liger-kernel-nightly 0.5.8.dev20250502215739__py3-none-any.whl → 0.5.8.dev20250503021755__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -39,6 +39,7 @@ if TYPE_CHECKING:
39
39
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
40
40
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_5_vl # noqa: F401
41
41
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
42
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
42
43
 
43
44
 
44
45
  # Check if 'transformers' is installed
@@ -93,6 +94,7 @@ def __getattr__(name: str):
93
94
  "apply_liger_kernel_to_qwen2",
94
95
  "apply_liger_kernel_to_qwen2_5_vl",
95
96
  "apply_liger_kernel_to_qwen2_vl",
97
+ "apply_liger_kernel_to_qwen3",
96
98
  }
97
99
 
98
100
  if name in monkey_patch_symbols:
@@ -144,5 +146,6 @@ if _TRANSFORMERS_AVAILABLE:
144
146
  "apply_liger_kernel_to_qwen2",
145
147
  "apply_liger_kernel_to_qwen2_5_vl",
146
148
  "apply_liger_kernel_to_qwen2_vl",
149
+ "apply_liger_kernel_to_qwen3",
147
150
  ]
148
151
  )
@@ -0,0 +1,118 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ from transformers.modeling_outputs import CausalLMOutputWithPast
8
+ from transformers.models.qwen3.modeling_qwen3 import _CONFIG_FOR_DOC
9
+ from transformers.models.qwen3.modeling_qwen3 import QWEN3_INPUTS_DOCSTRING
10
+ from transformers.utils import add_start_docstrings_to_model_forward
11
+ from transformers.utils import replace_return_docstrings
12
+
13
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
14
+
15
+
16
+ @add_start_docstrings_to_model_forward(QWEN3_INPUTS_DOCSTRING)
17
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
18
+ def lce_forward(
19
+ self,
20
+ input_ids: Optional[torch.LongTensor] = None,
21
+ attention_mask: Optional[torch.Tensor] = None,
22
+ position_ids: Optional[torch.LongTensor] = None,
23
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
24
+ inputs_embeds: Optional[torch.FloatTensor] = None,
25
+ labels: Optional[torch.LongTensor] = None,
26
+ use_cache: Optional[bool] = None,
27
+ output_attentions: Optional[bool] = None,
28
+ output_hidden_states: Optional[bool] = None,
29
+ cache_position: Optional[torch.LongTensor] = None,
30
+ logits_to_keep: Union[int, torch.Tensor] = 0,
31
+ **kwargs,
32
+ ) -> CausalLMOutputWithPast:
33
+ r"""
34
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
35
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
36
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
37
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
38
+
39
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
40
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
41
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
42
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
43
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
44
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
45
+
46
+ Returns:
47
+
48
+ Example:
49
+
50
+ ```python
51
+ >>> from transformers import AutoTokenizer, Qwen3ForCausalLM
52
+
53
+ >>> model = Qwen3ForCausalLM.from_pretrained("Qwen/Qwen3-8B")
54
+ >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
55
+
56
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
57
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
58
+
59
+ >>> # Generate
60
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
61
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
62
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
63
+ ```"""
64
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
65
+ output_hidden_states = (
66
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
67
+ )
68
+
69
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
70
+ outputs = self.model(
71
+ input_ids=input_ids,
72
+ attention_mask=attention_mask,
73
+ position_ids=position_ids,
74
+ past_key_values=past_key_values,
75
+ inputs_embeds=inputs_embeds,
76
+ use_cache=use_cache,
77
+ output_attentions=output_attentions,
78
+ output_hidden_states=output_hidden_states,
79
+ cache_position=cache_position,
80
+ **kwargs,
81
+ )
82
+
83
+ hidden_states = outputs[0]
84
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
85
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
86
+ kept_hidden_states = hidden_states[:, slice_indices, :]
87
+
88
+ shift_labels = kwargs.pop("shift_labels", None)
89
+ logits = None
90
+ loss = None
91
+ # if in training mode, don't materialize logits
92
+ if self.training and (labels is not None or shift_labels is not None):
93
+ loss = LigerForCausalLMLoss(
94
+ hidden_states=kept_hidden_states,
95
+ lm_head_weight=self.lm_head.weight,
96
+ labels=labels,
97
+ shift_labels=shift_labels,
98
+ hidden_size=self.config.hidden_size,
99
+ **kwargs,
100
+ )
101
+
102
+ else: # if in inference mode materialize logits
103
+ logits = self.lm_head(kept_hidden_states)
104
+ if labels is not None:
105
+ loss = self.loss_function(
106
+ logits=logits,
107
+ labels=labels,
108
+ vocab_size=self.config.vocab_size,
109
+ **kwargs,
110
+ )
111
+
112
+ return CausalLMOutputWithPast(
113
+ loss=loss,
114
+ logits=logits,
115
+ past_key_values=outputs.past_key_values,
116
+ hidden_states=outputs.hidden_states,
117
+ attentions=outputs.attentions,
118
+ )
@@ -17,7 +17,6 @@ from liger_kernel.transformers.model.gemma import lce_forward as gemma_lce_forwa
17
17
  from liger_kernel.transformers.model.gemma import lce_forward_deprecated as gemma_lce_forward_deprecated
18
18
  from liger_kernel.transformers.model.gemma2 import lce_forward as gemma2_lce_forward
19
19
  from liger_kernel.transformers.model.gemma2 import lce_forward_deprecated as gemma2_lce_forward_deprected
20
- from liger_kernel.transformers.model.glm4 import lce_forward as glm4_lce_forward
21
20
  from liger_kernel.transformers.model.llama import lce_forward as llama_lce_forward
22
21
  from liger_kernel.transformers.model.llama import lce_forward_deprecated as llama_lce_forward_deprecated
23
22
  from liger_kernel.transformers.model.llava import lce_forward as llava_lce_forward
@@ -1049,6 +1048,60 @@ def apply_liger_kernel_to_qwen2(
1049
1048
  print("Applied Liger kernels to Qwen2")
1050
1049
 
