liger-kernel-nightly 0.5.8.dev20250502223102__py3-none-any.whl → 0.5.8.dev20250503021755__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/transformers/__init__.py +3 -0
- liger_kernel/transformers/model/qwen3.py +118 -0
- liger_kernel/transformers/monkey_patch.py +55 -0
- {liger_kernel_nightly-0.5.8.dev20250502223102.dist-info → liger_kernel_nightly-0.5.8.dev20250503021755.dist-info}/METADATA +2 -1
- {liger_kernel_nightly-0.5.8.dev20250502223102.dist-info → liger_kernel_nightly-0.5.8.dev20250503021755.dist-info}/RECORD +9 -8
- {liger_kernel_nightly-0.5.8.dev20250502223102.dist-info → liger_kernel_nightly-0.5.8.dev20250503021755.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.8.dev20250502223102.dist-info → liger_kernel_nightly-0.5.8.dev20250503021755.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.8.dev20250502223102.dist-info → liger_kernel_nightly-0.5.8.dev20250503021755.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.8.dev20250502223102.dist-info → liger_kernel_nightly-0.5.8.dev20250503021755.dist-info}/top_level.txt +0 -0
@@ -39,6 +39,7 @@ if TYPE_CHECKING:
|
|
39
39
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
|
40
40
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_5_vl # noqa: F401
|
41
41
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
|
42
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
|
42
43
|
|
43
44
|
|
44
45
|
# Check if 'transformers' is installed
|
@@ -93,6 +94,7 @@ def __getattr__(name: str):
|
|
93
94
|
"apply_liger_kernel_to_qwen2",
|
94
95
|
"apply_liger_kernel_to_qwen2_5_vl",
|
95
96
|
"apply_liger_kernel_to_qwen2_vl",
|
97
|
+
"apply_liger_kernel_to_qwen3",
|
96
98
|
}
|
97
99
|
|
98
100
|
if name in monkey_patch_symbols:
|
@@ -144,5 +146,6 @@ if _TRANSFORMERS_AVAILABLE:
|
|
144
146
|
"apply_liger_kernel_to_qwen2",
|
145
147
|
"apply_liger_kernel_to_qwen2_5_vl",
|
146
148
|
"apply_liger_kernel_to_qwen2_vl",
|
149
|
+
"apply_liger_kernel_to_qwen3",
|
147
150
|
]
|
148
151
|
)
|
@@ -0,0 +1,118 @@
|
|
1
|
+
from typing import List
|
2
|
+
from typing import Optional
|
3
|
+
from typing import Union
|
4
|
+
|
5
|
+
import torch
|
6
|
+
|
7
|
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
8
|
+
from transformers.models.qwen3.modeling_qwen3 import _CONFIG_FOR_DOC
|
9
|
+
from transformers.models.qwen3.modeling_qwen3 import QWEN3_INPUTS_DOCSTRING
|
10
|
+
from transformers.utils import add_start_docstrings_to_model_forward
|
11
|
+
from transformers.utils import replace_return_docstrings
|
12
|
+
|
13
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
14
|
+
|
15
|
+
|
16
|
+
@add_start_docstrings_to_model_forward(QWEN3_INPUTS_DOCSTRING)
|
17
|
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
18
|
+
def lce_forward(
|
19
|
+
self,
|
20
|
+
input_ids: Optional[torch.LongTensor] = None,
|
21
|
+
attention_mask: Optional[torch.Tensor] = None,
|
22
|
+
position_ids: Optional[torch.LongTensor] = None,
|
23
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
24
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
25
|
+
labels: Optional[torch.LongTensor] = None,
|
26
|
+
use_cache: Optional[bool] = None,
|
27
|
+
output_attentions: Optional[bool] = None,
|
28
|
+
output_hidden_states: Optional[bool] = None,
|
29
|
+
cache_position: Optional[torch.LongTensor] = None,
|
30
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
31
|
+
**kwargs,
|
32
|
+
) -> CausalLMOutputWithPast:
|
33
|
+
r"""
|
34
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
35
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
36
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
37
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
