.LongTensor] = None,
30
+ past_key_values: Optional[Union["Cache", List[torch.FloatTensor]]] = None,
31
+ inputs_embeds: Optional[torch.FloatTensor] = None,
32
+ labels: Optional[torch.LongTensor] = None,
33
+ use_cache: Optional[bool] = None,
34
+ output_attentions: Optional[bool] = None,
35
+ output_hidden_states: Optional[bool] = None,
36
+ return_dict: Optional[bool] = None,
37
+ cache_position: Optional[torch.LongTensor] = None,
38
+ logits_to_keep: Union[int, torch.Tensor] = 0,
39
+ skip_logits: Optional[bool] = None,
40
+ **kwargs,
41
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
42
+ r"""
43
+ Args:
44
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
45
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
46
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
47
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
48
+
49
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
50
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
51
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
52
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
53
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
54
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
55
+
56
+ Returns:
57
+
58
+ Example:
59
+
60
+ ```python
61
+ >>> from transformers import AutoTokenizer, Smollm3ForCausalLM
62
+
63
+ >>> model = Smollm3ForCausalLM.from_pretrained("HuggingFaceTB/SmolLM3-3B")
64
+ >>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
65
+
66
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
67
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
68
+
69
+ >>> # Generate
70
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
71
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
72
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
73
+ ```"""
74
+
75
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
76
+ output_hidden_states = (
77
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
78
+ )
79
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
80
+
81
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
82
+ outputs = self.model(
83
+ input_ids=input_ids,
84
+ attention_mask=attention_mask,
85
+ position_ids=position_ids,
86
+ past_key_values=past_key_values,
87
+ inputs_embeds=inputs_embeds,
88
+ use_cache=use_cache,
89
+ output_attentions=output_attentions,
90
+ output_hidden_states=output_hidden_states,
91
+ return_dict=return_dict,
92
+ cache_position=cache_position,
93
+ **kwargs,
94
+ )
95
+
96
+ hidden_states = outputs[0]
97
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
98
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
99
+ kept_hidden_states = hidden_states[:, slice_indices, :]
100
+
101
+ shift_labels = kwargs.pop("shift_labels", None)
102
+ logits = None
103
+ loss = None
104
+ # if in training mode, don't materialize logits
105
+ if skip_logits and labels is None and shift_labels is None:
106
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
107
+
108
+ if skip_logits is None:
109
+ # By default, if in training mode, don't materialize logits
110
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
111
+
112
+ if skip_logits:
113
+ loss = lce_maybe_trainable_lm_head(
114
+ self,
115
+ hidden_states=kept_hidden_states,
116
+ hidden_size=self.config.hidden_size,
117
+ labels=labels,
118
+ shift_labels=shift_labels,
119
+ **kwargs,
120
+ )
121
+
122
+ else:
123
+ logits = self.lm_head(kept_hidden_states)
124
+ if labels is not None:
125
+ loss = self.loss_function(
126
+ logits=logits,
127
+ labels=labels,
128
+ vocab_size=self.config.vocab_size,
129
+ **kwargs,
130
+ )
131
+
132
+ if not return_dict:
133
+ output = (logits,) + outputs[1:]
134
+ return (loss,) + output if loss is not None else output
135
+
136
+ return CausalLMOutputWithPast(
137
+ loss=loss,
138
+ logits=logits,
139
+ past_key_values=outputs.past_key_values,
140
+ hidden_states=outputs.hidden_states,
141
+ attentions=outputs.attentions,
142
+ )
143
+
144
+
145
+ def lce_maybe_trainable_lm_head(self, hidden_states, hidden_size, labels, shift_labels, **loss_kwargs):
146
+ lm_head = self.lm_head
147
+
148
+ # Unwrap the module if lm_head has been added as trainable module in PEFT LoRA configuration,
149
+ # i.e. listed in the modules_to_save field of LoraConfig, so the lm_head weights are read
150
+ # from the unwrapped module.
151
+ # See https://huggingface.co/docs/peft/package_reference/lora for reference.
152
+ if PEFT_AVAILABLE and isinstance(lm_head, ModulesToSaveWrapper):
153
+ lm_head = lm_head.modules_to_save.default
154
+
155
+ # If FSDP is used and lm_head is trainable, e.g., during full fine-tuning or with LoRA,
156
+ # reading the lm_head module weights and calling the kernel must be done within FSDP forward pass
157
+ # so the module entire parameters are summoned and kept in memory during the kernel execution.