1051
1050
 
1051
+ def apply_liger_kernel_to_qwen3(
1052
+ rope: bool = True,
1053
+ cross_entropy: bool = False,
1054
+ fused_linear_cross_entropy: bool = True,
1055
+ rms_norm: bool = True,
1056
+ swiglu: bool = True,
1057
+ model: PreTrainedModel = None,
1058
+ ) -> None:
1059
+ """
1060
+ Apply Liger kernels to replace original implementation in HuggingFace Qwen3 models.
1061
+ """
1062
+ assert not (cross_entropy and fused_linear_cross_entropy), (
1063
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
1064
+ )
1065
+
1066
+ from transformers.models.qwen3 import modeling_qwen3
1067
+ from transformers.models.qwen3.modeling_qwen3 import Qwen3Model
1068
+
1069
+ from liger_kernel.transformers.model.qwen3 import lce_forward as qwen3_lce_forward
1070
+
1071
+ if rope:
1072
+ modeling_qwen3.apply_rotary_pos_emb = liger_rotary_pos_emb
1073
+
1074
+ if rms_norm:
1075
+ modeling_qwen3.Qwen3RMSNorm = LigerRMSNorm
1076
+
1077
+ if cross_entropy:
1078
+ from transformers.loss.loss_utils import nn
1079
+
1080
+ nn.functional.cross_entropy = liger_cross_entropy
1081
+
1082
+ if fused_linear_cross_entropy:
1083
+ modeling_qwen3.Qwen3ForCausalLM.forward = qwen3_lce_forward
1084
+
1085
+ if swiglu:
1086
+ modeling_qwen3.Qwen3MLP = LigerSwiGLUMLP
1087
+
1088
+ if model is not None:
1089
+ # The model instance already exists, so we need to additionally patch the
1090
+ # instance variables that reference already-instantiated modules
1091
+
1092
+ # get the base model from the model instance
1093
+ base_model: Qwen3Model = getattr(model, model.base_model_prefix, model)
1094
+
1095
+ if rms_norm:
1096
+ _patch_rms_norm_module(base_model.norm)
1097
+ for decoder_layer in base_model.layers:
1098
+ if swiglu:
1099
+ _patch_swiglu_module(decoder_layer.mlp, LigerSwiGLUMLP)
1100
+ if rms_norm:
1101
+ _patch_rms_norm_module(decoder_layer.input_layernorm)
1102
+ _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
1103
+
1104
+
1052
1105
  def apply_liger_kernel_to_qwen2_vl(
1053
1106
  rope: bool = True,
1054
1107
  cross_entropy: bool = False,
@@ -1350,6 +1403,8 @@ def apply_liger_kernel_to_glm4(
1350
1403
  from transformers.models.glm4 import modeling_glm4
1351
1404
  from transformers.models.glm4.modeling_glm4 import Glm4Model
1352
1405
 
