liger-kernel-nightly 0.5.2.dev20250108072837__py3-none-any.whl → 0.5.2.dev20250108073340__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- liger_kernel/chunked_loss/cpo_loss.py +1 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +14 -3
- {liger_kernel_nightly-0.5.2.dev20250108072837.dist-info → liger_kernel_nightly-0.5.2.dev20250108073340.dist-info}/METADATA +1 -1
- {liger_kernel_nightly-0.5.2.dev20250108072837.dist-info → liger_kernel_nightly-0.5.2.dev20250108073340.dist-info}/RECORD +8 -8
- {liger_kernel_nightly-0.5.2.dev20250108072837.dist-info → liger_kernel_nightly-0.5.2.dev20250108073340.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.2.dev20250108072837.dist-info → liger_kernel_nightly-0.5.2.dev20250108073340.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.2.dev20250108072837.dist-info → liger_kernel_nightly-0.5.2.dev20250108073340.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.2.dev20250108072837.dist-info → liger_kernel_nightly-0.5.2.dev20250108073340.dist-info}/top_level.txt +0 -0
@@ -32,6 +32,7 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
32
32
|
ref_input=None,
|
33
33
|
ref_weight=None,
|
34
34
|
ref_bias=None,
|
35
|
+
average_log_prob=True,
|
35
36
|
**loss_kwargs,
|
36
37
|
):
|
37
38
|
"""
|
@@ -61,6 +62,7 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
61
62
|
use_ref_model (bool): Whether to use a reference model for the alignment loss.
|
62
63
|
ref_weight (torch.Tensor): Reference weight tensor. Shape: (vocab_size, hidden_size).
|
63
64
|
ref_bias (torch.Tensor, optional): Reference bias tensor. Shape: (vocab_size,).
|
65
|
+
average_log_prob (bool): Whether to average log probabilities or to sum them over the completion.
|
64
66
|
loss_kwargs (dict): Other possible arguments that a loss function might need
|
65
67
|
"""
|
66
68
|
# TODO: Tune CHUNK_SIZE to fully utilize the GPU
|
@@ -94,6 +96,7 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
94
96
|
use_ref_model=use_ref_model,
|
95
97
|
ref_weight=ref_weight,
|
96
98
|
ref_bias=ref_bias,
|
99
|
+
average_log_prob=average_log_prob,
|
97
100
|
**loss_kwargs,
|
98
101
|
)
|
99
102
|
|
@@ -265,6 +268,7 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
265
268
|
bias=None,
|
266
269
|
ignore_index=-100,
|
267
270
|
compute_nll_loss=True,
|
271
|
+
average_log_prob=True,
|
268
272
|
):
|
269
273
|
len_chosen_chunk = target_chunk.shape[0] // 2
|
270
274
|
logits_chunk = input_chunk @ weight.t()
|
@@ -285,10 +289,13 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
285
289
|
label_chunk = torch.where(loss_mask, target_chunk, 0)
|
286
290
|
|
287
291
|
per_token_logps = log_probs_chunk.gather(-1, label_chunk.unsqueeze(-1)).squeeze(-1)
|
288
|
-
average_log_prob
|
292
|
+
if average_log_prob:
|
293
|
+
log_prob = (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
|
294
|
+
else:
|
295
|
+
log_prob = (per_token_logps * loss_mask).sum(-1)
|
289
296
|
|
290
|
-
chosen_logps =
|
291
|
-
rejected_logps =
|
297
|
+
chosen_logps = log_prob[:len_chosen_chunk]
|
298
|
+
rejected_logps = log_prob[len_chosen_chunk:]
|
292
299
|
|
293
300
|
chosen_logits = logits_chunk[:len_chosen_chunk]
|
294
301
|
rejected_logits = logits_chunk[len_chosen_chunk:]
|
@@ -317,6 +324,7 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
317
324
|
ref_input_chunk=None,
|
318
325
|
ref_weight=None,
|
319
326
|
ref_bias=None,
|
327
|
+
average_log_prob=True,
|
320
328
|
**loss_kwargs,
|
321
329
|
):
|
322
330
|
"""
|
@@ -335,6 +343,7 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
335
343
|
use_ref_model (bool): Whether to use a reference model for the alignment loss.
|
336
344
|
ref_weight (torch.Tensor): Reference weight tensor. Shape: (vocab_size, hidden_size).
|
337
345
|
ref_bias (torch.Tensor, optional): Reference bias tensor. Shape: (vocab_size,).
|
346
|
+
average_log_prob (bool): Whether to average log probabilities or the sum.
|
338
347
|
loss_kwargs (dict): Additional arguments for the loss function.