38
|
+
|
39
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
40
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
41
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
42
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
43
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
44
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
45
|
+
|
46
|
+
Returns:
|
47
|
+
|
48
|
+
Example:
|
49
|
+
|
50
|
+
```python
|
51
|
+
>>> from transformers import AutoTokenizer, Qwen3ForCausalLM
|
52
|
+
|
53
|
+
>>> model = Qwen3ForCausalLM.from_pretrained("Qwen/Qwen3-8B")
|
54
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
|
55
|
+
|
56
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
57
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
58
|
+
|
59
|
+
>>> # Generate
|
60
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
61
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
62
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
63
|
+
```"""
|
64
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
65
|
+
output_hidden_states = (
|
66
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
67
|
+
)
|
68
|
+
|
69
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
70
|
+
outputs = self.model(
|
71
|
+
input_ids=input_ids,
|
72
|
+
attention_mask=attention_mask,
|
73
|
+
position_ids=position_ids,
|
74
|
+
past_key_values=past_key_values,
|
75
|
+
inputs_embeds=inputs_embeds,
|
76
|
+
use_cache=use_cache,
|
77
|
+
output_attentions=output_attentions,
|
78
|
+
output_hidden_states=output_hidden_states,
|
79
|
+
cache_position=cache_position,
|
80
|
+
**kwargs,
|
81
|
+
)
|
82
|
+
|
83
|
+
hidden_states = outputs[0]
|
84
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
85
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
86
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
87
|
+
|
88
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
89
|
+
logits = None
|
90
|
+
loss = None
|
91
|
+
# if in training mode, don't materialize logits
|
92
|
+
if self.training and (labels is not None or shift_labels is not None):
|
93
|
+
loss = LigerForCausalLMLoss(
|
94
|
+
hidden_states=kept_hidden_states,
|
95
|
+
lm_head_weight=self.lm_head.weight,
|
96
|
+
labels=labels,
|
97
|
+
shift_labels=shift_labels,
|
98
|
+
hidden_size=self.config.hidden_size,
|
99
|
+
**kwargs,
|
100
|
+
)
|
101
|
+
|
102
|
+
else: # if in inference mode materialize logits
|
103
|
+
logits = self.lm_head(kept_hidden_states)
|
104
|
+
if labels is not None:
|
105
|
+
loss = self.loss_function(
|
106
|
+
logits=logits,
|
107
|
+
labels=labels,
|
108
|
+
vocab_size=self.config.vocab_size,
|
109
|
+
**kwargs,
|
110
|
+
)
|
111
|
+
|
112
|
+
return CausalLMOutputWithPast(
|
113
|
+
loss=loss,
|
114
|
+
logits=logits,
|
115
|
+
past_key_values=outputs.past_key_values,
|
116
|
+
hidden_states=outputs.hidden_states,
|
117
|
+
attentions=outputs.attentions,
|
118
|
+
)
|
@@ -1048,6 +1048,60 @@ def apply_liger_kernel_to_qwen2(
|
|
1048
1048
|
print("Applied Liger kernels to Qwen2")
|
1049
1049
|
|
1050
1050
|
|
1051
|
+
def apply_liger_kernel_to_qwen3(
|
1052
|
+
rope: bool = True,
|
1053
|
+
cross_entropy: bool = False,
|
1054
|
+
fused_linear_cross_entropy: bool = True,
|
1055
|
+
rms_norm: bool = True,
|
1056
|
+
swiglu: bool = True,
|
1057
|
+
model: PreTrainedModel = None,
|
1058
|
+
) -> None:
|
1059
|
+
"""
|
1060
|
+
Apply Liger kernels to replace original implementation in HuggingFace Qwen3 models.
|
1061
|
+
"""
|
1062
|
+
assert not (cross_entropy and fused_linear_cross_entropy), (
|
1063
|
+
"cross_entropy and fused_linear_cross_entropy cannot both be True."
