liger-kernel-nightly 0.5.3.dev20250219232423__py3-none-any.whl → 0.5.3.dev20250220195514__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -289,9 +289,9 @@ def cross_entropy_forward(
289
289
  weight_sum = 0.0
290
290
  if weight is not None:
291
291
  assert weight.shape[0] == V, f"If given, weight has to be a Tensor of size V. Got: {weight.shape}"
292
- assert torch.is_floating_point(
293
- weight
294
- ), f"If given, weight has to be a Tensor of floating point dtype. Got: {weight.dtype}"
292
+ assert torch.is_floating_point(weight), (
293
+ f"If given, weight has to be a Tensor of floating point dtype. Got: {weight.dtype}"
294
+ )
295
295
  sum_non_ignore_weight = torch.gather(weight, dim=0, index=target.masked_select(target_mask)).sum().item()
296
296
  weight_sum = weight.sum().item()
297
297
  # ensure weight is contiguous
@@ -58,9 +58,9 @@ def fused_linear_cross_entropy_forward(
58
58
  ce_weight_sum = 0.0
59
59
  if ce_weight is not None:
60
60
  assert ce_weight.shape[0] == V, f"If given, weight has to be a Tensor of size V. Got: {ce_weight.shape}"
61
- assert torch.is_floating_point(
62
- ce_weight
63
- ), f"If given, weight has to be a Tensor of floating point dtype. Got: {ce_weight.dtype}"
61
+ assert torch.is_floating_point(ce_weight), (
62
+ f"If given, weight has to be a Tensor of floating point dtype. Got: {ce_weight.dtype}"
63
+ )
64
64
  total_sum_non_ignore_ce_weight = (
65
65
  torch.gather(ce_weight, dim=0, index=target.masked_select(target_mask)).sum().item()
66
66
  )
@@ -195,9 +195,9 @@ class LigerFusedLinearJSDFunction(torch.autograd.Function):
195
195
  """
196
196
  has_label = False
197
197
  if shift_labels is not None:
198
- assert shift_labels.shape == (
199
- teacher_input.shape[0],
200
- ), f"the shape of shift_labels must be (BT,). Got: {shift_labels.shape}"
198
+ assert shift_labels.shape == (teacher_input.shape[0],), (
199
+ f"the shape of shift_labels must be (BT,). Got: {shift_labels.shape}"
200
+ )
201
201
  shift_labels = shift_labels.contiguous()
202
202
  has_label = True
203
203
 
liger_kernel/ops/jsd.py CHANGED
@@ -157,9 +157,9 @@ class LigerJSDFunction(torch.autograd.Function):
157
157
  """
158
158
  has_label = False
159
159
  if shift_labels is not None:
160
- assert shift_labels.shape == (
161
- _input.shape[0],
162
- ), f"the shape of shift_labels must be (BT,). Got: {shift_labels.shape}"
160
+ assert shift_labels.shape == (_input.shape[0],), (
161
+ f"the shape of shift_labels must be (BT,). Got: {shift_labels.shape}"
162
+ )
163
163
  shift_labels = shift_labels.contiguous()
164
164
  has_label = True
165
165
 
@@ -147,9 +147,9 @@ def layer_norm_forward(X, W, B, eps):
147
147
  Y = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
148
148
  Mean = torch.empty(n_rows, dtype=X.dtype, device=X.device)
149
149
  RSTD = torch.empty(n_rows, dtype=X.dtype, device=X.device)
150
- assert (
151
- X.shape[1] == W.shape[0]
152
- ), f"Incompatible hidden size dimension between input tensor with shape[1] = {X.shape[1]} and weight tensor with shape[0] = {W.shape[0]}"
150
+ assert X.shape[1] == W.shape[0], (
151
+ f"Incompatible hidden size dimension between input tensor with shape[1] = {X.shape[1]} and weight tensor with shape[0] = {W.shape[0]}"
152
+ )
153
153
 
154
154
  _layer_norm_forward_kernel[(n_rows,)](
155
155
  Y,
liger_kernel/ops/utils.py CHANGED
@@ -49,8 +49,7 @@ def calculate_settings(n):
49
49
  BLOCK_SIZE = triton.next_power_of_2(n)
50
50
  if BLOCK_SIZE > MAX_FUSED_SIZE:
51
51
  raise RuntimeError(
52
- f"Cannot launch Triton kernel since n = {n} exceeds "
53
- f"the recommended Triton blocksize = {MAX_FUSED_SIZE}."
52
+ f"Cannot launch Triton kernel since n = {n} exceeds the recommended Triton blocksize = {MAX_FUSED_SIZE}."
54
53
  )
55
54
 
