liger-kernel-nightly 0.5.9.dev20250505193607__py3-none-any.whl → 0.5.9.dev20250510102528__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/transformers/__init__.py +5 -0
- liger_kernel/transformers/model/qwen3_moe.py +134 -0
- liger_kernel/transformers/monkey_patch.py +56 -0
- liger_kernel/transformers/swiglu.py +21 -0
- {liger_kernel_nightly-0.5.9.dev20250505193607.dist-info → liger_kernel_nightly-0.5.9.dev20250510102528.dist-info}/METADATA +32 -19
- {liger_kernel_nightly-0.5.9.dev20250505193607.dist-info → liger_kernel_nightly-0.5.9.dev20250510102528.dist-info}/RECORD +10 -9
- {liger_kernel_nightly-0.5.9.dev20250505193607.dist-info → liger_kernel_nightly-0.5.9.dev20250510102528.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.9.dev20250505193607.dist-info → liger_kernel_nightly-0.5.9.dev20250510102528.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.9.dev20250505193607.dist-info → liger_kernel_nightly-0.5.9.dev20250510102528.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.9.dev20250505193607.dist-info → liger_kernel_nightly-0.5.9.dev20250510102528.dist-info}/top_level.txt +0 -0
@@ -14,6 +14,7 @@ from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
|
|
14
14
|
from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
|
15
15
|
from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F401
|
16
16
|
from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
|
17
|
+
from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP # noqa: F401
|
17
18
|
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP # noqa: F401
|
18
19
|
from liger_kernel.transformers.tvd import LigerTVDLoss # noqa: F401
|
19
20
|
|
@@ -40,6 +41,7 @@ if TYPE_CHECKING:
|
|
40
41
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_5_vl # noqa: F401
|
41
42
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
|
42
43
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
|
44
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
|
43
45
|
|
44
46
|
|
45
47
|
# Check if 'transformers' is installed
|
@@ -95,6 +97,7 @@ def __getattr__(name: str):
|
|
95
97
|
"apply_liger_kernel_to_qwen2_5_vl",
|
96
98
|
"apply_liger_kernel_to_qwen2_vl",
|
97
99
|
"apply_liger_kernel_to_qwen3",
|
100
|
+
"apply_liger_kernel_to_qwen3_moe",
|
98
101
|
}
|
99
102
|
|
100
103
|
if name in monkey_patch_symbols:
|
@@ -118,6 +121,7 @@ __all__ = [
|
|
118
121
|
"liger_rotary_pos_emb",
|
119
122
|
"LigerBlockSparseTop2MLP",
|
120
123
|
"LigerPhi3SwiGLUMLP",
|
124
|
+
"LigerQwen3MoeSwiGLUMLP",
|
121
125
|
"LigerSwiGLUMLP",
|
122
126
|
"LigerTVDLoss",
|
123
127
|
]
|
@@ -147,5 +151,6 @@ if _TRANSFORMERS_AVAILABLE:
|
|
147
151
|
"apply_liger_kernel_to_qwen2_5_vl",
|
148
152
|
"apply_liger_kernel_to_qwen2_vl",
|
149
153
|
"apply_liger_kernel_to_qwen3",
|
154
|
+
"apply_liger_kernel_to_qwen3_moe",
|
150
155
|
]
|
151
156
|
)
|
@@ -0,0 +1,134 @@
|
|
1
|
+
from typing import List
|
2
|
+
from typing import Optional
|
3
|
+
from typing import Union
|
4
|
+
|
5
|
+
import torch
|
6
|
+
|
7
|
+
from transformers.modeling_outputs import MoeCausalLMOutputWithPast
|
8
|
+
from transformers.modeling_outputs import MoeModelOutputWithPast
|
9
|
+
from transformers.models.mixtral.modeling_mixtral import load_balancing_loss_func
|
10
|
+
from transformers.models.qwen3_moe.modeling_qwen3_moe import _CONFIG_FOR_DOC
|
11
|
+
from transformers.models.qwen3_moe.modeling_qwen3_moe import QWEN3_MOE_INPUTS_DOCSTRING
