liger-kernel-nightly 0.5.8.dev20250502223102__py3-none-any.whl → 0.5.8.dev20250503025537__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/transformers/__init__.py +3 -0
- liger_kernel/transformers/model/gemma.py +5 -3
- liger_kernel/transformers/model/gemma2.py +5 -3
- liger_kernel/transformers/model/glm4.py +5 -3
- liger_kernel/transformers/model/llama.py +5 -3
- liger_kernel/transformers/model/mistral.py +5 -3
- liger_kernel/transformers/model/mixtral.py +5 -3
- liger_kernel/transformers/model/mllama.py +5 -3
- liger_kernel/transformers/model/olmo2.py +5 -3
- liger_kernel/transformers/model/phi3.py +5 -3
- liger_kernel/transformers/model/qwen2.py +5 -3
- liger_kernel/transformers/model/qwen3.py +118 -0
- liger_kernel/transformers/monkey_patch.py +55 -0
- {liger_kernel_nightly-0.5.8.dev20250502223102.dist-info → liger_kernel_nightly-0.5.8.dev20250503025537.dist-info}/METADATA +2 -1
- {liger_kernel_nightly-0.5.8.dev20250502223102.dist-info → liger_kernel_nightly-0.5.8.dev20250503025537.dist-info}/RECORD +19 -18
- {liger_kernel_nightly-0.5.8.dev20250502223102.dist-info → liger_kernel_nightly-0.5.8.dev20250503025537.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.8.dev20250502223102.dist-info → liger_kernel_nightly-0.5.8.dev20250503025537.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.8.dev20250502223102.dist-info → liger_kernel_nightly-0.5.8.dev20250503025537.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.8.dev20250502223102.dist-info → liger_kernel_nightly-0.5.8.dev20250503025537.dist-info}/top_level.txt +0 -0
@@ -39,6 +39,7 @@ if TYPE_CHECKING:
|
|
39
39
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
|
40
40
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_5_vl # noqa: F401
|
41
41
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
|
42
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
|
42
43
|
|
43
44
|
|
44
45
|
# Check if 'transformers' is installed
|
@@ -93,6 +94,7 @@ def __getattr__(name: str):
|
|
93
94
|
"apply_liger_kernel_to_qwen2",
|
94
95
|
"apply_liger_kernel_to_qwen2_5_vl",
|
95
96
|
"apply_liger_kernel_to_qwen2_vl",
|
97
|
+
"apply_liger_kernel_to_qwen3",
|
96
98
|
}
|
97
99
|
|
98
100
|
if name in monkey_patch_symbols:
|
@@ -144,5 +146,6 @@ if _TRANSFORMERS_AVAILABLE:
|
|
144
146
|
"apply_liger_kernel_to_qwen2",
|
145
147
|
"apply_liger_kernel_to_qwen2_5_vl",
|
146
148
|
"apply_liger_kernel_to_qwen2_vl",
|
149
|
+
"apply_liger_kernel_to_qwen3",
|
147
150
|
]
|
148
151
|
)
|
@@ -200,6 +200,9 @@ def lce_forward(
|
|
200
200
|
)
|
201
201
|
|
202
202
|
hidden_states = outputs[0]
|
203
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
204
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
205
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
203
206
|
|
204
207
|
shift_labels = loss_kwargs.pop("shift_labels", None)
|
205
208
|
logits = None
|
@@ -207,7 +210,7 @@ def lce_forward(
|
|
207
210
|
# if in training mode, don't materialize logits
|
208
211
|
if self.training and (labels is not None or shift_labels is not None):
|
209
212
|
loss = LigerForCausalLMLoss(
|
210
|
-
hidden_states=
|
213
|
+
hidden_states=kept_hidden_states,
|
211
214
|
lm_head_weight=self.lm_head.weight,
