liger-kernel-nightly 0.5.3.dev20250218225514__py3-none-any.whl → 0.5.3.dev20250219232423__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- liger_kernel/chunked_loss/__init__.py +1 -0
- liger_kernel/chunked_loss/fused_linear_rlhf.py +213 -0
- liger_kernel/chunked_loss/grpo_loss.py +160 -0
- {liger_kernel_nightly-0.5.3.dev20250218225514.dist-info → liger_kernel_nightly-0.5.3.dev20250219232423.dist-info}/METADATA +1 -1
- {liger_kernel_nightly-0.5.3.dev20250218225514.dist-info → liger_kernel_nightly-0.5.3.dev20250219232423.dist-info}/RECORD +9 -7
- {liger_kernel_nightly-0.5.3.dev20250218225514.dist-info → liger_kernel_nightly-0.5.3.dev20250219232423.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.3.dev20250218225514.dist-info → liger_kernel_nightly-0.5.3.dev20250219232423.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.3.dev20250218225514.dist-info → liger_kernel_nightly-0.5.3.dev20250219232423.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.3.dev20250218225514.dist-info → liger_kernel_nightly-0.5.3.dev20250219232423.dist-info}/top_level.txt +0 -0
@@ -1,5 +1,6 @@
|
|
1
1
|
from liger_kernel.chunked_loss.cpo_loss import LigerFusedLinearCPOLoss # noqa: F401
|
2
2
|
from liger_kernel.chunked_loss.dpo_loss import LigerFusedLinearDPOLoss # noqa: F401
|
3
|
+
from liger_kernel.chunked_loss.grpo_loss import LigerFusedLinearGRPOLoss # noqa: F401
|
3
4
|
from liger_kernel.chunked_loss.jsd_loss import LigerFusedLinearJSDLoss # noqa: F401
|
4
5
|
from liger_kernel.chunked_loss.kto_loss import LigerFusedLinearKTOLoss # noqa: F401
|
5
6
|
from liger_kernel.chunked_loss.orpo_loss import LigerFusedLinearORPOLoss # noqa: F401
|
@@ -0,0 +1,213 @@
|
|
1
|
+
from functools import partial
|
2
|
+
|
3
|
+
import torch
|
4
|
+
import torch.nn.functional as F
|
5
|
+
|
6
|
+
|
7
|
+
class LigerFusedLinearRLHFBase(torch.autograd.Function):
|
8
|
+
@staticmethod
|
9
|
+
def forward(
|
10
|
+
ctx,
|
11
|
+
_input,
|
12
|
+
weight,
|
13
|
+
attention_mask,
|
14
|
+
rewards,
|
15
|
+
bias=None,
|
16
|
+
loss_fn=None,
|
17
|
+
num_generations=4,
|
18
|
+
beta=0.1,
|
19
|
+
compiled=True,
|
20
|
+
use_ref_model=False,
|
21
|
+
ref_input=None,
|
22
|
+
ref_weight=None,
|
23
|
+
ref_bias=None,
|
24
|
+
):
|
25
|
+
"""Chunked forward pass for RLHF loss computation."""
|
26
|
+
# Save for backward
|
27
|
+
ctx.beta = beta
|
28
|
+
ctx.rewards = rewards
|
29
|
+
|
30
|
+
# Initialize accumulators
|
31
|
+
loss_acc = torch.zeros((), device=_input.device)
|
32
|
+
grad_weight = torch.zeros_like(weight) # [V, H]
|
33
|
+
grad_inputs = []
|
34
|
+
grad_bias = torch.zeros_like(bias) if bias is not None else None # [V]
|
35
|
+
aggregated_metrics = []
|
36
|
+
|
37
|
+
# Create a partial function with fixed arguments
|
38
|
+
compute_loss = partial(
|
39
|
+
LigerFusedLinearRLHFBase._compute_chunk_loss,
|
40
|
+
beta=beta,
|
41
|
+
use_ref_model=use_ref_model,
|
42
|
+
ref_weight=ref_weight,
|
43
|
+
ref_bias=ref_bias,
|
44
|
+
rlhf_loss_fn=loss_fn,
|
45
|
+
)
|
46
|
+
|
47
|
+
def fused_fwd_bwd(input_chunk, attention_mask_chunk, rewards_chunk, ref_input_chunk):
|
48
|
+
"""Fused forward and backward for a chunk."""
