liger-kernel-nightly 0.5.8.dev20250429233059__py3-none-any.whl → 0.5.8.dev20250502215739__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/transformers/__init__.py +3 -0
- liger_kernel/transformers/model/glm4.py +123 -0
- liger_kernel/transformers/monkey_patch.py +65 -0
- {liger_kernel_nightly-0.5.8.dev20250429233059.dist-info → liger_kernel_nightly-0.5.8.dev20250502215739.dist-info}/METADATA +2 -1
- {liger_kernel_nightly-0.5.8.dev20250429233059.dist-info → liger_kernel_nightly-0.5.8.dev20250502215739.dist-info}/RECORD +9 -8
- {liger_kernel_nightly-0.5.8.dev20250429233059.dist-info → liger_kernel_nightly-0.5.8.dev20250502215739.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.8.dev20250429233059.dist-info → liger_kernel_nightly-0.5.8.dev20250502215739.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.8.dev20250429233059.dist-info → liger_kernel_nightly-0.5.8.dev20250502215739.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.8.dev20250429233059.dist-info → liger_kernel_nightly-0.5.8.dev20250502215739.dist-info}/top_level.txt +0 -0
@@ -26,6 +26,7 @@ if TYPE_CHECKING:
|
|
26
26
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma2 # noqa: F401
|
27
27
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3 # noqa: F401
|
28
28
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3_text # noqa: F401
|
29
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
|
29
30
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
|
30
31
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
|
31
32
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
|
@@ -79,6 +80,7 @@ def __getattr__(name: str):
|
|
79
80
|
"apply_liger_kernel_to_gemma2",
|
80
81
|
"apply_liger_kernel_to_gemma3",
|
81
82
|
"apply_liger_kernel_to_gemma3_text",
|
83
|
+
"apply_liger_kernel_to_glm4",
|
82
84
|
"apply_liger_kernel_to_granite",
|
83
85
|
"apply_liger_kernel_to_llama",
|
84
86
|
"apply_liger_kernel_to_llava",
|
@@ -129,6 +131,7 @@ if _TRANSFORMERS_AVAILABLE:
|
|
129
131
|
"apply_liger_kernel_to_gemma2",
|
130
132
|
"apply_liger_kernel_to_gemma3",
|
131
133
|
"apply_liger_kernel_to_gemma3_text",
|
134
|
+
"apply_liger_kernel_to_glm4",
|
132
135
|
"apply_liger_kernel_to_granite",
|
133
136
|
"apply_liger_kernel_to_llama",
|
134
137
|
"apply_liger_kernel_to_llava",
|
@@ -0,0 +1,123 @@
|
|
1
|
+
from typing import List
|
2
|
+
from typing import Optional
|
3
|
+
from typing import Tuple
|
4
|
+
from typing import Union
|
5
|
+
|
6
|
+
import torch
|
7
|
+
|
8
|
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
9
|
+
from transformers.models.glm4.modeling_glm4 import _CONFIG_FOR_DOC
|
10
|
+
from transformers.models.glm4.modeling_glm4 import GLM4_INPUTS_DOCSTRING
|
11
|
+
from transformers.utils import add_start_docstrings_to_model_forward
|
12
|
+
from transformers.utils import replace_return_docstrings
|
13
|
+
from transformers.utils.deprecation import deprecate_kwarg
|
14
|
+
|
15
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
16
|
+
|
17
|
+
|
18
|
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
19
|
+
@add_start_docstrings_to_model_forward(GLM4_INPUTS_DOCSTRING)
|
20
|
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
21
|
+
def lce_forward(
|
22
|
+
self,
|
23
|
+
input_ids: torch.LongTensor = None,
|
24
|
+
attention_mask: Optional[torch.Tensor] = None,
|
25
|
+
position_ids: Optional[torch.LongTensor] = None,
|
26
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
27
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
28
|
+
labels: Optional[torch.LongTensor] = None,
|
29
|
+
use_cache: Optional[bool] = None,
|
30
|
+
output_attentions: Optional[bool] = None,
|
31
|
+
output_hidden_states: Optional[bool] = None,
|
32
|
+
return_dict: Optional[bool] = None,
|
33
|
+
cache_position: Optional[torch.LongTensor] = None,
|
34
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
35
|
+
**loss_kwargs,
|
36
|
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
37
|
+
r"""
|
38
|
+
Args:
|
39
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
40
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
41
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
42
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
43
|
+
|
44
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
45
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
46