1406
+ from liger_kernel.transformers.model.glm4 import lce_forward as glm4_lce_forward
1407
+
1353
1408
  if rope:
1354
1409
  raise NotImplementedError("liger_rotary_pos_emb is not available for Glm4 models.")
1355
1410
  if rms_norm:
@@ -1399,6 +1454,7 @@ MODEL_TYPE_TO_APPLY_LIGER_FN = {
1399
1454
  "mixtral": apply_liger_kernel_to_mixtral,
1400
1455
  "olmo2": apply_liger_kernel_to_olmo2,
1401
1456
  "qwen2": apply_liger_kernel_to_qwen2,
1457
+ "qwen3": apply_liger_kernel_to_qwen3,
1402
1458
  "qwen2_vl": apply_liger_kernel_to_qwen2_vl,
1403
1459
  "qwen2_5_vl": apply_liger_kernel_to_qwen2_5_vl,
1404
1460
  "phi3": apply_liger_kernel_to_phi3,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.5.8.dev20250502215739
3
+ Version: 0.5.8.dev20250503021755
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -317,6 +317,7 @@ loss.backward()
317
317
  | Qwen2, Qwen2.5, & QwQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
318
318
  | Qwen2-VL, & QVQ | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
319
319
  | Qwen2.5-VL | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_5_vl` | RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
320
+ | Qwen3 | `liger_kernel.transformers.apply_liger_kernel_to_qwen3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
320
321
  | Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
321
322
  | Granite 3.0 & 3.1 | `liger_kernel.transformers.apply_liger_kernel_to_granite` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
322
323
  | OLMo2 | `liger_kernel.transformers.apply_liger_kernel_to_olmo2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
@@ -33,7 +33,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
33
33
  liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
34
34
  liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
35
35
  liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
36
- liger_kernel/transformers/__init__.py,sha256=sLAZ_8IxBuim06ZW96OzH1wSsOl5uXvD_OIW6vqOQUQ,6595
36
+ liger_kernel/transformers/__init__.py,sha256=x_3CYHJt-xj4va3N32kfwf000F-DNBtj-YE6OylDAW8,6774
37
37
  liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
38
38
  liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
39
39
  liger_kernel/transformers/dyt.py,sha256=QMqqc14pkE0WhpRZvapfnNAun-6C0C_tHExL2ZJuCUA,648
@@ -46,7 +46,7 @@ liger_kernel/transformers/group_norm.py,sha256=6qMAWOprr4SzP0YhNVNGQIBpM5aUHplUD
46
46
  liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
47
47
  liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
48
48
  liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
49
- liger_kernel/transformers/monkey_patch.py,sha256=G_6NyTO4jOV2lKuu8zhrjIf0L-QFuNw_T3dmukqyyzk,67381
49
+ liger_kernel/transformers/monkey_patch.py,sha256=8Q84xxWA7ltgqgGRBxKxPPNeG7k5HYQfgaw1-HFnKGM,69287
50
50
  liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
51
51
  liger_kernel/transformers/rms_norm.py,sha256=GqCEJuGt0YdqqlMcToE0Wp4A8YFquDa4UUSyH2uFW2A,1191
52
52
  liger_kernel/transformers/rope.py,sha256=ZTrTORSAyfcFIKjk6XEeYmk4ROH7xXED9L4g2NFntlE,999
@@ -71,13 +71,14 @@ liger_kernel/transformers/model/phi3.py,sha256=vDSCW-e72-GV_Ip0_c1bmXBvfoqQ1EXlH
71
71
  liger_kernel/transformers/model/qwen2.py,sha256=RSdIDKqiTIyffevOD6aclbwqS9Vrmt0ibIIZfr1bnfY,9868
72
72
  liger_kernel/transformers/model/qwen2_5_vl.py,sha256=oACIsTpg9_GdoSvekCyXLhJkuCpQEiFOTzKj7cjgi2E,9413
73
73
  liger_kernel/transformers/model/qwen2_vl.py,sha256=F6DeQ65wPtcpeQJZ9a3SJZKkQ-e24SRLdYUgC-_jT-k,9809
74
+ liger_kernel/transformers/model/qwen3.py,sha256=JdIeh0fvDLdGs8nk4_eHrovHCNa09VG15D4aa0X0mwI,5084
74
75
  liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7HHWHwku25A-GYL0WU,193
75
76
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=pdekW7l6Qg_aqa5SYKYlSWUF8m3lkOFvFLcIMEHrz9s,8338
76
77
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
77
78
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
78
- liger_kernel_nightly-0.5.8.dev20250502215739.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
79
- liger_kernel_nightly-0.5.8.dev20250502215739.dist-info/METADATA,sha256=WqdvDSWKWaKeFufQ8JrHxF31aTisXKM6eYgwewUFpik,23437
80
- liger_kernel_nightly-0.5.8.dev20250502215739.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
81
- liger_kernel_nightly-0.5.8.dev20250502215739.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
82
- liger_kernel_nightly-0.5.8.dev20250502215739.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
83
- liger_kernel_nightly-0.5.8.dev20250502215739.dist-info/RECORD,,
79
+ liger_kernel_nightly-0.5.8.dev20250503021755.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
80
+ liger_kernel_nightly-0.5.8.dev20250503021755.dist-info/METADATA,sha256=e4t7HnltZHkNVOcKPzvofef8W65TgIm4k87-ejVdhTo,23584
81
+ liger_kernel_nightly-0.5.8.dev20250503021755.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
82
+ liger_kernel_nightly-0.5.8.dev20250503021755.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
83
+ liger_kernel_nightly-0.5.8.dev20250503021755.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
84
+ liger_kernel_nightly-0.5.8.dev20250503021755.dist-info/RECORD,,