|
212
215
|
labels=labels,
|
213
216
|
shift_labels=shift_labels,
|
@@ -215,8 +218,7 @@ def lce_forward(
|
|
215
218
|
**loss_kwargs,
|
216
219
|
)
|
217
220
|
else: # if in inference mode materialize logits
|
218
|
-
|
219
|
-
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
221
|
+
logits = self.lm_head(kept_hidden_states)
|
220
222
|
if labels is not None:
|
221
223
|
loss = self.loss_function(
|
222
224
|
logits=logits,
|
@@ -212,6 +212,9 @@ def lce_forward(
|
|
212
212
|
)
|
213
213
|
|
214
214
|
hidden_states = outputs[0]
|
215
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
216
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
217
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
215
218
|
|
216
219
|
shift_labels = loss_kwargs.pop("shift_labels", None)
|
217
220
|
logits = None
|
@@ -219,7 +222,7 @@ def lce_forward(
|
|
219
222
|
# if in training mode, don't materialize logits
|
220
223
|
if self.training and (labels is not None or shift_labels is not None):
|
221
224
|
loss = LigerForCausalLMLoss(
|
222
|
-
hidden_states=
|
225
|
+
hidden_states=kept_hidden_states,
|
223
226
|
lm_head_weight=self.lm_head.weight,
|
224
227
|
labels=labels,
|
225
228
|
shift_labels=shift_labels,
|
@@ -229,8 +232,7 @@ def lce_forward(
|
|
229
232
|
)
|
230
233
|
|
231
234
|
else: # if in inference mode materialize logits
|
232
|
-
|
233
|
-
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
235
|
+
logits = self.lm_head(kept_hidden_states)
|
234
236
|
if self.config.final_logit_softcapping is not None:
|
235
237
|
logits = logits / self.config.final_logit_softcapping
|
236
238
|
logits = torch.tanh(logits)
|
@@ -88,6 +88,9 @@ def lce_forward(
|
|
88
88
|
)
|
89
89
|
|
90
90
|
hidden_states = outputs[0]
|
91
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
92
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
93
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
91
94
|
|
92
95
|
shift_labels = loss_kwargs.pop("shift_labels", None)
|
93
96
|
logits = None
|
@@ -95,7 +98,7 @@ def lce_forward(
|
|
95
98
|
# if in training mode, don't materialize logits
|
96
99
|
if self.training and (labels is not None or shift_labels is not None):
|
97
100
|
loss = LigerForCausalLMLoss(
|
98
|
-
hidden_states=
|
101
|
+
hidden_states=kept_hidden_states,
|
99
102
|
lm_head_weight=self.lm_head.weight,
|
100
103
|
labels=labels,
|
101
104
|
shift_labels=shift_labels,
|
@@ -104,8 +107,7 @@ def lce_forward(
|
|
104
107
|
)
|
105
108
|
|
106
109
|
else: # if in inference mode materialize logits
|
107
|
-
|
108
|
-
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
110
|
+
logits = self.lm_head(kept_hidden_states)
|
109
111
|
if labels is not None:
|
110
112
|
loss = self.loss_function(
|
111
113
|
logits=logits,
|
@@ -209,6 +209,9 @@ def lce_forward(
|
|
209
209
|
)
|
210
210
|
|
211
211
|
hidden_states = outputs[0]
|
212
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
213
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
214
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
212
215
|
|
213
216
|
if self.config.pretraining_tp > 1:
|
214
217
|
raise Exception("Liger Kernel does not support pretraining_tp!!")