56
55
  num_warps = 4
@@ -17,9 +17,9 @@ class LigerCrossEntropyLoss(torch.nn.Module):
17
17
  return_z_loss: bool = False,
18
18
  ):
19
19
  super().__init__()
20
- assert (label_smoothing >= 0) and (
21
- label_smoothing <= 1
22
- ), f"label_smoothing must be between 0.0 and 1.0. Got: {label_smoothing}"
20
+ assert (label_smoothing >= 0) and (label_smoothing <= 1), (
21
+ f"label_smoothing must be between 0.0 and 1.0. Got: {label_smoothing}"
22
+ )
23
23
  assert reduction in {
24
24
  "mean",
25
25
  "sum",
@@ -17,9 +17,9 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
17
17
  return_z_loss: bool = False,
18
18
  ):
19
19
  super().__init__()
20
- assert (label_smoothing >= 0) and (
21
- label_smoothing <= 1
22
- ), f"label_smoothing must be between 0.0 and 1.0. Got: {label_smoothing}"
20
+ assert (label_smoothing >= 0) and (label_smoothing <= 1), (
21
+ f"label_smoothing must be between 0.0 and 1.0. Got: {label_smoothing}"
22
+ )
23
23
  assert reduction in {
24
24
  "mean",
25
25
  "sum",
@@ -21,9 +21,9 @@ class LigerGroupNorm(nn.Module):
21
21
  "zeros",
22
22
  ], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
23
23
 
24
- assert (
25
- num_channels % num_groups == 0
26
- ), f"Number of channels {num_channels} must be divisible by num_groups {num_groups}"
24
+ assert num_channels % num_groups == 0, (
25
+ f"Number of channels {num_channels} must be divisible by num_groups {num_groups}"
26
+ )
27
27
  self.num_channels = num_channels
28
28
  self.num_groups = num_groups
29
29
  self.eps = eps
@@ -34,9 +34,9 @@ class LigerGroupNorm(nn.Module):
34
34
  def forward(self, hidden_states):
35
35
  # hidden_states: (batch_size, num_channels, *)
36
36
  assert hidden_states.dim() >= 3, f"Input must have atleast 3 dimensions, got {hidden_states.dim()}"
37
- assert (
38
- hidden_states.size(1) == self.num_channels
39
- ), f"Input tensor must have {self.num_channels} channels, got {hidden_states.size(1)}"
37
+ assert hidden_states.size(1) == self.num_channels, (
38
+ f"Input tensor must have {self.num_channels} channels, got {hidden_states.size(1)}"
39
+ )
40
40
  return LigerGroupNormFunction.apply(
41
41
  hidden_states,
42
42
  self.weight,
@@ -85,9 +85,9 @@ def apply_liger_kernel_to_llama(
85
85
  loaded. Default is None.
86
86
  """
87
87
 
88
- assert not (
89
- cross_entropy and fused_linear_cross_entropy
90
- ), "cross_entropy and fused_linear_cross_entropy cannot both be True."
88
+ assert not (cross_entropy and fused_linear_cross_entropy), (
89
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
90
+ )
91
91
 
92
92
  from transformers.models.llama import modeling_llama
93
93
  from transformers.models.llama.modeling_llama import LlamaModel
@@ -159,9 +159,9 @@ def apply_liger_kernel_to_mllama(
159
159
  loaded. Default is None.
160
160
  """
161
161
 
162
- assert not (
163
- cross_entropy and fused_linear_cross_entropy
164
- ), "cross_entropy and fused_linear_cross_entropy cannot both be True."
162
+ assert not (cross_entropy and fused_linear_cross_entropy), (
163
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
164
+ )
165
165
 
166
166
  from transformers.models.mllama import modeling_mllama
167
167
  from transformers.models.mllama.modeling_mllama import MllamaForCausalLM
@@ -261,9 +261,9 @@ def apply_liger_kernel_to_mistral(
261
261
  model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
262
262
  loaded. Default is None.
263
263
  """
264
- assert not (
265
- cross_entropy and fused_linear_cross_entropy
266
- ), "cross_entropy and fused_linear_cross_entropy cannot both be True."
264
+ assert not (cross_entropy and fused_linear_cross_entropy), (
265
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
266
+ )
267
267
 