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
47
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
48
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
49
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
50
|
+
|
51
|
+
Returns:
|
52
|
+
|
53
|
+
Example:
|
54
|
+
|
55
|
+
```python
|
56
|
+
>>> from transformers import AutoTokenizer, Glm4ForCausalLM
|
57
|
+
|
58
|
+
>>> model = Glm4ForCausalLM.from_pretrained("THUDM/GLM-4-9B-0414")
|
59
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/GLM-4-9B-0414")
|
60
|
+
|
61
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
62
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
63
|
+
|
64
|
+
>>> # Generate
|
65
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
66
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
67
|
+
'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'
|
68
|
+
```
|
69
|
+
"""
|
70
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
71
|
+
output_hidden_states = (
|
72
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
73
|
+
)
|
74
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
75
|
+
|
76
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
77
|
+
outputs = self.model(
|
78
|
+
input_ids=input_ids,
|
79
|
+
attention_mask=attention_mask,
|
80
|
+
position_ids=position_ids,
|
81
|
+
past_key_values=past_key_values,
|
82
|
+
inputs_embeds=inputs_embeds,
|
83
|
+
use_cache=use_cache,
|
84
|
+
output_attentions=output_attentions,
|
85
|
+
output_hidden_states=output_hidden_states,
|
86
|
+
return_dict=return_dict,
|
87
|
+
cache_position=cache_position,
|
88
|
+
)
|
89
|
+
|
90
|
+
hidden_states = outputs[0]
|
91
|
+
|
92
|
+
shift_labels = loss_kwargs.pop("shift_labels", None)
|
93
|
+
logits = None
|
94
|
+
loss = None
|
95
|
+
# if in training mode, don't materialize logits
|
96
|
+
if self.training and (labels is not None or shift_labels is not None):
|
97
|
+
loss = LigerForCausalLMLoss(
|
98
|
+
hidden_states=hidden_states,
|
99
|
+
lm_head_weight=self.lm_head.weight,
|
100
|
+
labels=labels,
|
101
|
+
shift_labels=shift_labels,
|
102
|
+
hidden_size=self.config.hidden_size,
|
103
|
+
**loss_kwargs,
|
104
|
+
)
|
105
|
+
|
106
|
+
else: # if in inference mode materialize logits
|
107
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
108
|
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
109
|
+
if labels is not None:
|
110
|
+
loss = self.loss_function(
|
111
|
+
logits=logits,
|
112
|
+
labels=labels,
|
113
|
+
vocab_size=self.config.vocab_size,
|
114
|
+
**loss_kwargs,
|
115
|
+
)
|
116
|
+
|
117
|
+
return CausalLMOutputWithPast(
|
118
|
+
loss=loss,
|
119
|
+
logits=logits,
|
120
|
+
past_key_values=outputs.past_key_values,
|
121
|
+
hidden_states=outputs.hidden_states,
|
122
|
+
attentions=outputs.attentions,
|
123
|
+
)
|
@@ -17,6 +17,7 @@ from liger_kernel.transformers.model.gemma import lce_forward as gemma_lce_forwa
|
|
17
17
|
from liger_kernel.transformers.model.gemma import lce_forward_deprecated as gemma_lce_forward_deprecated
|
18
18
|
from liger_kernel.transformers.model.gemma2 import lce_forward as gemma2_lce_forward
|
19
19
|
from liger_kernel.transformers.model.gemma2 import lce_forward_deprecated as gemma2_lce_forward_deprected
|
20
|
+
from liger_kernel.transformers.model.glm4 import lce_forward as glm4_lce_forward
|
20
21
|
from liger_kernel.transformers.model.llama import lce_forward as llama_lce_forward
|
21
22
|
from liger_kernel.transformers.model.llama import lce_forward_deprecated as llama_lce_forward_deprecated
|
22
23
|
from liger_kernel.transformers.model.llava import lce_forward as llava_lce_forward
|
@@ -1319,12 +1320,76 @@ def apply_liger_kernel_to_olmo2(
|
|
1319
1320
|
_patch_rms_norm_module(decoder_layer.post_feedforward_layernorm, in_place=False)
|
1320
1321
|
|
1321
1322
|
|
1323
|
+
def apply_liger_kernel_to_glm4(
|
1324
|
+
rope: bool = False,
|
1325
|
+
cross_entropy: bool = False,
|
1326
|
+
fused_linear_cross_entropy: bool = True,
|
1327
|
+
rms_norm: bool = True,
|
1328
|
+
swiglu: bool = True,
|
1329
|
+
model: PreTrainedModel = None,
|
1330
|
+
) -> None:
|
1331
|
+
"""
|
1332
|
+
Apply Liger kernels to replace original implementation in HuggingFace GLM-4 models.
|
1333
|
+
|
1334
|
+
Args:
|
1335
|
+
rope (bool): Whether to apply Liger's rotary position embedding. Default is False.