|
@@ -219,7 +222,7 @@ def lce_forward(
|
|
219
222
|
# if in training mode, don't materialize logits
|
220
223
|
if self.training and (labels is not None or shift_labels is not None):
|
221
224
|
loss = LigerForCausalLMLoss(
|
222
|
-
hidden_states=
|
225
|
+
hidden_states=kept_hidden_states,
|
223
226
|
lm_head_weight=self.lm_head.weight,
|
224
227
|
labels=labels,
|
225
228
|
shift_labels=shift_labels,
|
@@ -228,8 +231,7 @@ def lce_forward(
|
|
228
231
|
)
|
229
232
|
|
230
233
|
else: # if in inference mode materialize logits
|
231
|
-
|
232
|
-
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
234
|
+
logits = self.lm_head(kept_hidden_states)
|
233
235
|
if labels is not None:
|
234
236
|
loss = self.loss_function(
|
235
237
|
logits=logits,
|
@@ -91,6 +91,9 @@ def lce_forward(
|
|
91
91
|
)
|
92
92
|
|
93
93
|
hidden_states = outputs[0]
|
94
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
95
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
96
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
94
97
|
|
95
98
|
shift_labels = loss_kwargs.pop("shift_labels", None)
|
96
99
|
loss = None
|
@@ -98,7 +101,7 @@ def lce_forward(
|
|
98
101
|
|
99
102
|
if self.training and (labels is not None or shift_labels is not None):
|
100
103
|
loss = LigerForCausalLMLoss(
|
101
|
-
hidden_states=
|
104
|
+
hidden_states=kept_hidden_states,
|
102
105
|
lm_head_weight=self.lm_head.weight,
|
103
106
|
labels=labels,
|
104
107
|
shift_labels=shift_labels,
|
@@ -107,8 +110,7 @@ def lce_forward(
|
|
107
110
|
)
|
108
111
|
|
109
112
|
else:
|
110
|
-
|
111
|
-
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
113
|
+
logits = self.lm_head(kept_hidden_states)
|
112
114
|
|
113
115
|
loss = None
|
114
116
|
if labels is not None:
|
@@ -225,6 +225,9 @@ def lce_forward(
|
|
225
225
|
)
|
226
226
|
|
227
227
|
hidden_states = outputs[0]
|
228
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
229
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
230
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
228
231
|
|
229
232
|
shift_labels = loss_kwargs.pop("shift_labels", None)
|
230
233
|
logits = None
|
@@ -232,7 +235,7 @@ def lce_forward(
|
|
232
235
|
# if in training mode, don't materialize logits
|
233
236
|
if self.training and (labels is not None or shift_labels is not None):
|
234
237
|
loss = LigerForCausalLMLoss(
|
235
|
-
hidden_states=
|
238
|
+
hidden_states=kept_hidden_states,
|
236
239
|
lm_head_weight=self.lm_head.weight,
|
237
240
|
labels=labels,
|
238
241
|
shift_labels=shift_labels,
|
@@ -241,8 +244,7 @@ def lce_forward(
|
|
241
244
|
)
|
242
245
|
|
243
246
|
else: # if in inference mode materialize logits
|
244
|
-
|
245
|
-
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
247
|
+
logits = self.lm_head(kept_hidden_states)
|
246
248
|
|
247
249
|
loss = None
|
248
250
|
if labels is not None:
|
@@ -215,6 +215,9 @@ def lce_forward(
|
|
215
215
|
)
|
216
216
|
|
217
217
|
hidden_states = outputs[0]
|
218
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
219
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
220
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
218
221
|
|
219
222
|
shift_labels = loss_kwargs.pop("shift_labels", None)
|
220
223
|
logits = None
|
@@ -222,7 +225,7 @@ def lce_forward(
|
|
222
225
|
# if in training mode, don't materialize logits
|
223
226
|
if self.training and (labels is not None or shift_labels is not None):
|
224
227
|
loss = LigerForCausalLMLoss(
|
225
|
-
hidden_states=
|
228
|
+
hidden_states=kept_hidden_states,
|
226
229
|
lm_head_weight=self.lm_head.weight,
|
227
230
|
labels=labels,
|
228
231
|
shift_labels=shift_labels,
|
@@ -231,8 +234,7 @@ def lce_forward(
|
|
231
234
|
)
|
232
235
|
|
233
236
|
else: # if in inference mode materialize logits
|
234
|
-
|
235
|
-
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
237
|
+
logits = self.lm_head(kept_hidden_states)
|
236
238
|
if labels is not None:
|
237
239
|
loss = self.loss_function(
|
238
240
|
logits=logits,
|
@@ -88,6 +88,9 @@ def lce_forward(
|
|
88
88
|
)
|
89
89
|
|
90
90
|
hidden_states = outputs[0]
|
91
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
92