|
339
348
|
"""
|
340
349
|
(
|
@@ -350,6 +359,7 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
350
359
|
bias=bias,
|
351
360
|
ignore_index=ignore_index,
|
352
361
|
compute_nll_loss=compute_nll_loss,
|
362
|
+
average_log_prob=average_log_prob,
|
353
363
|
)
|
354
364
|
chosen_nll_loss = chosen_nll_loss / (full_target[: full_target.shape[0] // 2] != ignore_index).sum()
|
355
365
|
chosen_logits_mean = chosen_logits.sum() / (full_target.shape[0] // 2 * input_chunk.shape[1] * weight.shape[0])
|
@@ -372,6 +382,7 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
372
382
|
ref_bias,
|
373
383
|
ignore_index=ignore_index,
|
374
384
|
compute_nll_loss=False, # We don't need NLL loss for the reference model
|
385
|
+
average_log_prob=average_log_prob,
|
375
386
|
)
|
376
387
|
loss_kwargs["ref_chosen_logps"] = ref_chosen_logps
|
377
388
|
loss_kwargs["ref_rejected_logps"] = ref_rejected_logps
|
@@ -3,11 +3,11 @@ liger_kernel/env_report.py,sha256=uhdEC8OydxoZlb7B6YYcAaBF3crGFdIck-4cxaW4NJY,17
|
|
3
3
|
liger_kernel/utils.py,sha256=HJa-xVKOohDn6pLVIx-Fv0V9h0QAL3qZGQNRICI-OpI,249
|
4
4
|
liger_kernel/chunked_loss/README.md,sha256=K6rucm6nqHpWCmxUOhBYcE3apwQxAy0TfRUippR7Icw,2243
|
5
5
|
liger_kernel/chunked_loss/__init__.py,sha256=R2wCcz4Y0kTAve926DH3k182XKezpXeACMHj05g9Mm8,346
|
6
|
-
liger_kernel/chunked_loss/cpo_loss.py,sha256=
|
6
|
+
liger_kernel/chunked_loss/cpo_loss.py,sha256=OdBR8WYdHTKpLI_c9DcuwqKSWPeAAeTyREz46Vu_cAY,3682
|
7
7
|
liger_kernel/chunked_loss/dpo_loss.py,sha256=VYZMOafdvE8xlhvTtwjrz81tIzxR1mHF4lXdsADnIQg,4373
|
8
8
|
liger_kernel/chunked_loss/functional.py,sha256=9Gr-YXIuEzEJkBUhDx3G2fuQayckLor7cC7svhmPML4,549
|
9
9
|
liger_kernel/chunked_loss/fused_linear_distillation.py,sha256=uQtwtu-kaUZJTjNhAnIr3O794oUlUZ98XR5shYtwP5k,10440
|
10
|
-
liger_kernel/chunked_loss/fused_linear_preference.py,sha256=
|
10
|
+
liger_kernel/chunked_loss/fused_linear_preference.py,sha256=eQCZmQ3xOL3jpZ7RhOfx_pqR9sNEX6RHx8DtIgyXEHc,16656
|
11
11
|
liger_kernel/chunked_loss/orpo_loss.py,sha256=jbZxx-EjPK71A6CSyNzTOAIEQgAUjfvwSViw6R_pPXQ,3510
|
12
12
|
liger_kernel/chunked_loss/simpo_loss.py,sha256=3TTc7U79Orjgi-Wu81WZkWk5MgsdqKXIOBHgIvDazPw,3865
|
13
13
|
liger_kernel/ops/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -58,9 +58,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
|
|
58
58
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=MId1S_MfA3pPVQA1rkiKxp-jZDNz8VmvZzXC-Kugol4,7662
|
59
59
|
liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
|
60
60
|
liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
|
61
|
-
liger_kernel_nightly-0.5.2.
|
62
|
-
liger_kernel_nightly-0.5.2.
|
63
|
-
liger_kernel_nightly-0.5.2.
|
64
|
-
liger_kernel_nightly-0.5.2.
|
65
|
-
liger_kernel_nightly-0.5.2.
|
66
|
-
liger_kernel_nightly-0.5.2.
|
61
|
+
liger_kernel_nightly-0.5.2.dev20250108073340.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
62
|
+
liger_kernel_nightly-0.5.2.dev20250108073340.dist-info/METADATA,sha256=m2Zrd4xffCEa6qCxyFCCH6l1WJuk7V6eZ28Pt2_dtHc,21055
|
63
|
+
liger_kernel_nightly-0.5.2.dev20250108073340.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
64
|
+
liger_kernel_nightly-0.5.2.dev20250108073340.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
|
65
|
+
liger_kernel_nightly-0.5.2.dev20250108073340.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
66
|
+
liger_kernel_nightly-0.5.2.dev20250108073340.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|