158
+ if isinstance(lm_head, FullyShardedDataParallel):
159
+ return _FSDPForwardRedirection()(
160
+ lm_head,
161
+ _liger_for_causal_lm_loss,
162
+ lm_head.module,
163
+ hidden_states,
164
+ hidden_size,
165
+ labels,
166
+ shift_labels,
167
+ **loss_kwargs,
168
+ )
169
+
170
+ # FSDP is not used so we can read the lm_head weights and call the kernel directly
171
+ return _liger_for_causal_lm_loss(
172
+ lm_head=self.lm_head,
173
+ hidden_states=hidden_states,
174
+ hidden_size=hidden_size,
175
+ labels=labels,
176
+ shift_labels=shift_labels,
177
+ **loss_kwargs,
178
+ )
179
+
180
+
181
+ def _liger_for_causal_lm_loss(lm_head, hidden_states, hidden_size, labels, shift_labels, **loss_kwargs):
182
+ return LigerForCausalLMLoss(
183
+ hidden_states=hidden_states,
184
+ lm_head_weight=lm_head.weight,
185
+ labels=labels,
186
+ hidden_size=hidden_size,
187
+ shift_labels=shift_labels,
188
+ **loss_kwargs,
189
+ )
@@ -29,6 +29,7 @@ from liger_kernel.transformers.model.phi3 import lce_forward as phi3_lce_forward
29
29
  from liger_kernel.transformers.model.phi3 import lce_forward_deprecated as phi3_lce_forward_deprecated
30
30
  from liger_kernel.transformers.model.qwen2 import lce_forward as qwen2_lce_forward
31
31
  from liger_kernel.transformers.model.qwen2 import lce_forward_deprecated as qwen2_lce_forward_deprecated
32
+ from liger_kernel.transformers.model.smollm3 import lce_forward as smollm3_lce_forward
32
33
  from liger_kernel.transformers.qwen2vl_mrope import liger_multimodal_rotary_pos_emb
33
34
  from liger_kernel.transformers.rms_norm import LigerRMSNorm
34
35
  from liger_kernel.transformers.rope import liger_rotary_pos_emb
@@ -290,6 +291,77 @@ def apply_liger_kernel_to_llama(
290
291
  _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
291
292
 
292
293
 
294
+ def apply_liger_kernel_to_smollm3(
295
+ rope: bool = True,
296
+ cross_entropy: bool = False,
297
+ fused_linear_cross_entropy: bool = True,
298
+ rms_norm: bool = True,
299
+ swiglu: bool = True,
300
+ model: PreTrainedModel = None,
301
+ ) -> None:
302
+ """
303
+ Apply Liger kernels to replace original implementation in HuggingFace SmolLM3 model
304
+
305
+ Args:
306
+ rope (bool): Whether to apply Liger's rotary position embedding. Default is True.
307
+ cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
308
+ fused_linear_cross_entropy (bool):
309
+ Whether to apply Liger's fused linear cross entropy loss. Default is True.
310
+ `cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
311
+ If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
312
+ rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
313
+ swiglu (bool): Whether to apply Liger's SwiGLU MLP. Default is True.
314
+ model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
315
+ loaded. Default is None.
316
+ """
317
+
318
+ assert not (cross_entropy and fused_linear_cross_entropy), (
319
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
320
+ )
321
+
322
+ from transformers.models.smollm3 import modeling_smollm3
323
+ from transformers.models.smollm3.modeling_smollm3 import SmolLM3Model
324
+
325
+ if rope:
326
+ modeling_smollm3.apply_rotary_pos_emb = liger_rotary_pos_emb
327
+ if rms_norm:
328
+ modeling_smollm3.SmolLM3RMSNorm = LigerRMSNorm
329
+ if swiglu:
330
+ modeling_smollm3.SmolLM3MLP = LigerSwiGLUMLP
331
+
332
+ if cross_entropy:
333
+ if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
334
+ from transformers.loss.loss_utils import nn
335
+
336
+ nn.functional.cross_entropy = liger_cross_entropy
337
+ else:
338
+ logger.warning(TRANSFORMER_DEPRECATION_WARNING)
339
+ modeling_smollm3.CrossEntropyLoss = LigerCrossEntropyLoss
340
+
341
+ if fused_linear_cross_entropy:
342
+ if model is not None:
343
+ model.forward = MethodType(smollm3_lce_forward, model)
344
+ else:
345
+ modeling_smollm3.SmolLM3ForCausalLM.forward = smollm3_lce_forward
346
+
347
+ if model is not None:
348
+ # The model instance already exists, so we need to additionally patch the
349
+ # instance variables that reference already-instantiated modules (e.g. SmolLM3RMSNorm or SmolLM3MLP)
350
+
351
+ # get the base model from the model instance
352
+ base_model: SmolLM3Model = getattr(model, model.base_model_prefix, model)
353
+
354
+ if rms_norm:
355
+ _patch_rms_norm_module(base_model.norm)
356
+
357
+ for decoder_layer in base_model.layers:
358
+ if swiglu:
359