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
93
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
91
94
|
|
92
95
|
shift_labels = loss_kwargs.pop("shift_labels", None)
|
93
96
|
logits = None
|
@@ -95,7 +98,7 @@ def lce_forward(
|
|
95
98
|
# if in training mode, don't materialize logits
|
96
99
|
if self.training and (labels is not None or shift_labels is not None):
|
97
100
|
loss = LigerForCausalLMLoss(
|
98
|
-
hidden_states=
|
101
|
+
hidden_states=kept_hidden_states,
|
99
102
|
lm_head_weight=self.lm_head.weight,
|
100
103
|
labels=labels,
|
101
104
|
shift_labels=shift_labels,
|
@@ -104,8 +107,7 @@ def lce_forward(
|
|
104
107
|
)
|
105
108
|
|
106
109
|
else: # if in inference mode materialize logits
|
107
|
-
|
108
|
-
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
110
|
+
logits = self.lm_head(kept_hidden_states)
|
109
111
|
if labels is not None:
|
110
112
|
loss = self.loss_function(
|
111
113
|
logits=logits,
|
@@ -213,6 +213,9 @@ def lce_forward(
|
|
213
213
|
)
|
214
214
|
|
215
215
|
hidden_states = outputs[0]
|
216
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
217
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
218
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
216
219
|
|
217
220
|
shift_labels = loss_kwargs.pop("shift_labels", None)
|
218
221
|
logits = None
|
@@ -220,7 +223,7 @@ def lce_forward(
|
|
220
223
|
# if in training mode, don't materialize logits
|
221
224
|
if self.training and (labels is not None or shift_labels is not None):
|
222
225
|
loss = LigerForCausalLMLoss(
|
223
|
-
hidden_states=
|
226
|
+
hidden_states=kept_hidden_states,
|
224
227
|
lm_head_weight=self.lm_head.weight,
|
225
228
|
labels=labels,
|
226
229
|
shift_labels=shift_labels,
|
@@ -229,8 +232,7 @@ def lce_forward(
|
|
229
232
|
)
|
230
233
|
|
231
234
|
else: # if in inference mode materialize logits
|
232
|
-
|
233
|
-
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
235
|
+
logits = self.lm_head(kept_hidden_states)
|
234
236
|
if labels is not None:
|
235
237
|
loss = self.loss_function(
|
236
238
|
logits=logits,
|
@@ -199,6 +199,9 @@ def lce_forward(
|
|
199
199
|
)
|
200
200
|
|
201
201
|
hidden_states = outputs[0]
|
202
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
203
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
204
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
202
205
|
|
203
206
|
shift_labels = loss_kwargs.pop("shift_labels", None)
|
204
207
|
logits = None
|
@@ -206,7 +209,7 @@ def lce_forward(
|
|
206
209
|
# if in training mode, don't materialize logits
|
207
210
|
if self.training and (labels is not None or shift_labels is not None):
|
208
211
|
loss = LigerForCausalLMLoss(
|
209
|
-
hidden_states=
|
212
|
+
hidden_states=kept_hidden_states,
|
210
213
|
lm_head_weight=self.lm_head.weight,
|
211
214
|
labels=labels,
|
212
215
|
shift_labels=shift_labels,
|
@@ -215,8 +218,7 @@ def lce_forward(
|
|
215
218
|
)
|
216
219
|
|
217
220
|
else: # if in inference mode materialize logits
|
218
|
-
|
219
|
-
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
221
|
+
logits = self.lm_head(kept_hidden_states)
|
220
222
|
if labels is not None:
|
221
223
|
loss = self.loss_function(
|
222
224
|
logits=logits,
|
@@ -0,0 +1,118 @@
|
|
1
|
+
from typing import List
|
2
|
+
from typing import Optional
|
3
|
+
from typing import Union
|
4
|
+
|
5
|
+
import torch
|
6
|
+
|
7
|
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
8
|
+
from transformers.models.qwen3.modeling_qwen3 import _CONFIG_FOR_DOC
|
9
|
+
from transformers.models.qwen3.modeling_qwen3 import QWEN3_INPUTS_DOCSTRING
|
10
|
+
from transformers.utils import add_start_docstrings_to_model_forward
|
11
|
+
from transformers.utils import replace_return_docstrings
|
12
|
+
|
13
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
14
|
+
|
15
|
+
|
16
|
+
@add_start_docstrings_to_model_forward(QWEN3_INPUTS_DOCSTRING)
|
17
|
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
18
|
+
def lce_forward(
|
19
|
+
self,
|
20
|
+
input_ids: Optional[torch.LongTensor] = None,
|
21
|
+
attention_mask: Optional[torch.Tensor] = None,
|
22
|
+
position_ids: Optional[torch.LongTensor] = None,
|
23