|
12
|
+
from transformers.utils import add_start_docstrings_to_model_forward
|
13
|
+
from transformers.utils import replace_return_docstrings
|
14
|
+
|
15
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
16
|
+
|
17
|
+
|
18
|
+
@add_start_docstrings_to_model_forward(QWEN3_MOE_INPUTS_DOCSTRING)
|
19
|
+
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
20
|
+
def lce_forward(
|
21
|
+
self,
|
22
|
+
input_ids: Optional[torch.LongTensor] = None,
|
23
|
+
attention_mask: Optional[torch.Tensor] = None,
|
24
|
+
position_ids: Optional[torch.LongTensor] = None,
|
25
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
26
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
27
|
+
labels: Optional[torch.LongTensor] = None,
|
28
|
+
use_cache: Optional[bool] = None,
|
29
|
+
output_attentions: Optional[bool] = None,
|
30
|
+
output_hidden_states: Optional[bool] = None,
|
31
|
+
output_router_logits: Optional[bool] = None,
|
32
|
+
cache_position: Optional[torch.LongTensor] = None,
|
33
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
34
|
+
**loss_kwargs,
|
35
|
+
) -> MoeCausalLMOutputWithPast:
|
36
|
+
r"""
|
37
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
38
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
39
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
40
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
41
|
+
|
42
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
43
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
44
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
45
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
46
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
47
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
48
|
+
|
49
|
+
Returns:
|
50
|
+
|
51
|
+
Example:
|
52
|
+
|
53
|
+
```python
|
54
|
+
>>> from transformers import AutoTokenizer, Qwen3MoeForCausalLM
|
55
|
+
|
56
|
+
>>> model = Qwen3MoeForCausalLM.from_pretrained("Qwen/Qwen3-MoE-15B-A2B")
|
57
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-MoE-15B-A2B")
|
58
|
+
|
59
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
60
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
61
|
+
|
62
|
+
>>> # Generate
|
63
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
64
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
65
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
66
|
+
```"""
|
67
|
+
|
68
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
69
|
+
output_router_logits = (
|
70
|
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
71
|
+
)
|
72
|
+
|
73
|
+
output_hidden_states = (
|
74
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
75
|
+
)
|
76
|
+
|
77
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
78
|
+
outputs: MoeModelOutputWithPast = self.model(
|
79
|
+
input_ids=input_ids,
|
80
|
+
attention_mask=attention_mask,
|
81
|
+
position_ids=position_ids,
|
82
|
+
past_key_values=past_key_values,
|
83
|
+
inputs_embeds=inputs_embeds,
|
84
|
+
use_cache=use_cache,
|
85
|
+
output_attentions=output_attentions,
|
86
|
+
output_hidden_states=output_hidden_states,
|
87
|
+
output_router_logits=output_router_logits,
|
88
|
+
cache_position=cache_position,
|
89
|
+
)
|
90
|
+
|
91
|
+
hidden_states = outputs.last_hidden_state
|
92
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
93
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