268
268
  from transformers.models.mistral import modeling_mistral
269
269
  from transformers.models.mistral.modeling_mistral import MistralModel
@@ -321,9 +321,9 @@ def apply_liger_kernel_to_mixtral(
321
321
  loaded. Default is None.
322
322
  """
323
323
 
324
- assert not (
325
- cross_entropy and fused_linear_cross_entropy
326
- ), "cross_entropy and fused_linear_cross_entropy cannot both be True."
324
+ assert not (cross_entropy and fused_linear_cross_entropy), (
325
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
326
+ )
327
327
 
328
328
  from transformers.models.mixtral import modeling_mixtral
329
329
  from transformers.models.mixtral.modeling_mixtral import MixtralModel
@@ -393,9 +393,9 @@ def apply_liger_kernel_to_gemma(
393
393
  model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
394
394
  loaded. Default is None.
395
395
  """
396
- assert not (
397
- cross_entropy and fused_linear_cross_entropy
398
- ), "cross_entropy and fused_linear_cross_entropy cannot both be True."
396
+ assert not (cross_entropy and fused_linear_cross_entropy), (
397
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
398
+ )
399
399
 
400
400
  from transformers.models.gemma import modeling_gemma
401
401
  from transformers.models.gemma.modeling_gemma import GemmaModel
@@ -467,9 +467,9 @@ def apply_liger_kernel_to_gemma2(
467
467
  model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
468
468
  loaded. Default is None.
469
469
  """
470
- assert not (
471
- cross_entropy and fused_linear_cross_entropy
472
- ), "cross_entropy and fused_linear_cross_entropy cannot both be True."
470
+ assert not (cross_entropy and fused_linear_cross_entropy), (
471
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
472
+ )
473
473
 
474
474
  from transformers.models.gemma2 import modeling_gemma2
475
475
  from transformers.models.gemma2.modeling_gemma2 import Gemma2Model
@@ -544,9 +544,9 @@ def apply_liger_kernel_to_qwen2(
544
544
  model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
545
545
  loaded. Default is None.
546
546
  """
547
- assert not (
548
- cross_entropy and fused_linear_cross_entropy
549
- ), "cross_entropy and fused_linear_cross_entropy cannot both be True."
547
+ assert not (cross_entropy and fused_linear_cross_entropy), (
548
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
549
+ )
550
550
 
551
551
  from transformers.models.qwen2 import modeling_qwen2
552
552
  from transformers.models.qwen2.modeling_qwen2 import Qwen2Model
@@ -619,9 +619,9 @@ def apply_liger_kernel_to_qwen2_vl(
619
619
  model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
620
620
  loaded. Default is None.
621
621
  """
622
- assert not (
623
- cross_entropy and fused_linear_cross_entropy
624
- ), "cross_entropy and fused_linear_cross_entropy cannot both be True."
622
+ assert not (cross_entropy and fused_linear_cross_entropy), (
623
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
624
+ )
625
625
 
626
626
  from transformers.models.qwen2_vl import modeling_qwen2_vl
627
627
  from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLModel
@@ -689,9 +689,9 @@ def apply_liger_kernel_to_phi3(
689
689
  model (PreTrainedModel): The model instance to apply Liger kernels to, if the model has already been
690
690
  loaded. Default is None.
691
691
  """
692
- assert not (
693
- cross_entropy and fused_linear_cross_entropy
694
- ), "cross_entropy and fused_linear_cross_entropy cannot both be True."
692
+ assert not (cross_entropy and fused_linear_cross_entropy), (
693
+ "cross_entropy and fused_linear_cross_entropy cannot both be True."
694
+ )
695
695
 
696
696
  from transformers.models.phi3 import modeling_phi3
697
697
  from transformers.models.phi3.modeling_phi3 import Phi3Model
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.5.3.dev20250219232423
3
+ Version: 0.5.3.dev20250220195514
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -191,6 +191,11 @@ y = orpo_loss(lm_head.weight, x, target)
191
191
  - `torch >= 2.5.0` Install according to the instruction in Pytorch official webpage.
192
192
  - `triton >= 3.0.0` Install from pypi. (e.g. `pip install triton==3.0.0`)
193
193
 
194
+ ```bash
195
+ # Need to pass the url when installing
196
+ pip install -e .[dev] --extra-index-url https://download.pytorch.org/whl/nightly/rocm6.2
197
+ ```
198
+
194
199
  ### Optional Dependencies
195
200
 