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
24
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
25
|
+
labels: Optional[torch.LongTensor] = None,
|
26
|
+
use_cache: Optional[bool] = None,
|
27
|
+
output_attentions: Optional[bool] = None,
|
28
|
+
output_hidden_states: Optional[bool] = None,
|
29
|
+
cache_position: Optional[torch.LongTensor] = None,
|
30
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
31
|
+
**kwargs,
|
32
|
+
) -> CausalLMOutputWithPast:
|
33
|
+
r"""
|
34
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
35
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
36
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
37
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
38
|
+
|
39
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
40
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
41
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
42
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
43
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
44
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
45
|
+
|
46
|
+
Returns:
|
47
|
+
|
48
|
+
Example:
|
49
|
+
|
50
|
+
```python
|
51
|
+
>>> from transformers import AutoTokenizer, Qwen3ForCausalLM
|
52
|
+
|
53
|
+
>>> model = Qwen3ForCausalLM.from_pretrained("Qwen/Qwen3-8B")
|
54
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
|
55
|
+
|
56
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
57
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
58
|
+
|
59
|
+
>>> # Generate
|
60
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
61
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
62
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
63
|
+
```"""
|
64
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
65
|
+
output_hidden_states = (
|
66
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
67
|
+
)
|
68
|
+
|
69
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
70
|
+
outputs = self.model(
|
71
|
+
input_ids=input_ids,
|
72
|
+
attention_mask=attention_mask,
|
73
|
+
position_ids=position_ids,
|
74
|
+
past_key_values=past_key_values,
|
75
|
+
inputs_embeds=inputs_embeds,
|
76
|
+
use_cache=use_cache,
|
77
|
+
output_attentions=output_attentions,
|
78
|
+
output_hidden_states=output_hidden_states,
|
79
|
+
cache_position=cache_position,
|
80
|
+
**kwargs,
|
81
|
+
)
|
82
|
+
|
83
|
+
hidden_states = outputs[0]
|
84
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
85
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
86
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
87
|
+
|
88
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
89
|
+
logits = None
|
90
|
+
loss = None
|
91
|
+
# if in training mode, don't materialize logits
|
92
|
+
if self.training and (labels is not None or shift_labels is not None):
|
93
|
+
loss = LigerForCausalLMLoss(
|
94
|
+
hidden_states=kept_hidden_states,
|
95
|
+
lm_head_weight=self.lm_head.weight,
|
96
|
+
labels=labels,
|
97
|
+
shift_labels=shift_labels,
|
98
|
+
hidden_size=self.config.hidden_size,
|
99
|
+
**kwargs,
|
100
|
+
)
|
101
|
+
|
102
|
+
else: # if in inference mode materialize logits
|
103
|
+
logits = self.lm_head(kept_hidden_states)
|
104
|
+
if labels is not None:
|
105
|
+
loss = self.loss_function(
|
106
|
+
logits=logits,
|
107
|
+
labels=labels,
|
108
|
+
vocab_size=self.config.vocab_size,
|
109
|
+
**kwargs,
|
110
|
+
)
|
111
|
+
|
112
|
+
return CausalLMOutputWithPast(
|
113
|
+
loss=loss,
|
114
|
+
logits=logits,
|
115
|
+
past_key_values=outputs.past_key_values,
|
116
|
+
hidden_states=outputs.hidden_states,
|
117
|
+
attentions=outputs.attentions,
|
118
|
+
)
|
@@ -1048,6 +1048,60 @@ def apply_liger_kernel_to_qwen2(
|
|
1048
1048
|
print("Applied Liger kernels to Qwen2")
|
1049
1049
|
|
1050
1050
|
|
1051
|
+
def apply_liger_kernel_to_qwen3(
|
1052
|
+
rope: bool = True,
|
1053
|
+
cross_entropy: bool = False,
|
1054
|
+
fused_linear_cross_entropy: bool = True,
|
1055
|
+
rms_norm: bool = True,
|
1056
|
+
swiglu: bool = True,
|
1057
|
+
model: PreTrainedModel = None,
|
1058
|
+
) -> None:
|
1059
|
+
"""
|
1060
|
+
Apply Liger kernels to replace original implementation in HuggingFace Qwen3 models.