|
49
|
+
if bias is not None:
|
50
|
+
return torch.func.grad_and_value(compute_loss, argnums=(0, 1, 5), has_aux=True)(
|
51
|
+
input_chunk, # arg 0
|
52
|
+
weight, # arg 1
|
53
|
+
attention_mask_chunk, # arg 2
|
54
|
+
rewards_chunk, # arg 3
|
55
|
+
ref_input_chunk, # arg 4
|
56
|
+
bias, # arg 5
|
57
|
+
)
|
58
|
+
else:
|
59
|
+
return torch.func.grad_and_value(compute_loss, argnums=(0, 1), has_aux=True)(
|
60
|
+
input_chunk, # arg 0
|
61
|
+
weight, # arg 1
|
62
|
+
attention_mask_chunk, # arg 2
|
63
|
+
rewards_chunk, # arg 3
|
64
|
+
ref_input_chunk, # arg 4
|
65
|
+
)
|
66
|
+
|
67
|
+
def accumulate_chunk(input_chunk, attention_mask_chunk, rewards_chunk, ref_input_chunk=None):
|
68
|
+
if bias is not None:
|
69
|
+
(chunk_grad_input, chunk_grad_weight, chunk_grad_bias), (chunk_loss, chunk_metrics) = fused_fwd_bwd(
|
70
|
+
input_chunk, attention_mask_chunk, rewards_chunk, ref_input_chunk
|
71
|
+
)
|
72
|
+
grad_bias.add_(chunk_grad_bias)
|
73
|
+
else:
|
74
|
+
(chunk_grad_input, chunk_grad_weight), (chunk_loss, chunk_metrics) = fused_fwd_bwd(
|
75
|
+
input_chunk, attention_mask_chunk, rewards_chunk, ref_input_chunk
|
76
|
+
)
|
77
|
+
|
78
|
+
# Accumulate gradients and loss
|
79
|
+
grad_weight.add_(chunk_grad_weight)
|
80
|
+
grad_inputs.append(chunk_grad_input)
|
81
|
+
loss_acc.add_(chunk_loss)
|
82
|
+
|
83
|
+
# Initialize storage for metrics on first chunk
|
84
|
+
if len(aggregated_metrics) == 0:
|
85
|
+
for metric in chunk_metrics:
|
86
|
+
if metric.ndim == 0:
|
87
|
+
aggregated_metrics.append(torch.zeros((), device=metric.device))
|
88
|
+
else:
|
89
|
+
aggregated_metrics.append([])
|
90
|
+
|
91
|
+
# Accumulate metrics
|
92
|
+
for i, metric in enumerate(chunk_metrics):
|
93
|
+
if metric.ndim == 0:
|
94
|
+
aggregated_metrics[i].add_(metric)
|
95
|
+
else:
|
96
|
+
aggregated_metrics[i].append(metric)
|
97
|
+
|
98
|
+
if compiled:
|
99
|
+
accumulate_chunk = torch.compile(accumulate_chunk)
|
100
|
+
|
101
|
+
# Process input in chunks
|
102
|
+
chunks = max(1, _input.shape[0] // num_generations)
|
103
|
+
_input_chunks = torch.chunk(_input, chunks=chunks, dim=0)
|
104
|
+
_attention_mask_chunks = torch.chunk(attention_mask, chunks=chunks, dim=0)
|
105
|
+
_rewards_chunks = torch.chunk(rewards, chunks=chunks, dim=0)
|
106
|
+
_ref_input_chunks = torch.chunk(ref_input, chunks=chunks, dim=0) if use_ref_model else [None] * chunks
|
107
|
+
|
108
|
+
for input_chunk, attention_mask_chunk, rewards_chunk, ref_input_chunk in zip(
|
109
|
+
_input_chunks, _attention_mask_chunks, _rewards_chunks, _ref_input_chunks
|
110
|
+
):
|
111
|
+
# Mark dynamic dimensions
|
112
|
+
torch._dynamo.mark_dynamic(input_chunk, 1)
|
113
|
+
torch._dynamo.mark_dynamic(attention_mask_chunk, 1)
|
114
|
+
if ref_input_chunk is not None:
|
115
|
+
torch._dynamo.mark_dynamic(ref_input_chunk, 1)
|
116
|
+
|
117
|
+
accumulate_chunk(input_chunk, attention_mask_chunk, rewards_chunk, ref_input_chunk)
