liger-kernel-nightly 0.5.2.dev20241212055744__py3-none-any.whl → 0.5.2.dev20241212060541__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.5.2.dev20241212055744
3
+ Version: 0.5.2.dev20241212060541
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -136,6 +136,19 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and
136
136
  > - Benchmark conditions: LLaMA 3-8B, Batch Size = 8, Data Type = `bf16`, Optimizer = AdamW, Gradient Checkpointing = True, Distributed Strategy = FSDP1 on 8 A100s.
137
137
  > - Hugging Face models start to OOM at a 4K context length, whereas Hugging Face + Liger Kernel scales up to 16K.
138
138
 
139
+ ## Optimize post training with Liger Kernel
140
+
141
+ ![Post Training](https://raw.githubusercontent.com/linkedin/Liger-Kernel/main/docs/images/post-training.png)
142
+
143
+ We provide optimized post training kernels like DPO, ORPO, SimPO, and more which can reduce memory usage by up to 80%. You can easily use them as python modules.
144
+
145
+ ```python
146
+ from liger_kernel.chunked_loss import LigerFusedLinearDPOLoss
147
+ orpo_loss = LigerFusedLinearORPOLoss()
148
+ y = orpo_loss(lm_head.weight, x, target)
149
+ ```
150
+
151
+
139
152
  ## Examples
140
153
 
141
154
  | **Use Case** | **Description** |
@@ -58,9 +58,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=c4OQVJmhNOloj0JYSEc0j_cQuBb
58
58
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=jko6oq_XQdBSmXubp05E-_YXOyhtB5Bj75dg5YNwOsE,7517
59
59
  liger_kernel/triton/__init__.py,sha256=yfRe0zMb47QnqjecZWG7LnanfCTzeku7SgWRAwNVmzU,101
60
60
  liger_kernel/triton/monkey_patch.py,sha256=5BcGKTtdqeYchypBIBopGIWPx1-cFALz7sOKoEsqXJ0,1584
61
- liger_kernel_nightly-0.5.2.dev20241212055744.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
62
- liger_kernel_nightly-0.5.2.dev20241212055744.dist-info/METADATA,sha256=NAgxDVTi1Sh3CxnJrV5T8QIZf77TcX9NFOrkPi6kD9I,20525
63
- liger_kernel_nightly-0.5.2.dev20241212055744.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
64
- liger_kernel_nightly-0.5.2.dev20241212055744.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
65
- liger_kernel_nightly-0.5.2.dev20241212055744.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
66
- liger_kernel_nightly-0.5.2.dev20241212055744.dist-info/RECORD,,
61
+ liger_kernel_nightly-0.5.2.dev20241212060541.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
62
+ liger_kernel_nightly-0.5.2.dev20241212060541.dist-info/METADATA,sha256=J64c14dbQAzCW0-j89DnVcgt1VxXesKDC-szl0_2dvU,21001
63
+ liger_kernel_nightly-0.5.2.dev20241212060541.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
64
+ liger_kernel_nightly-0.5.2.dev20241212060541.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
65
+ liger_kernel_nightly-0.5.2.dev20241212060541.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
66
+ liger_kernel_nightly-0.5.2.dev20241212060541.dist-info/RECORD,,