94
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
95
|
+
|
96
|
+
shift_labels = loss_kwargs.pop("shift_labels", None)
|
97
|
+
logits = None
|
98
|
+
loss = None
|
99
|
+
|
100
|
+
# if in training mode, do not materialize logits
|
101
|
+
if self.training and (labels is not None or shift_labels is not None):
|
102
|
+
loss = LigerForCausalLMLoss(
|
103
|
+
hidden_states=kept_hidden_states,
|
104
|
+
lm_head_weight=self.lm_head.weight,
|
105
|
+
labels=labels,
|
106
|
+
shift_labels=shift_labels,
|
107
|
+
hidden_size=self.config.hidden_size,
|
108
|
+
**loss_kwargs,
|
109
|
+
)
|
110
|
+
else: # if in inference model materialize logits
|
111
|
+
logits = self.lm_head(kept_hidden_states)
|
112
|
+
if labels is not None:
|
113
|
+
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
|
114
|
+
|
115
|
+
aux_loss = None
|
116
|
+
if output_router_logits:
|
117
|
+
aux_loss = load_balancing_loss_func(
|
118
|
+
outputs.router_logits,
|
119
|
+
self.num_experts,
|
120
|
+
self.num_experts_per_tok,
|
121
|
+
attention_mask,
|
122
|
+
)
|
123
|
+
if labels is not None:
|
124
|
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
125
|
+
|
126
|
+
return MoeCausalLMOutputWithPast(
|
127
|
+
loss=loss,
|
128
|
+
aux_loss=aux_loss,
|
129
|
+
logits=logits,
|
130
|
+
past_key_values=outputs.past_key_values,
|
131
|
+
hidden_states=outputs.hidden_states,
|
132
|
+
attentions=outputs.attentions,
|
133
|
+
router_logits=outputs.router_logits,
|
134
|
+
)
|
@@ -1102,6 +1102,61 @@ def apply_liger_kernel_to_qwen3(
|
|
1102
1102
|
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
1103
1103
|
|
1104
1104
|
|
1105
|
+
def apply_liger_kernel_to_qwen3_moe(
|
1106
|
+
rope: bool = True,
|
1107
|
+
cross_entropy: bool = False,
|
1108
|
+
fused_linear_cross_entropy: bool = True,
|
1109
|
+
rms_norm: bool = True,
|
1110
|
+
swiglu: bool = True,
|
1111
|
+
model: PreTrainedModel = None,
|
1112
|
+
) -> None:
|
1113
|
+
"""
|
1114
|
+
Apply Liger kernels to replace original implementation in HuggingFace Qwen3 models.
|
1115
|
+
"""
|
1116
|
+
assert not (cross_entropy and fused_linear_cross_entropy), (
|
1117
|
+
"cross_entropy and fused_linear_cross_entropy cannot both be True."
|
1118
|
+
)
|
1119
|
+
|
1120
|
+
from transformers.models.qwen3_moe import modeling_qwen3_moe
|
1121
|
+
from transformers.models.qwen3_moe.modeling_qwen3_moe import Qwen3MoeModel
|
1122
|
+
|
1123
|
+
from liger_kernel.transformers.model.qwen3_moe import lce_forward as qwen3_lce_forward
|
1124
|
+
from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP
|
1125
|
+
|
1126
|
+
if rope:
|
1127
|
+
modeling_qwen3_moe.apply_rotary_pos_emb = liger_rotary_pos_emb
|
1128
|
+
|
1129
|
+
if rms_norm:
|
1130
|
+
modeling_qwen3_moe.Qwen3MoeRMSNorm = LigerRMSNorm
|
1131
|
+
|
1132
|
+
if cross_entropy:
|
1133
|
+
from transformers.loss.loss_utils import nn
|
1134
|
+
|
1135
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
1136
|
+
|
1137
|
+
if fused_linear_cross_entropy:
|
1138
|
+
modeling_qwen3_moe.Qwen3MoeForCausalLM.forward = qwen3_lce_forward
|
1139
|
+
|
1140
|
+
if swiglu:
|
1141
|
+
modeling_qwen3_moe.Qwen3MoeMLP = LigerQwen3MoeSwiGLUMLP
|
1142
|
+
|
1143
|
+
if model is not None:
|
1144
|
+
# The model instance already exists, so we need to additionally patch the
|
1145
|
+
# instance variables that reference already-instantiated modules
|