|
118
|
+
|
119
|
+
# Scale accumulated loss by number of chunks since we're averaging
|
120
|
+
loss_acc = loss_acc / chunks
|
121
|
+
|
122
|
+
# Combine gradients
|
123
|
+
grad_input = torch.cat(grad_inputs, dim=0)
|
124
|
+
|
125
|
+
# Save for backward
|
126
|
+
ctx.save_for_backward(grad_input, grad_weight, grad_bias)
|
127
|
+
|
128
|
+
# Finalize metrics
|
129
|
+
final_metrics = []
|
130
|
+
for metric in aggregated_metrics:
|
131
|
+
if isinstance(metric, list):
|
132
|
+
final_metrics.append(torch.cat(metric, dim=0))
|
133
|
+
else:
|
134
|
+
final_metrics.append(metric / chunks)
|
135
|
+
|
136
|
+
return loss_acc, tuple(final_metrics)
|
137
|
+
|
138
|
+
@staticmethod
|
139
|
+
def _compute_chunk_loss(
|
140
|
+
input_chunk,
|
141
|
+
weight,
|
142
|
+
attention_mask_chunk,
|
143
|
+
rewards_chunk,
|
144
|
+
ref_input_chunk=None,
|
145
|
+
bias=None,
|
146
|
+
beta=0.1,
|
147
|
+
use_ref_model=False,
|
148
|
+
ref_weight=None,
|
149
|
+
ref_bias=None,
|
150
|
+
rlhf_loss_fn=None,
|
151
|
+
):
|
152
|
+
"""Compute loss for a single chunk."""
|
153
|
+
# Get policy log probabilities using chunk_forward
|
154
|
+
log_probs, _, logits_mean = LigerFusedLinearRLHFBase.chunk_forward(input_chunk, weight, bias=bias)
|
155
|
+
|
156
|
+
# Get reference log probabilities if needed
|
157
|
+
ref_log_probs = None
|
158
|
+
if use_ref_model and ref_input_chunk is not None:
|
159
|
+
with torch.no_grad():
|
160
|
+
ref_log_probs, _, _ = LigerFusedLinearRLHFBase.chunk_forward(ref_input_chunk, ref_weight, bias=ref_bias)
|
161
|
+
|
162
|
+
# Compute chunk loss and metrics using the provided loss function
|
163
|
+
chunk_loss, chunk_metrics = rlhf_loss_fn(
|
164
|
+
log_probs=log_probs,
|
165
|
+
attention_mask=attention_mask_chunk,
|
166
|
+
rewards=rewards_chunk,
|
167
|
+
ref_log_probs=ref_log_probs,
|
168
|
+
beta=beta,
|
169
|
+
)
|
170
|
+
|
171
|
+
return chunk_loss, (logits_mean, *chunk_metrics)
|
172
|
+
|
173
|
+
@staticmethod
|
174
|
+
def chunk_forward(input_chunk, weight, bias=None):
|
175
|
+
"""Forward pass computation for a single chunk without explicit reshaping."""
|
176
|
+
# Directly compute logits via batched matrix multiplication: [B, T, H] @ [H, V] -> [B, T, V]
|
177
|
+
logits = torch.matmul(input_chunk, weight.t())
|
178
|
+
if bias is not None:
|
179
|
+
logits = logits + bias # Broadcasts bias to [B, T, V]
|
180
|
+
|
181
|
+
# Compute log probabilities using softmax over the last dimension
|
182
|
+
log_probs = F.log_softmax(logits.float(), dim=-1)
|
183
|
+
|
184
|
+
# Monitoring: compute mean of logits
|
185
|
+
batch_size, seq_len, _ = input_chunk.shape
|
186
|
+
logits_mean = logits.sum() / (batch_size * seq_len * weight.shape[0])
|
187
|
+
return log_probs, logits, logits_mean
|
188
|
+
|
189
|
+
@staticmethod
|
190
|
+
def backward(ctx, grad_output, *grad_metrics):
|
191
|
+
"""Backward pass for RLHF loss."""