|
1064
|
+
)
|
1065
|
+
|
1066
|
+
from transformers.models.qwen3 import modeling_qwen3
|
1067
|
+
from transformers.models.qwen3.modeling_qwen3 import Qwen3Model
|
1068
|
+
|
1069
|
+
from liger_kernel.transformers.model.qwen3 import lce_forward as qwen3_lce_forward
|
1070
|
+
|
1071
|
+
if rope:
|
1072
|
+
modeling_qwen3.apply_rotary_pos_emb = liger_rotary_pos_emb
|
1073
|
+
|
1074
|
+
if rms_norm:
|
1075
|
+
modeling_qwen3.Qwen3RMSNorm = LigerRMSNorm
|
1076
|
+
|
1077
|
+
if cross_entropy:
|
1078
|
+
from transformers.loss.loss_utils import nn
|
1079
|
+
|
1080
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
1081
|
+
|
1082
|
+
if fused_linear_cross_entropy:
|
1083
|
+
modeling_qwen3.Qwen3ForCausalLM.forward = qwen3_lce_forward
|
1084
|
+
|
1085
|
+
if swiglu:
|
1086
|
+
modeling_qwen3.Qwen3MLP = LigerSwiGLUMLP
|
1087
|
+
|
1088
|
+
if model is not None:
|
1089
|
+
# The model instance already exists, so we need to additionally patch the
|
1090
|
+
# instance variables that reference already-instantiated modules
|
1091
|
+
|
1092
|
+
# get the base model from the model instance
|
1093
|
+
base_model: Qwen3Model = getattr(model, model.base_model_prefix, model)
|
1094
|
+
|
1095
|
+
if rms_norm:
|
1096
|
+
_patch_rms_norm_module(base_model.norm)
|
1097
|
+
for decoder_layer in base_model.layers:
|
1098
|
+
if swiglu:
|
1099
|
+
_patch_swiglu_module(decoder_layer.mlp, LigerSwiGLUMLP)
|
1100
|
+
if rms_norm:
|
1101
|
+
_patch_rms_norm_module(decoder_layer.input_layernorm)
|
1102
|
+
_patch_rms_norm_module(decoder_layer.post_attention_layernorm)
|
1103
|
+
|
1104
|
+
|
1051
1105
|
def apply_liger_kernel_to_qwen2_vl(
|
1052
1106
|
rope: bool = True,
|
1053
1107
|
cross_entropy: bool = False,
|
@@ -1400,6 +1454,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
|
1400
1454
|
"mixtral": apply_liger_kernel_to_mixtral,
|
1401
1455
|
"olmo2": apply_liger_kernel_to_olmo2,
|
1402
1456
|
"qwen2": apply_liger_kernel_to_qwen2,
|
1457
|
+
"qwen3": apply_liger_kernel_to_qwen3,
|
1403
1458
|
"qwen2_vl": apply_liger_kernel_to_qwen2_vl,
|
1404
1459
|
"qwen2_5_vl": apply_liger_kernel_to_qwen2_5_vl,
|
1405
1460
|
"phi3": apply_liger_kernel_to_phi3,
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: liger_kernel_nightly
|
3
|
-
Version: 0.5.8.