|
1061
|
+
"""
|
1062
|
+
assert not (cross_entropy and fused_linear_cross_entropy), (
|
1063
|
+
"cross_entropy and fused_linear_cross_entropy cannot both be True."
|
1064
|
+
)
|
1065
|
+
|
1066
|
+
from transformers.models.qwen3 import modeling_qwen3
|
1067
|
+
from transformers.models.qwen3.modeling_qwen3 import Qwen3Model
|
1068
|
+
|
1069
|
+
from liger_kernel.transformers.model.qwen3 import lce_forward as qwen3_lce_forward
|
1070
|
+
|
1071
|
+
if rope:
|
1072
|
+
modeling_qwen3.apply_rotary_pos_emb = liger_rotary_pos_emb
|
1073
|
+
|
1074
|
+
if rms_norm:
|
1075
|
+
modeling_qwen3.Qwen3RMSNorm = LigerRMSNorm
|
1076
|
+
|
1077
|
+
if cross_entropy:
|
1078
|
+
from transformers.loss.loss_utils import nn
|
1079
|
+
|
1080
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
1081
|
+
|
1082
|
+
if fused_linear_cross_entropy:
|
1083
|
+
modeling_qwen3.Qwen3ForCausalLM.forward = qwen3_lce_forward
|
1084
|
+
|
1085
|
+
if swiglu:
|
1086
|
+
modeling_qwen3.Qwen3MLP = LigerSwiGLUMLP
|
1087
|
+
|
1088
|
+
if model is not None:
|
1089
|
+
# The model instance already exists, so we need to additionally patch the
|
1090
|
+
# instance variables that reference already-instantiated modules
|
1091
|
+
|
1092
|
+
# get the base model from the model instance
|
1093
|
+
base_model: Qwen3Model = getattr(model, model.base_model_prefix, model)
|
1094
|
+
|
1095
|
+
if rms_norm:
|
1096
|
+
_patch_rms_norm_module(base_model.norm)
|
1097
|
+
for decoder_layer in base_model.layers:
|
1098
|
+
if swiglu:
|
1099
|
+
_patch_swiglu_module(decoder_layer.mlp, LigerSwiGLUMLP)
|
1100
|
+
if rms_norm:
|
1101
|
+
_patch_rms_norm_module(decoder_layer.input_layernorm)
|
1102
|
+
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
1103
|
+
|
1104
|
+
|
1051
1105
|
def apply_liger_kernel_to_qwen2_vl(
|
1052
1106
|
rope: bool = True,
|
1053
1107
|
cross_entropy: bool = False,
|
@@ -1400,6 +1454,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
1400
1454
|
"mixtral": apply_liger_kernel_to_mixtral,
|
1401
1455
|
"olmo2": apply_liger_kernel_to_olmo2,
|
1402
1456
|
"qwen2": apply_liger_kernel_to_qwen2,
|
1457
|
+
"qwen3": apply_liger_kernel_to_qwen3,
|
1403
1458
|
"qwen2_vl": apply_liger_kernel_to_qwen2_vl,
|
1404
1459
|
"qwen2_5_vl": apply_liger_kernel_to_qwen2_5_vl,
|
1405
1460
|
"phi3": apply_liger_kernel_to_phi3,
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: liger_kernel_nightly
|
3
|
-
Version: 0.5.8.