|
192
|
+
grad_input, grad_weight, grad_bias = ctx.saved_tensors
|
193
|
+
if grad_output != 1.0:
|
194
|
+
grad_input = grad_input * grad_output
|
195
|
+
grad_weight = grad_weight * grad_output
|
196
|
+
if grad_bias is not None:
|
197
|
+
grad_bias = grad_bias * grad_output
|
198
|
+
|
199
|
+
return (
|
200
|
+
grad_input,
|
201
|
+
grad_weight,
|
202
|
+
None, # grad_attention_mask
|
203
|
+
None, # grad_rewards
|
204
|
+
grad_bias,
|
205
|
+
None, # grad_loss_fn
|
206
|
+
None, # grad_chunk_size
|
207
|
+
None, # grad_beta
|
208
|
+
None, # grad_compiled
|
209
|
+
None, # grad_use_ref_model
|
210
|
+
None, # grad_ref_input
|
211
|
+
None, # grad_ref_weight
|
212
|
+
None, # grad_ref_bias
|
213
|
+
)
|
@@ -0,0 +1,160 @@
|
|
1
|
+
import torch
|
2
|
+
|
3
|
+
from liger_kernel.chunked_loss.fused_linear_rlhf import LigerFusedLinearRLHFBase
|
4
|
+
|
5
|
+
|
6
|
+
class LigerFusedLinearGRPOFunction(LigerFusedLinearRLHFBase):
|
7
|
+
@staticmethod
|
8
|
+
def rlhf_loss_fn(
|
9
|
+
log_probs,
|
10
|
+
attention_mask,
|
11
|
+
rewards,
|
12
|
+
ref_log_probs=None,
|
13
|
+
beta=0.1,
|
14
|
+
**kwargs,
|
15
|
+
):
|
16
|
+
"""GRPO Loss Function matching GRPOTrainer implementation."""
|
17
|
+
# Get chosen token probabilities
|
18
|
+
chosen_tokens = log_probs.argmax(dim=-1) # (batch_size, seq_len)
|
19
|
+
chosen_token_logprobs = log_probs.gather(dim=-1, index=chosen_tokens.unsqueeze(-1)).squeeze(
|
20
|
+
-1
|
21
|
+
) # (batch_size, seq_len)
|
22
|
+
|
23
|
+
# Get reference model probabilities
|
24
|
+
if ref_log_probs is not None:
|
25
|
+
with torch.no_grad():
|
26
|
+
ref_token_logprobs = ref_log_probs.gather(dim=-1, index=chosen_tokens.unsqueeze(-1)).squeeze(-1)
|
27
|
+
else:
|
28
|
+
ref_token_logprobs = chosen_token_logprobs.detach()
|
29
|
+
|
30
|
+
# Compute advantages per batch entry in a grouped fashion
|
31
|
+
mean_grouped_rewards = rewards.mean() # [batch_size,]
|
32
|
+
std_grouped_rewards = rewards.std() # [batch_size,]
|
33
|
+
|
34
|
+
# Calculate advantages using the same epsilon as in GRPOTrainer
|
35
|
+
eps = 1e-4
|
36
|
+
advantages = (rewards - mean_grouped_rewards) / (std_grouped_rewards + eps)
|
37
|
+
|
38
|
+
# Compute policy gradient loss with importance sampling ratio
|
39
|
+
ratio = torch.exp(chosen_token_logprobs - chosen_token_logprobs.detach())
|
40
|
+
policy_loss = -ratio * advantages.unsqueeze(1)
|
41
|
+
|
42
|
+
# Compute KL penalty
|
43
|
+
kl_div = (
|
44
|
+
torch.exp(ref_token_logprobs - chosen_token_logprobs) - (ref_token_logprobs - chosen_token_logprobs) - 1.0
|
45
|
+
)
|
46
|
+
|
47
|
+
# Combine losses
|
48
|
+
per_token_loss = policy_loss + beta * kl_div
|
49
|
+
|
50
|
+
# Apply masking and normalize
|
51
|
+
masked_loss = per_token_loss * attention_mask
|
52
|
+
seq_lengths = attention_mask.sum()
|
53
|
+
seq_lengths = torch.clamp(seq_lengths, min=1.0)
|
54
|
+
loss = masked_loss.sum() / seq_lengths
|
55
|
+
|
56
|
+
# Calculate metrics
|
57
|
+