|
3
|
+
Version: 0.5.8.dev20250503021755
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
@@ -317,6 +317,7 @@ loss.backward()
|
|
317
317
|
| Qwen2, Qwen2.5, & QwQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
318
318
|
| Qwen2-VL, & QVQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
319
319
|
| Qwen2.5-VL | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_5_vl` | RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
320
|
+
| Qwen3 | `liger_kernel.transformers.apply_liger_kernel_to_qwen3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
320
321
|
| Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
321
322
|
| Granite 3.0 & 3.1 | `liger_kernel.transformers.apply_liger_kernel_to_granite` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
|
322
323
|
| OLMo2 | `liger_kernel.transformers.apply_liger_kernel_to_olmo2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
@@ -33,7 +33,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
|
|
33
33
|
liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
|
34
34
|
liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
|
35
35
|
liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
|
36
|
-
liger_kernel/transformers/__init__.py,sha256=
|
36
|
+
liger_kernel/transformers/__init__.py,sha256=x_3CYHJt-xj4va3N32kfwf000F-DNBtj-YE6OylDAW8,6774
|
37
37
|
liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
|
38
38
|
liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
|
39
39
|
liger_kernel/transformers/dyt.py,sha256=QMqqc14pkE0WhpRZvapfnNAun-6C0C_tHExL2ZJuCUA,648
|
@@ -46,7 +46,7 @@ liger_kernel/transformers/group_norm.py,sha256=6qMAWOprr4SzP0YhNVNGQIBpM5aUHplUD
|
|
46
46
|
liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
|
47
47
|
liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
|
48
48
|
liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
|
49
|
-
liger_kernel/transformers/monkey_patch.py,sha256=
|
49
|
+
liger_kernel/transformers/monkey_patch.py,sha256=8Q84xxWA7ltgqgGRBxKxPPNeG7k5HYQfgaw1-HFnKGM,69287
|
50
50
|
liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
|
51
51
|
liger_kernel/transformers/rms_norm.py,sha256=GqCEJuGt0YdqqlMcToE0Wp4A8YFquDa4UUSyH2uFW2A,1191
|
52
52
|
liger_kernel/transformers/rope.py,sha256=ZTrTORSAyfcFIKjk6XEeYmk4ROH7xXED9L4g2NFntlE,999
|
@@ -71,13 +71,14 @@ liger_kernel/transformers/model/phi3.py,sha256=vDSCW-e72-GV_Ip0_c1bmXBvfoqQ1EXlH
|
|
71
71
|
liger_kernel/transformers/model/qwen2.py,sha256=RSdIDKqiTIyffevOD6aclbwqS9Vrmt0ibIIZfr1bnfY,9868
|
72
72
|
liger_kernel/transformers/model/qwen2_5_vl.py,sha256=oACIsTpg9_GdoSvekCyXLhJkuCpQEiFOTzKj7cjgi2E,9413
|
73
73
|
liger_kernel/transformers/model/qwen2_vl.py,sha256=F6DeQ65wPtcpeQJZ9a3SJZKkQ-e24SRLdYUgC-_jT-k,9809
|
74
|
+
liger_kernel/transformers/model/qwen3.py,sha256=JdIeh0fvDLdGs8nk4_eHrovHCNa09VG15D4aa0X0mwI,5084
|
74
75
|
liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7HHWHwku25A-GYL0WU,193
|
75
76
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=pdekW7l6Qg_aqa5SYKYlSWUF8m3lkOFvFLcIMEHrz9s,8338
|
76
77
|
liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
|
77
78
|
liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
|
78
|
-
liger_kernel_nightly-0.5.8.
|
79
|
-
liger_kernel_nightly-0.5.8.
|
80
|
-
liger_kernel_nightly-0.5.8.
|
81
|
-
liger_kernel_nightly-0.5.8.
|
82
|
-
liger_kernel_nightly-0.5.8.
|
83
|
-
liger_kernel_nightly-0.5.8.
|
79
|
+
liger_kernel_nightly-0.5.8.dev20250503021755.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
80
|
+
liger_kernel_nightly-0.5.8.dev20250503021755.dist-info/METADATA,sha256=e4t7HnltZHkNVOcKPzvofef8W65TgIm4k87-ejVdhTo,23584
|
81
|
+
liger_kernel_nightly-0.5.8.dev20250503021755.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
82
|
+
liger_kernel_nightly-0.5.8.dev20250503021755.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
|
83
|
+
liger_kernel_nightly-0.5.8.dev20250503021755.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
84
|
+
liger_kernel_nightly-0.5.8.dev20250503021755.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|