1146
|
+
|
1147
|
+
# get the base model from the model instance
|
1148
|
+
base_model: Qwen3MoeModel = getattr(model, model.base_model_prefix, model)
|
1149
|
+
|
1150
|
+
if rms_norm:
|
1151
|
+
_patch_rms_norm_module(base_model.norm)
|
1152
|
+
for decoder_layer in base_model.layers:
|
1153
|
+
if swiglu:
|
1154
|
+
_patch_swiglu_module(decoder_layer.mlp, LigerQwen3MoeSwiGLUMLP)
|
1155
|
+
if rms_norm:
|
1156
|
+
_patch_rms_norm_module(decoder_layer.input_layernorm)
|
1157
|
+
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
1158
|
+
|
1159
|
+
|
1105
1160
|
def apply_liger_kernel_to_qwen2_vl(
|
1106
1161
|
rope: bool = True,
|
1107
1162
|
cross_entropy: bool = False,
|
@@ -1455,6 +1510,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
1455
1510
|
"olmo2": apply_liger_kernel_to_olmo2,
|
1456
1511
|
"qwen2": apply_liger_kernel_to_qwen2,
|
1457
1512
|
"qwen3": apply_liger_kernel_to_qwen3,
|
1513
|
+
"qwen3_moe": apply_liger_kernel_to_qwen3_moe,
|
1458
1514
|
"qwen2_vl": apply_liger_kernel_to_qwen2_vl,
|
1459
1515
|
"qwen2_5_vl": apply_liger_kernel_to_qwen2_5_vl,
|
1460
1516
|
"phi3": apply_liger_kernel_to_phi3,
|
@@ -56,3 +56,24 @@ class LigerPhi3SwiGLUMLP(nn.Module):
|
|
56
56
|
up_states = self.gate_up_proj(x)
|
57
57
|
gate, up_states = up_states.chunk(2, dim=-1)
|
58
58
|
return self.down_proj(LigerSiLUMulFunction.apply(gate, up_states))
|
59
|
+
|
60
|
+
|
61
|
+
class LigerQwen3MoeSwiGLUMLP(nn.Module):
|
62
|
+
"""
|
63
|
+
Patch Qwen3MoeMLP to use LigerSiLUMulFunction.
|
64
|
+
https://github.com/huggingface/transformers/blob/v4.51.3/src/transformers/models/qwen3_moe/modular_qwen3_moe.py#L57
|
65
|
+
"""
|
66
|
+
|
67
|
+
def __init__(self, config, intermediate_size=None):
|
68
|
+
super().__init__()
|
69
|
+
self.config = config
|
70
|
+
self.hidden_size = config.hidden_size
|
71
|
+
self.intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size
|
72
|
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
73
|
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
74
|
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
75
|
+
if config.hidden_act not in ["silu", "swish"]:
|
76
|
+
raise ValueError(f"Activation function {config.hidden_act} not supported.")
|
77
|
+
|
78
|
+
def forward(self, x):
|
79
|
+
return self.down_proj(LigerSiLUMulFunction.apply(self.gate_proj(x), self.up_proj(x)))
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: liger_kernel_nightly
|
3
|
-
Version: 0.5.9.
|
3
|
+
Version: 0.5.9.dev20250510102528
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
@@ -56,7 +56,6 @@ Requires-Dist: mkdocs-material; extra == "dev"
|
|
56
56
|
<th style="padding: 10px;" colspan="2">Stable</th>
|
57
57
|
<th style="padding: 10px;" colspan="2">Nightly</th>
|
58
58
|
<th style="padding: 10px;">Discord</th>
|
59
|
-
<th style="padding: 10px;">Build</th>
|
60
59
|
</tr>
|
61
60
|
<tr>
|
62
61
|
<td style="padding: 10px;">
|
@@ -84,23 +83,6 @@ Requires-Dist: mkdocs-material; extra == "dev"
|
|
84
83
|
<img src="https://dcbadge.vercel.app/api/server/gpumode?style=flat" alt="Join Our Discord">
|
85
84
|
</a>
|
86
85
|
</td>
|
87
|
-
<td style="padding: 10px;">
|
88
|
-
<div style="display: block;">
|
89
|
-
<a href="https://github.com/linkedin/Liger-Kernel/actions/workflows/nvi-ci.yml">
|
90
|
-
<img src="https://github.com/linkedin/Liger-Kernel/actions/workflows/nvi-ci.yml/badge.svg?event=schedule" alt="Build">