|
1336
|
+
cross_entropy (bool): Whether to apply Liger's cross entropy loss. Default is False.
|
1337
|
+
fused_linear_cross_entropy (bool):
|
1338
|
+
Whether to apply Liger's fused linear cross entropy loss. Default is True.
|
1339
|
+
`cross_entropy` and `fused_linear_cross_entropy` cannot both be True.
|
1340
|
+
If `fused_linear_cross_entropy` is True, the logits will not be materialized but more memory efficient.
|
1341
|
+
rms_norm (bool): Whether to apply Liger's RMSNorm. Default is True.
|
1342
|
+
swiglu (bool): Whether to apply Liger's SwiGLU Glm4MLP. Default is True.
|
1343
|
+
model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
|
1344
|
+
loaded. Default is None.
|
1345
|
+
"""
|
1346
|
+
assert not (cross_entropy and fused_linear_cross_entropy), (
|
1347
|
+
"cross_entropy and fused_linear_cross_entropy cannot both be True."
|
1348
|
+
)
|
1349
|
+
|
1350
|
+
from transformers.models.glm4 import modeling_glm4
|
1351
|
+
from transformers.models.glm4.modeling_glm4 import Glm4Model
|
1352
|
+
|
1353
|
+
if rope:
|
1354
|
+
raise NotImplementedError("liger_rotary_pos_emb is not available for Glm4 models.")
|
1355
|
+
if rms_norm:
|
1356
|
+
modeling_glm4.Glm4RMSNorm = partial(LigerRMSNorm, in_place=False)
|
1357
|
+
if swiglu:
|
1358
|
+
modeling_glm4.Glm4MLP = LigerPhi3SwiGLUMLP
|
1359
|
+
if cross_entropy:
|
1360
|
+
from transformers.loss.loss_utils import nn
|
1361
|
+
|
1362
|
+
nn.functional.cross_entropy = liger_cross_entropy
|
1363
|
+
if fused_linear_cross_entropy:
|
1364
|
+
modeling_glm4.Glm4ForCausalLM.forward = glm4_lce_forward
|
1365
|
+
|
1366
|
+
if model is not None:
|
1367
|
+
# The model instance already exists, so we need to additionally patch the
|
1368
|
+
# instance variables that reference already-instantiated modules
|
1369
|
+
|
1370
|
+
# get the base model from the model instance
|
1371
|
+
base_model: Glm4Model = getattr(model, model.base_model_prefix, model)
|
1372
|
+
|
1373
|
+
if rms_norm:
|
1374
|
+
_patch_rms_norm_module(base_model.norm, in_place=False)
|
1375
|
+
|
1376
|
+
for decoder_layer in base_model.layers:
|
1377
|
+
if swiglu:
|
1378
|
+
_patch_swiglu_module(decoder_layer.mlp, LigerPhi3SwiGLUMLP)
|
1379
|
+
if rms_norm:
|
1380
|
+
_patch_rms_norm_module(decoder_layer.input_layernorm, in_place=False)
|
1381
|
+
_patch_rms_norm_module(decoder_layer.post_attention_layernorm, in_place=False)
|
1382
|
+
_patch_rms_norm_module(decoder_layer.post_self_attn_layernorm, in_place=False)
|
1383
|
+
_patch_rms_norm_module(decoder_layer.post_mlp_layernorm, in_place=False)
|
1384
|
+
|
1385
|
+
|
1322
1386
|
# Model type corresponds to the keys defined in transformers/models/auto/modeling_auto.py
|
1323
1387
|
MODEL_TYPE_TO_APPLY_LIGER_FN = {
|
1324
1388
|
"gemma": apply_liger_kernel_to_gemma,
|
1325
1389
|
"gemma2": apply_liger_kernel_to_gemma2,
|
1326
1390
|
"gemma3_text": apply_liger_kernel_to_gemma3_text,
|
1327
1391
|
"gemma3": apply_liger_kernel_to_gemma3,
|
1392
|
+
"glm4": apply_liger_kernel_to_glm4,
|
1328
1393
|
"llama": apply_liger_kernel_to_llama,
|
1329
1394
|
"llava": apply_liger_kernel_to_llava,
|
1330
1395
|
"granite": apply_liger_kernel_to_granite,
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: liger_kernel_nightly
|
3
|
-
Version: 0.5.8.