metrics = (
|
58
|
+
chosen_token_logprobs.mean(), # mean log prob
|
59
|
+
chosen_token_logprobs.std(), # std log prob
|
60
|
+
log_probs.mean(), # mean all log probs
|
61
|
+
((kl_div * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)).mean(), # mean KL div
|
62
|
+
)
|
63
|
+
|
64
|
+
return loss, metrics
|
65
|
+
|
66
|
+
@staticmethod
|
67
|
+
def forward(
|
68
|
+
ctx,
|
69
|
+
_input,
|
70
|
+
weight,
|
71
|
+
attention_mask,
|
72
|
+
rewards,
|
73
|
+
bias=None,
|
74
|
+
ref_input=None,
|
75
|
+
ref_weight=None,
|
76
|
+
ref_bias=None,
|
77
|
+
beta=0.1,
|
78
|
+
compiled=True,
|
79
|
+
use_ref_model=True,
|
80
|
+
num_generations=1,
|
81
|
+
):
|
82
|
+
return LigerFusedLinearRLHFBase.forward(
|
83
|
+
ctx=ctx,
|
84
|
+
_input=_input,
|
85
|
+
weight=weight,
|
86
|
+
attention_mask=attention_mask,
|
87
|
+
loss_fn=LigerFusedLinearGRPOFunction.rlhf_loss_fn,
|
88
|
+
rewards=rewards,
|
89
|
+
bias=bias,
|
90
|
+
ref_input=ref_input,
|
91
|
+
ref_weight=ref_weight,
|
92
|
+
ref_bias=ref_bias,
|
93
|
+
beta=beta,
|
94
|
+
compiled=compiled,
|
95
|
+
use_ref_model=use_ref_model,
|
96
|
+
num_generations=num_generations,
|
97
|
+
)
|
98
|
+
|
99
|
+
@staticmethod
|
100
|
+
def backward(ctx, grad_output, *grad_metrics):
|
101
|
+
"""Backward pass for GRPO loss.
|
102
|
+
|
103
|
+
Args:
|
104
|
+
grad_output: Gradient of the loss (scalar)
|
105
|
+
grad_metrics: Gradients of the metrics (not used in backward computation)
|
106
|
+
"""
|
107
|
+
grads = LigerFusedLinearRLHFBase.backward(ctx, grad_output)
|
108
|
+
return (
|
109
|
+
*grads[:5], # grad_input, grad_weight, grad_attention_mask, grad_rewards, grad_bias
|
110
|
+
None, # grad_ref_input
|
111
|
+
None, # grad_ref_weight
|
112
|
+
None, # grad_ref_bias
|
113
|
+
None, # grad_beta
|
114
|
+
None, # grad_compiled
|
115
|
+
None, # grad_use_ref_model
|
116
|
+
None, # grad_num_generations
|
117
|
+
)
|
118
|
+
|
119
|
+
|
120
|
+
class LigerFusedLinearGRPOLoss(torch.nn.Module):
|
121
|
+
"""Fused linear layer with GRPO loss."""
|
122
|
+
|
123
|
+
def __init__(
|
124
|
+
self,
|
125
|
+
beta: float = 0.1,
|
126
|
+
compiled: bool = True,
|
127
|
+
use_ref_model: bool = True,
|
128
|
+
num_generations: int = 1,
|
129
|
+
):
|
130
|
+
super().__init__()
|
131
|
+
self.beta = beta
|
132
|
+
self.compiled = compiled
|
133
|
+
self.use_ref_model = use_ref_model
|
134
|
+
self.num_generations = num_generations
|
135
|
+
|
136
|
+
def forward(
|
137
|
+
self,
|
138
|
+
_input,
|
139
|
+
lin_weight,
|
140
|
+
attention_mask,
|
141
|
+
rewards,
|
142
|
+
bias=None,
|
143
|
+
ref_input=None,
|
144
|
+
ref_weight=None,
|
145
|
+
ref_bias=None,
|
146
|
+
):
|
147
|
+
return LigerFusedLinearGRPOFunction.apply(
|
148
|
+
_input,
|
149
|
+
lin_weight,
|
150
|
+
attention_mask,
|
151
|
+
rewards,
|
152
|
+
bias,
|
153
|
+
ref_input,
|
154
|
+
ref_weight,
|
155
|
+
ref_bias,
|
156
|
+
self.beta,
|
157
|
+
self.compiled,
|
158
|
+
self.use_ref_model,
|
159
|