|
91
|
-
</a>
|
92
|
-
</div>
|
93
|
-
<div style="display: block;">
|
94
|
-
<a href="https://github.com/linkedin/Liger-Kernel/actions/workflows/amd-ci.yml">
|
95
|
-
<img src="https://github.com/linkedin/Liger-Kernel/actions/workflows/amd-ci.yml/badge.svg?event=schedule" alt="Build">
|
96
|
-
</a>
|
97
|
-
</div>
|
98
|
-
<div style="display: block;">
|
99
|
-
<a href="https://github.com/linkedin/Liger-Kernel/actions/workflows/amd-ci.yml">
|
100
|
-
<img src="https://github.com/linkedin/Liger-Kernel/actions/workflows/intel-ci.yml/badge.svg?event=schedule" alt="Build">
|
101
|
-
</a>
|
102
|
-
</div>
|
103
|
-
</td>
|
104
86
|
</tr>
|
105
87
|
</table>
|
106
88
|
|
@@ -318,6 +300,7 @@ loss.backward()
|
|
318
300
|
| Qwen2-VL, & QVQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
319
301
|
| Qwen2.5-VL | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_5_vl` | RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
320
302
|
| Qwen3 | `liger_kernel.transformers.apply_liger_kernel_to_qwen3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
303
|
+
| Qwen3 MoE | `liger_kernel_transformers.apply_liger_kernel_to_qwen3_moe` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
321
304
|
| Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
322
305
|
| Granite 3.0 & 3.1 | `liger_kernel.transformers.apply_liger_kernel_to_granite` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
|
323
306
|
| OLMo2 | `liger_kernel.transformers.apply_liger_kernel_to_olmo2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
@@ -387,6 +370,36 @@ loss.backward()
|
|
387
370
|
- [Axolotl](https://axolotl.ai/): Integrating Liger Kernel into Axolotl.
|
388
371
|
- [Llama-Factory](https://github.com/hiyouga/LLaMA-Factory): Integrating Liger Kernel into Llama-Factory.
|
389
372
|
|
373
|
+
|
374
|
+
## CI status
|
375
|
+
|
376
|
+
<table style="width: 100%; text-align: center; border-collapse: collapse;">
|
377
|
+
<tr>
|
378
|
+
<th style="padding: 10px;">Build</th>
|
379
|
+
</tr>
|
380
|
+
<tr>
|
381
|
+
<td style="padding: 10px;">
|
382
|
+
<div style="display: block;">
|
383
|
+
<a href="https://github.com/linkedin/Liger-Kernel/actions/workflows/nvi-ci.yml">
|
384
|
+
<img src="https://github.com/linkedin/Liger-Kernel/actions/workflows/nvi-ci.yml/badge.svg?event=schedule" alt="Build">
|
385
|
+
</a>
|
386
|
+
</div>
|
387
|
+
<div style="display: block;">
|
388
|
+
<a href="https://github.com/linkedin/Liger-Kernel/actions/workflows/amd-ci.yml">
|
389
|
+
<img src="https://github.com/linkedin/Liger-Kernel/actions/workflows/amd-ci.yml/badge.svg?event=schedule" alt="Build">
|
390
|
+
</a>
|
391
|
+
</div>
|
392
|
+
<div style="display: block;">
|
393
|
+
<a href="https://github.com/linkedin/Liger-Kernel/actions/workflows/amd-ci.yml">
|
394
|
+
<img src="https://github.com/linkedin/Liger-Kernel/actions/workflows/intel-ci.yml/badge.svg?event=schedule" alt="Build">
|
395
|
+
</a>
|
396
|
+
</div>
|
397
|
+
</td>
|
398
|
+
</tr>
|
399
|
+
</table>
|
400
|
+
|
401
|
+
|
402
|
+
|
390
403
|
## Contact
|
391
404
|
|
392
405
|
- For issues, create a Github ticket in this repository
|
@@ -33,7 +33,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
|
|
33
33
|
liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
|
34
34
|
liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
|
35
35
|
liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