|
3
|
+
Version: 0.5.8.dev20250502215739
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
@@ -320,6 +320,7 @@ loss.backward()
|
|
320
320
|
| Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
321
321
|
| Granite 3.0 & 3.1 | `liger_kernel.transformers.apply_liger_kernel_to_granite` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss |
|
322
322
|
| OLMo2 | `liger_kernel.transformers.apply_liger_kernel_to_olmo2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
323
|
+
| GLM-4 | `liger_kernel.transformers.apply_liger_kernel_to_glm4` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy |
|
323
324
|
|
324
325
|
|
325
326
|
## Low-level APIs
|
@@ -33,7 +33,7 @@ liger_kernel/ops/tvd.py,sha256=FHJtLQI95ijqgg9UtaHpMAjSCiPxB6CduPwPMcGxelc,6405
|
|
33
33
|
liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
|
34
34
|
liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
|
35
35
|
liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
|
36
|
-
liger_kernel/transformers/__init__.py,sha256=
|
36
|
+
liger_kernel/transformers/__init__.py,sha256=sLAZ_8IxBuim06ZW96OzH1wSsOl5uXvD_OIW6vqOQUQ,6595
|
37
37
|
liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
|
38
38
|
liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
|
39
39
|
liger_kernel/transformers/dyt.py,sha256=QMqqc14pkE0WhpRZvapfnNAun-6C0C_tHExL2ZJuCUA,648
|
@@ -46,7 +46,7 @@ liger_kernel/transformers/group_norm.py,sha256=6qMAWOprr4SzP0YhNVNGQIBpM5aUHplUD
|
|
46
46
|
liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
|
47
47
|
liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
|
48
48
|
liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
|
49
|
-
liger_kernel/transformers/monkey_patch.py,sha256=
|
49
|
+
liger_kernel/transformers/monkey_patch.py,sha256=G_6NyTO4jOV2lKuu8zhrjIf0L-QFuNw_T3dmukqyyzk,67381
|
50
50
|
liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
|
51
51
|
liger_kernel/transformers/rms_norm.py,sha256=GqCEJuGt0YdqqlMcToE0Wp4A8YFquDa4UUSyH2uFW2A,1191
|
52
52
|
liger_kernel/transformers/rope.py,sha256=ZTrTORSAyfcFIKjk6XEeYmk4ROH7xXED9L4g2NFntlE,999
|
@@ -58,6 +58,7 @@ liger_kernel/transformers/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm
|
|
58
58
|
liger_kernel/transformers/model/gemma.py,sha256=uoZvur13XSvtUfiBIP25ZJXEGh4hB5KlB-fq_wpbavY,9940
|
59
59
|
liger_kernel/transformers/model/gemma2.py,sha256=4sPxsnFVywZiNsOoxFM4nEAKB5m5_efnJR7pCEVsQw4,11047
|
60
60
|
liger_kernel/transformers/model/gemma3.py,sha256=wGSNqaLRRgIGQ_r9esyhDezm2SkAGZflopoWoWR-nYY,16226
|
61
|
+
liger_kernel/transformers/model/glm4.py,sha256=E_k2FScBW5TvMCznlHVvLGySoeSAn5gO0Nv3zMmK3xM,5305
|
61
62
|
liger_kernel/transformers/model/llama.py,sha256=7AQROxICv2oKSrf5fGJifz_vyuPBkGRXbm0xipUwQew,10617
|
62
63
|
liger_kernel/transformers/model/llava.py,sha256=b0pEagjUbu2-eS9xegjyfl1DwIXLwZcNpff55ibaMbA,17601
|
63
64
|
liger_kernel/transformers/model/loss_utils.py,sha256=WWAMdiONPaXpIvxyOim_0igLrYh0yyOok5Q9_L9xvZw,1787
|
@@ -74,9 +75,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
|
|
74
75
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=pdekW7l6Qg_aqa5SYKYlSWUF8m3lkOFvFLcIMEHrz9s,8338
|
75
76
|
liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
|
76
77
|
liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
|
77
|
-
liger_kernel_nightly-0.5.8.
|
78
|
-
liger_kernel_nightly-0.5.8.
|
79
|
-
liger_kernel_nightly-0.5.8.
|
80
|
-
liger_kernel_nightly-0.5.8.
|
81
|
-
liger_kernel_nightly-0.5.8.
|
82
|
-
liger_kernel_nightly-0.5.8.
|
78
|
+
liger_kernel_nightly-0.5.8.dev20250502215739.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
79
|
+
liger_kernel_nightly-0.5.8.dev20250502215739.dist-info/METADATA,sha256=WqdvDSWKWaKeFufQ8JrHxF31aTisXKM6eYgwewUFpik,23437
|
80
|
+
liger_kernel_nightly-0.5.8.dev20250502215739.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
81
|
+
liger_kernel_nightly-0.5.8.dev20250502215739.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
|
82
|
+
liger_kernel_nightly-0.5.8.dev20250502215739.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
83
|
+
liger_kernel_nightly-0.5.8.dev20250502215739.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|