196
201
  - `transformers >= 4.x`: Required if you plan to use the transformers models patching APIs. The specific model you are working will dictate the minimum version of transformers.
@@ -16,33 +16,33 @@ liger_kernel/chunked_loss/kto_loss.py,sha256=eVNW6HVCAm32shpfhbRlk92Flnjd7G32v0g
16
16
  liger_kernel/chunked_loss/orpo_loss.py,sha256=yjcrrbVeemLYodoSKT-FMSnaPtyKAZ3aOrvPD6tTY6Y,3617
17
17
  liger_kernel/chunked_loss/simpo_loss.py,sha256=3TTc7U79Orjgi-Wu81WZkWk5MgsdqKXIOBHgIvDazPw,3865
18
18
  liger_kernel/ops/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
19
- liger_kernel/ops/cross_entropy.py,sha256=SRzAF9Ek84pBVFy3wqQZs7AhRoorKRIgQ-Td_rtl1Kk,18606
20
- liger_kernel/ops/fused_linear_cross_entropy.py,sha256=jm0bJLRp7UpE4MCa3yhvaSErP792Ze8nNgtUIbOw5sw,10910
21
- liger_kernel/ops/fused_linear_jsd.py,sha256=eKqaADj7LgWfoYqyH03tjrmhNTfJOF1Dhx_bWzBTnTU,9600
19
+ liger_kernel/ops/cross_entropy.py,sha256=D6vFFloiuxFXoWfjlIjmfO3tVaWOiYmztw9FKAi5vdU,18608
20
+ liger_kernel/ops/fused_linear_cross_entropy.py,sha256=1Y3Uk_TCSjqKgoG2eot1ptnWXJXXQESqGvOmqAW1gsM,10912
21
+ liger_kernel/ops/fused_linear_jsd.py,sha256=Seshez2qaM6HiTQ8_HEqSwhaeVruNT1SvIM4ZrAPBEU,9602
22
22
  liger_kernel/ops/geglu.py,sha256=axGvCIvlBzuluoAIrWTsp2iZM4BFKNInkPov8YVvH9E,4126
23
23
  liger_kernel/ops/group_norm.py,sha256=qD4D4lSjSgVtO52EBNLC2iTseALRgPgqXE50U2woggk,10837
24
- liger_kernel/ops/jsd.py,sha256=WwGY9ozuH3PMg3udRI6H96UqAEzIozJoO2HtHg7010M,6107
24
+ liger_kernel/ops/jsd.py,sha256=0jNeRxpcNI5ckxCdoCNyO5GEedLIuzx3lz6KAiksc4o,6109
25
25
  liger_kernel/ops/kl_div.py,sha256=MnfuYqqQESON1X2Swy064x1urKtMFdgeSWd60VttBXI,8420
26
- liger_kernel/ops/layer_norm.py,sha256=quvt2zcwcJCDxrgm-iWoHzDYOoeZdMC76nZ_ckw6-p8,7640
26
+ liger_kernel/ops/layer_norm.py,sha256=o5X_N0XNX0t-1AV3dyv43G0KJSyclUxcpNXzHNh35ks,7640
27
27
  liger_kernel/ops/qwen2vl_mrope.py,sha256=3GExhYpLgB4VUtyZyjRk8XjEur3W4EWF6HQ67ML5vBU,8481
28
28
  liger_kernel/ops/rms_norm.py,sha256=PWLJcdIKU5e-8BuYFHd9Cqlq6wmr6fUXKi9zQD4LetU,11727
29
29
  liger_kernel/ops/rope.py,sha256=ofmBOkUpZZO-Q8Z5B_LOFYYLD-YT-8WnJ4vGOrDYouI,8943
30
30
  liger_kernel/ops/swiglu.py,sha256=KmgMjaJQnbLLgZn2nEpbwHU_xpnYRweCyrLQSVvM1vA,3015
31
- liger_kernel/ops/utils.py,sha256=vMWxfcw02xUvjpEXQQ3Rrj68ddZ8Of3hiOmEFq1zSKg,3852
31
+ liger_kernel/ops/utils.py,sha256=uoFKQqo-34N2TWQNvXMFywqGiOMMXNEVBxVojzlUAa0,3836
32
32
  liger_kernel/ops/experimental/embedding.py,sha256=tolj3tItkzpSb30zWqDN2_yX4ectflaQ8HMyKyFIQc8,4172
33
33
  liger_kernel/ops/experimental/mm_int8int2.py,sha256=TrS9lpwekrik_w5qE7AhMJD1bcq-OidjtbsW80oZ6IM,13314
34
34
  liger_kernel/transformers/__init__.py,sha256=QPmYkL6hosBPpPqCUGqvIvAtD9XzLgvZqZxUyYMZeVk,2008
35
35
  liger_kernel/transformers/auto_model.py,sha256=0qCTRZt280Bj_LcFdzo9hlaR-BWNazawXOGgoCZjgEg,1545
36
- liger_kernel/transformers/cross_entropy.py,sha256=LtiHlj_tK2YFpilwvbG_NEVzbf82zKRpWCZMjaFUd4M,1681
36
+ liger_kernel/transformers/cross_entropy.py,sha256=z3KTWQnFxr_IZaVjtYt0ZNEWQdDdYThN35xWkHlDGH0,1683