|
3
|
+
Version: 0.5.8.dev20250503025537
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
@@ -317,6 +317,7 @@ loss.backward()
|
|
317
317
|
| Qwen2, Qwen2.5, & QwQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
318
318
|
| Qwen2-VL, & QVQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
319
319
|
| Qwen2.5-VL | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_5_vl` | RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
320
|
+
| Qwen3 | `liger_kernel.transformers.apply_liger_kernel_to_qwen3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
320
321
|
| Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
321
322
|
| Granite 3.0 & 3.1 | `liger_kernel.transformers.apply_liger_kernel_to_granite` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
|
322
323
|
| OLMo2 | `liger_kernel.transformers.apply_liger_kernel_to_olmo2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
@@ -33,7 +33,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
|
|
33
33
|
liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
|
34
34
|
liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
|
35
35
|
liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
|
36
|
-
liger_kernel/transformers/__init__.py,sha256=
|
36
|
+
liger_kernel/transformers/__init__.py,sha256=x_3CYHJt-xj4va3N32kfwf000F-DNBtj-YE6OylDAW8,6774
|
37
37
|
liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
|
38
38
|
liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
|
39
39
|
liger_kernel/transformers/dyt.py,sha256=QMqqc14pkE0WhpRZvapfnNAun-6C0C_tHExL2ZJuCUA,648
|
@@ -46,7 +46,7 @@ liger_kernel/transformers/group_norm.py,sha256=6qMAWOprr4SzP0YhNVNGQIBpM5aUHplUD
|
|
46
46
|
liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
|
47
47
|
liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
|
48
48
|
liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
|
49
|
-
liger_kernel/transformers/monkey_patch.py,sha256=
|
49
|
+
liger_kernel/transformers/monkey_patch.py,sha256=8Q84xxWA7ltgqgGRBxKxPPNeG7k5HYQfgaw1-HFnKGM,69287
|
50
50
|
liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
|
51
51
|
liger_kernel/transformers/rms_norm.py,sha256=GqCEJuGt0YdqqlMcToE0Wp4A8YFquDa4UUSyH2uFW2A,1191
|
52
52
|
liger_kernel/transformers/rope.py,sha256=ZTrTORSAyfcFIKjk6XEeYmk4ROH7xXED9L4g2NFntlE,999
|
@@ -55,29 +55,30 @@ liger_kernel/transformers/trainer_integration.py,sha256=W3ON51O5GkyzNJsItz0y5rKx
|
|
55
55
|
liger_kernel/transformers/tvd.py,sha256=XrRfyJIqN6HFxXk8MYyFVZM1OLz3mtSbRZvWfZ_JerQ,450
|
56
56
|
liger_kernel/transformers/experimental/embedding.py,sha256=2P0QYdlFyFrG5OqTzTa1wcRgDSyjBMv5i1a7BrDPDQw,881
|
57
57
|
liger_kernel/transformers/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
58
|
-
liger_kernel/transformers/model/gemma.py,sha256=
|
59
|
-
liger_kernel/transformers/model/gemma2.py,sha256=
|
58
|
+
liger_kernel/transformers/model/gemma.py,sha256=nMUY2Iw7j6a-fOUqYBlfzIPznpKPKVa2DMBIZqCVfuI,10087
|
59
|
+
liger_kernel/transformers/model/gemma2.py,sha256=eulrUbh1DEMpMR6Lupx69kL-FeuRDP19mVoW1gc7keY,11194
|
60
60
|
liger_kernel/transformers/model/gemma3.py,sha256=wGSNqaLRRgIGQ_r9esyhDezm2SkAGZflopoWoWR-nYY,16226
|
61
|
-