+
self.num_generations,
|
160
|
+
)
|
@@ -2,13 +2,15 @@ liger_kernel/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
2
|
liger_kernel/env_report.py,sha256=uhdEC8OydxoZlb7B6YYcAaBF3crGFdIck-4cxaW4NJY,1728
|
3
3
|
liger_kernel/utils.py,sha256=HJa-xVKOohDn6pLVIx-Fv0V9h0QAL3qZGQNRICI-OpI,249
|
4
4
|
liger_kernel/chunked_loss/README.md,sha256=0FmkFC3hKBqyoDT5uTlIYmrvRkF-EOCR1y-EBU1LpWU,2248
|
5
|
-
liger_kernel/chunked_loss/__init__.py,sha256=
|
5
|
+
liger_kernel/chunked_loss/__init__.py,sha256=ATu-xX5Fc49Cr6yBOGBRNTo593ZrU5ZCsIuvoIbJWw4,603
|
6
6
|
liger_kernel/chunked_loss/cpo_loss.py,sha256=OdBR8WYdHTKpLI_c9DcuwqKSWPeAAeTyREz46Vu_cAY,3682
|
7
7
|
liger_kernel/chunked_loss/dpo_loss.py,sha256=wgjnwzLfrMUwV5mXgrq6G1YfQKWnbiFJegaP48BGJHY,4509
|
8
8
|
liger_kernel/chunked_loss/functional.py,sha256=THWWpCnRVhTVfnPnyvQjdBvo1JDtxhwLmtZE_yiBBqM,817
|
9
9
|
liger_kernel/chunked_loss/fused_linear_distillation.py,sha256=5V8rdva89WyHVbmJ8JOmC4DYNOR6ByXfx3qlUieOZkI,11002
|
10
10
|
liger_kernel/chunked_loss/fused_linear_preference.py,sha256=idK9V9NivoVITqVpiG0fEGUHSvinYWkn9-EYXZjR-KQ,18356
|
11
|
+
liger_kernel/chunked_loss/fused_linear_rlhf.py,sha256=sAApL4GQ3YL2F-ymIAF61GCpFfBgFcWF5LB4Gzd7LgY,8044
|
11
12
|
liger_kernel/chunked_loss/fused_linear_unpaired_preference.py,sha256=ZqYlXXhIphkJPxOS7iI70avgrr6x0skEtgpckZTYau0,9819
|
13
|
+
liger_kernel/chunked_loss/grpo_loss.py,sha256=M5qlQR-v5Rh8N3P3dPGNhOKygDFJ4516_rJaVPzU_-c,4980
|
12
14
|
liger_kernel/chunked_loss/jsd_loss.py,sha256=yRCQdvd3ruTWP4A_BfU8VcZ6LepSUfO0Ob7stGnueQY,6052
|
13
15
|
liger_kernel/chunked_loss/kto_loss.py,sha256=eVNW6HVCAm32shpfhbRlk92Flnjd7G32v0gK9DUUSOQ,5655
|
14
16
|
liger_kernel/chunked_loss/orpo_loss.py,sha256=yjcrrbVeemLYodoSKT-FMSnaPtyKAZ3aOrvPD6tTY6Y,3617
|
@@ -61,9 +63,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
|
|
61
63
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=pdekW7l6Qg_aqa5SYKYlSWUF8m3lkOFvFLcIMEHrz9s,8338
|
62
64
|
liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
|
63
65
|
liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
|
64
|
-
liger_kernel_nightly-0.5.3.
|
65
|
-
liger_kernel_nightly-0.5.3.
|
66
|
-
liger_kernel_nightly-0.5.3.
|
67
|
-
liger_kernel_nightly-0.5.3.
|
68
|
-
liger_kernel_nightly-0.5.3.
|
69
|
-
liger_kernel_nightly-0.5.3.
|
66
|
+
liger_kernel_nightly-0.5.3.dev20250219232423.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
67
|
+
liger_kernel_nightly-0.5.3.dev20250219232423.dist-info/METADATA,sha256=cwUbT2K8osL4Xudlk83LjnQ3vtiZ1Ip8qhvSrXYcaTo,21625
|
68
|
+
liger_kernel_nightly-0.5.3.dev20250219232423.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
69
|
+
liger_kernel_nightly-0.5.3.dev20250219232423.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
|
70
|
+
liger_kernel_nightly-0.5.3.dev20250219232423.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
71
|
+
liger_kernel_nightly-0.5.3.dev20250219232423.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|