37
37
  liger_kernel/transformers/functional.py,sha256=lDOjch622dJIc78K3ePFK_H1DX00GC5kKjodjcbEgbM,4624
38
- liger_kernel/transformers/fused_linear_cross_entropy.py,sha256=ygU7cycCHWvSrrTgn2TseN8t-Qwfer4V7ldwhZ1E6_g,1776
38
+ liger_kernel/transformers/fused_linear_cross_entropy.py,sha256=09Rt7FZzLH42VOcIbQ4dlQd0o3Rlb4vk6fqiOQ7WTD8,1778
39
39
  liger_kernel/transformers/fused_linear_jsd.py,sha256=bZ4otCvWBuOnA5XdQL-FzZVItJlDt-ht9e_pG7PG93E,3999
40
40
  liger_kernel/transformers/geglu.py,sha256=mrgqzIUVd6lN7fkDKLkw5YaESDxDtFgbot430WwPVOQ,1107
41
- liger_kernel/transformers/group_norm.py,sha256=URmjkQFsrbMffzcJiGpX7ckxWlpL95AiJS-80hwAWPk,2173
41
+ liger_kernel/transformers/group_norm.py,sha256=6qMAWOprr4SzP0YhNVNGQIBpM5aUHplUD2VuGJrMBz0,2173
42
42
  liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
43
43
  liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
44
44
  liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
45
- liger_kernel/transformers/monkey_patch.py,sha256=6eXmtERKr4YUppRAaH7a_ml3AOz0ao68E8QnOyXtIkY,37794
45
+ liger_kernel/transformers/monkey_patch.py,sha256=DXU00zsQvSjAqCx7l36gKm1O81FuHgILkZMhyx4ZSys,37812
46
46
  liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
47
47
  liger_kernel/transformers/rms_norm.py,sha256=GqCEJuGt0YdqqlMcToE0Wp4A8YFquDa4UUSyH2uFW2A,1191
48
48
  liger_kernel/transformers/rope.py,sha256=ZTrTORSAyfcFIKjk6XEeYmk4ROH7xXED9L4g2NFntlE,999
@@ -63,9 +63,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
63
63
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=pdekW7l6Qg_aqa5SYKYlSWUF8m3lkOFvFLcIMEHrz9s,8338
64
64
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
65
65
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
66
- liger_kernel_nightly-0.5.3.dev20250219232423.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
67
- liger_kernel_nightly-0.5.3.dev20250219232423.dist-info/METADATA,sha256=cwUbT2K8osL4Xudlk83LjnQ3vtiZ1Ip8qhvSrXYcaTo,21625
68
- liger_kernel_nightly-0.5.3.dev20250219232423.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
69
- liger_kernel_nightly-0.5.3.dev20250219232423.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
70
- liger_kernel_nightly-0.5.3.dev20250219232423.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
71
- liger_kernel_nightly-0.5.3.dev20250219232423.dist-info/RECORD,,
66
+ liger_kernel_nightly-0.5.3.dev20250220195514.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
67
+ liger_kernel_nightly-0.5.3.dev20250220195514.dist-info/METADATA,sha256=WkDgh3E1y7TYWCDttILZqikHz2S5b2kxLKoJ7JiWMd8,21766
68
+ liger_kernel_nightly-0.5.3.dev20250220195514.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
69
+ liger_kernel_nightly-0.5.3.dev20250220195514.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
70
+ liger_kernel_nightly-0.5.3.dev20250220195514.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
71
+ liger_kernel_nightly-0.5.3.dev20250220195514.dist-info/RECORD,,