|
36
|
-
liger_kernel/transformers/__init__.py,sha256=
|
36
|
+
liger_kernel/transformers/__init__.py,sha256=0KX0rxyy0E_uNWVE0PSTzEVzKqc5KdFHtvdHhJm23Kk,7077
|
37
37
|
liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
|
38
38
|
liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
|
39
39
|
liger_kernel/transformers/dyt.py,sha256=QMqqc14pkE0WhpRZvapfnNAun-6C0C_tHExL2ZJuCUA,648
|
@@ -46,11 +46,11 @@ liger_kernel/transformers/group_norm.py,sha256=6qMAWOprr4SzP0YhNVNGQIBpM5aUHplUD
|
|
46
46
|
liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
|
47
47
|
liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
|
48
48
|
liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
|
49
|
-
liger_kernel/transformers/monkey_patch.py,sha256=
|
49
|
+
liger_kernel/transformers/monkey_patch.py,sha256=k8WIkx_f3ObG6TjhIiN_4KeOABurB2W7xy7td0ie-W8,71339
|
50
50
|
liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
|
51
51
|
liger_kernel/transformers/rms_norm.py,sha256=GqCEJuGt0YdqqlMcToE0Wp4A8YFquDa4UUSyH2uFW2A,1191
|
52
52
|
liger_kernel/transformers/rope.py,sha256=ZTrTORSAyfcFIKjk6XEeYmk4ROH7xXED9L4g2NFntlE,999
|
53
|
-
liger_kernel/transformers/swiglu.py,sha256=
|
53
|
+
liger_kernel/transformers/swiglu.py,sha256=LZ8YeLIdv2k46JleZMjzubGk98smt6t780kSgcVLsQk,3454
|
54
54
|
liger_kernel/transformers/trainer_integration.py,sha256=W3ON51O5GkyzNJsItz0y5rKx-uy2f2cFfveZpqbUdhw,123
|
55
55
|
liger_kernel/transformers/tvd.py,sha256=XrRfyJIqN6HFxXk8MYyFVZM1OLz3mtSbRZvWfZ_JerQ,450
|
56
56
|
liger_kernel/transformers/experimental/embedding.py,sha256=2P0QYdlFyFrG5OqTzTa1wcRgDSyjBMv5i1a7BrDPDQw,881
|
@@ -72,13 +72,14 @@ liger_kernel/transformers/model/qwen2.py,sha256=bEusb6vrVbagtSUHyntpi9j0x79IrZ1N
|
|
72
72
|
liger_kernel/transformers/model/qwen2_5_vl.py,sha256=oACIsTpg9_GdoSvekCyXLhJkuCpQEiFOTzKj7cjgi2E,9413
|
73
73
|
liger_kernel/transformers/model/qwen2_vl.py,sha256=F6DeQ65wPtcpeQJZ9a3SJZKkQ-e24SRLdYUgC-_jT-k,9809
|
74
74
|
liger_kernel/transformers/model/qwen3.py,sha256=JdIeh0fvDLdGs8nk4_eHrovHCNa09VG15D4aa0X0mwI,5084
|
75
|
+
liger_kernel/transformers/model/qwen3_moe.py,sha256=2EFIltbaQ6y8ksYDTk0NC0b2Zdbir7eW15avY4XisLQ,5917
|
75
76
|
liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7HHWHwku25A-GYL0WU,193
|
76
77
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=pdekW7l6Qg_aqa5SYKYlSWUF8m3lkOFvFLcIMEHrz9s,8338
|
77
78
|
liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
|
78
79
|
liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
|
79
|
-
liger_kernel_nightly-0.5.9.
|
80
|
-
liger_kernel_nightly-0.5.9.
|
81
|
-
liger_kernel_nightly-0.5.9.
|
82
|
-
liger_kernel_nightly-0.5.9.
|
83
|
-
liger_kernel_nightly-0.5.9.
|
84
|
-
liger_kernel_nightly-0.5.9.
|
80
|
+
liger_kernel_nightly-0.5.9.dev20250510102528.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
81
|
+
liger_kernel_nightly-0.5.9.dev20250510102528.dist-info/METADATA,sha256=QJdzn7ZNK-ENSx22-UoYoFvvkiB8CyI0NR08gdgb0fY,23874
|
82
|
+
liger_kernel_nightly-0.5.9.dev20250510102528.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
83
|
+
liger_kernel_nightly-0.5.9.dev20250510102528.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
|
84
|
+
liger_kernel_nightly-0.5.9.dev20250510102528.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
85
|
+
liger_kernel_nightly-0.5.9.dev20250510102528.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|