+ _patch_swiglu_module(decoder_layer.mlp, LigerSwiGLUMLP)
360
+ if rms_norm:
361
+ _patch_rms_norm_module(decoder_layer.input_layernorm)
362
+ _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
363
+
364
+
293
365
  def apply_liger_kernel_to_llava(
294
366
  cross_entropy: bool = False,
295
367
  fused_linear_cross_entropy: bool = True,
@@ -1801,6 +1873,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
1801
1873
  "qwen2_vl_text": apply_liger_kernel_to_qwen2_vl,
1802
1874
  "qwen2_5_vl": apply_liger_kernel_to_qwen2_5_vl,
1803
1875
  "qwen2_5_vl_text": apply_liger_kernel_to_qwen2_5_vl,
1876
+ "smollm3": apply_liger_kernel_to_smollm3,
1804
1877
  "phi3": apply_liger_kernel_to_phi3,
1805
1878
  "paligemma": apply_liger_kernel_to_paligemma,
1806
1879
  }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.6.0.dev20250718045752
3
+ Version: 0.6.0.dev20250718050840
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -39,7 +39,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
39
39
  liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
40
40
  liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
41
41
  liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
42
- liger_kernel/transformers/__init__.py,sha256=mWMEhOabqUkPimMOmkg9DawnO-vL9u_u-N4iIqfNZeg,7259
42
+ liger_kernel/transformers/__init__.py,sha256=HgVQs82CJpvFMKwPWcWDDMgdKl5nwA6oUAcvXVIDISk,7444
43
43
  liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
44
44
  liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
45
45
  liger_kernel/transformers/dyt.py,sha256=i-4GPaMrl-jab9TVI5qN0-H9qycn_mCbV82ozU4nbmU,723
@@ -54,7 +54,7 @@ liger_kernel/transformers/grpo_loss.py,sha256=uAkUNKSnUGEOqa82L9w2e6AI1kcmG8K45-
54
54
  liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
55
55
  liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
56
56
  liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
57
- liger_kernel/transformers/monkey_patch.py,sha256=W7KgJN-rrLZS3pRZ5debO_dSN7zddPegKjqOIP39wR0,85856
57
+ liger_kernel/transformers/monkey_patch.py,sha256=VsN839y5QVEC6BD_-hCiShWLerQM2QDLDoKf2rq02I4,88990
58
58
  liger_kernel/transformers/multi_token_attention.py,sha256=l9VDICK0dfmifUDW668hGscP8AHq2rYcM2oGUa3baRQ,1751
59
59
  liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
60
60
  liger_kernel/transformers/rms_norm.py,sha256=vkekcvTeWY8vL4H6hg3t0XeY0Ew_3OFMPHuzqlxPPVw,2719
@@ -85,13 +85,14 @@ liger_kernel/transformers/model/qwen2_5_vl.py,sha256=zEVVwotCXnAm3RRc8-1Nc8uitSW
85
85
  liger_kernel/transformers/model/qwen2_vl.py,sha256=5vK-vtCDpKZ2w33xYp2BS8kQYWUbKMqaiKvQcI27Mss,5884
86
86
  liger_kernel/transformers/model/qwen3.py,sha256=w2jBHuK9kK9EmOr5dnEIXNQXUgUSV_sJUkXSEwxLPHs,4885
87
87
  liger_kernel/transformers/model/qwen3_moe.py,sha256=BkpfFH3fOH0yRfA7LF-AoHTLut2GV0Y4MOlkiIYewfU,5511
88
+ liger_kernel/transformers/model/smollm3.py,sha256=mqayvpwpMbp2yd_Ue7IPzy-dA4KHSDi_ROZW5vHCHfQ,7596
88
89
  liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7HHWHwku25A-GYL0WU,193
89
90
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
90
91
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
91
92
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
92
- liger_kernel_nightly-0.6.0.dev20250718045752.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
93
- liger_kernel_nightly-0.6.0.dev20250718045752.dist-info/METADATA,sha256=bqxoqY-Xl2gcPdVxpAvpG4_JEsCgUUV9KGyHfnsNcJk,24672
94
- liger_kernel_nightly-0.6.0.dev20250718045752.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
95
- liger_kernel_nightly-0.6.0.dev20250718045752.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
96
- liger_kernel_nightly-0.6.0.dev20250718045752.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
97
- liger_kernel_nightly-0.6.0.dev20250718045752.dist-info/RECORD,,
93
+ liger_kernel_nightly-0.6.0.dev20250718050840.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
94
+ liger_kernel_nightly-0.6.0.dev20250718050840.dist-info/METADATA,sha256=z1I1ty8hIuyQuOoL26zDIe2kkghDUmcUUF1-ndo2nKk,24672
95
+ liger_kernel_nightly-0.6.0.dev20250718050840.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
96
+ liger_kernel_nightly-0.6.0.dev20250718050840.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
97
+ liger_kernel_nightly-0.6.0.dev20250718050840.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
98
+ liger_kernel_nightly-0.6.0.dev20250718050840.dist-info/RECORD,,