liger_kernel/transformers/model/glm4.py,sha256=
|
62
|
-
liger_kernel/transformers/model/llama.py,sha256=
|
61
|
+
liger_kernel/transformers/model/glm4.py,sha256=rtyMTtzgh_ncZ7DsfNxRJoUUm7xlDMKGzNqlxXjdAJk,5452
|
62
|
+
liger_kernel/transformers/model/llama.py,sha256=F8cvDAlf4NeKESdGEFXs8m3ue2F8i0h3aV2LricMqoM,10764
|
63
63
|
liger_kernel/transformers/model/llava.py,sha256=b0pEagjUbu2-eS9xegjyfl1DwIXLwZcNpff55ibaMbA,17601
|
64
64
|
liger_kernel/transformers/model/loss_utils.py,sha256=WWAMdiONPaXpIvxyOim_0igLrYh0yyOok5Q9_L9xvZw,1787
|
65
|
-
liger_kernel/transformers/model/mistral.py,sha256=
|
66
|
-
liger_kernel/transformers/model/mixtral.py,sha256=
|
67
|
-
liger_kernel/transformers/model/mllama.py,sha256=
|
68
|
-
liger_kernel/transformers/model/olmo2.py,sha256=
|
65
|
+
liger_kernel/transformers/model/mistral.py,sha256=1AcwJT9WOIpHkpu4Njs35ZryiGyW8ygERYmGqLz2Z4o,5752
|
66
|
+
liger_kernel/transformers/model/mixtral.py,sha256=URMzPLU1akf1H4hHXalCyfbVGUldRx8_jqdrZfM7Y-w,11773
|
67
|
+
liger_kernel/transformers/model/mllama.py,sha256=v_ayi6m4sC6AVKTrrLHF4W5HVaL86AYQNBqdWuTTOTw,11579
|
68
|
+
liger_kernel/transformers/model/olmo2.py,sha256=Kb6sGPsQS970GsYmWoT0DC2DFiXQ9Yjyxr8FRnT_8tQ,5460
|
69
69
|
liger_kernel/transformers/model/paligemma.py,sha256=GNReT6tVZt3ON6aaa9ovg8mnu1hYocSx9OhgC7b-_28,19191
|
70
|
-
liger_kernel/transformers/model/phi3.py,sha256=
|
71
|
-
liger_kernel/transformers/model/qwen2.py,sha256=
|
70
|
+
liger_kernel/transformers/model/phi3.py,sha256=TSeHK8H0mnS2esJaZI3lxmo5X3-Uwtd_TsrgvJRkm3s,10726
|
71
|
+
liger_kernel/transformers/model/qwen2.py,sha256=bEusb6vrVbagtSUHyntpi9j0x79IrZ1NP8iA5GR5Ryw,10015
|
72
72
|
liger_kernel/transformers/model/qwen2_5_vl.py,sha256=oACIsTpg9_GdoSvekCyXLhJkuCpQEiFOTzKj7cjgi2E,9413
|
73
73
|
liger_kernel/transformers/model/qwen2_vl.py,sha256=F6DeQ65wPtcpeQJZ9a3SJZKkQ-e24SRLdYUgC-_jT-k,9809
|
74
|
+
liger_kernel/transformers/model/qwen3.py,sha256=JdIeh0fvDLdGs8nk4_eHrovHCNa09VG15D4aa0X0mwI,5084
|
74
75
|
liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7HHWHwku25A-GYL0WU,193
|
75
76
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=pdekW7l6Qg_aqa5SYKYlSWUF8m3lkOFvFLcIMEHrz9s,8338
|
76
77
|
liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
|
77
78
|
liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
|
78
|
-
liger_kernel_nightly-0.5.8.
|
79
|
-
liger_kernel_nightly-0.5.8.
|
80
|
-
liger_kernel_nightly-0.5.8.
|
81
|
-
liger_kernel_nightly-0.5.8.
|
82
|
-
liger_kernel_nightly-0.5.8.
|
83
|
-
liger_kernel_nightly-0.5.8.
|
79
|
+
liger_kernel_nightly-0.5.8.dev20250503025537.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
80
|
+
liger_kernel_nightly-0.5.8.dev20250503025537.dist-info/METADATA,sha256=nIidA4KqcZXAz3srfbo2J5AaIkIH2EHlNc3Q-M3dEQE,23584
|
81
|
+
liger_kernel_nightly-0.5.8.dev20250503025537.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
82
|
+
liger_kernel_nightly-0.5.8.dev20250503025537.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
|
83
|
+
liger_kernel_nightly-0.5.8.dev20250503025537.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
84
|
+
liger_kernel_nightly-0.5.8.dev20250503025537.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|