liger-kernel-nightly 0.5.2.dev20241212055650__py3-none-any.whl → 0.5.2.dev20241212060541__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {liger_kernel_nightly-0.5.2.dev20241212055650.dist-info → liger_kernel_nightly-0.5.2.dev20241212060541.dist-info}/METADATA +15 -2
- {liger_kernel_nightly-0.5.2.dev20241212055650.dist-info → liger_kernel_nightly-0.5.2.dev20241212060541.dist-info}/RECORD +6 -6
- {liger_kernel_nightly-0.5.2.dev20241212055650.dist-info → liger_kernel_nightly-0.5.2.dev20241212060541.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.2.dev20241212055650.dist-info → liger_kernel_nightly-0.5.2.dev20241212060541.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.2.dev20241212055650.dist-info → liger_kernel_nightly-0.5.2.dev20241212060541.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.2.dev20241212055650.dist-info → liger_kernel_nightly-0.5.2.dev20241212060541.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: liger_kernel_nightly
|
3
|
-
Version: 0.5.2.
|
3
|
+
Version: 0.5.2.dev20241212060541
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
@@ -119,7 +119,7 @@ Requires-Dist: seaborn; extra == "dev"
|
|
119
119
|
|
120
120
|
**Liger Kernel** is a collection of Triton kernels designed specifically for LLM training. It can effectively increase multi-GPU **training throughput by 20%** and reduces **memory usage by 60%**. We have implemented **Hugging Face Compatible** `RMSNorm`, `RoPE`, `SwiGLU`, `CrossEntropy`, `FusedLinearCrossEntropy`, and more to come. The kernel works out of the box with [Flash Attention](https://github.com/Dao-AILab/flash-attention), [PyTorch FSDP](https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html), and [Microsoft DeepSpeed](https://github.com/microsoft/DeepSpeed). We welcome contributions from the community to gather the best kernels for LLM training.
|
121
121
|
|
122
|
-
We've also added optimized Post-Training kernels that deliver **up to 80% memory savings** for alignment and distillation tasks. We support losses like DPO, CPO, ORPO, SimPO, JSD, and many more. Check out
|
122
|
+
We've also added optimized Post-Training kernels that deliver **up to 80% memory savings** for alignment and distillation tasks. We support losses like DPO, CPO, ORPO, SimPO, JSD, and many more. Check out [how we optimize the memory](https://x.com/hsu_byron/status/1866577403918917655).
|
123
123
|
|
124
124
|
## Supercharge Your Model with Liger Kernel
|
125
125
|
|
@@ -136,6 +136,19 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and
|
|
136
136
|
> - Benchmark conditions: LLaMA 3-8B, Batch Size = 8, Data Type = `bf16`, Optimizer = AdamW, Gradient Checkpointing = True, Distributed Strategy = FSDP1 on 8 A100s.
|
137
137
|
> - Hugging Face models start to OOM at a 4K context length, whereas Hugging Face + Liger Kernel scales up to 16K.
|
138
138
|
|
139
|
+
## Optimize post training with Liger Kernel
|
140
|
+
|
141
|
+

|
142
|
+
|
143
|
+
We provide optimized post training kernels like DPO, ORPO, SimPO, and more which can reduce memory usage by up to 80%. You can easily use them as python modules.
|
144
|
+
|
145
|
+
```python
|
146
|
+
from liger_kernel.chunked_loss import LigerFusedLinearDPOLoss
|
147
|
+
orpo_loss = LigerFusedLinearORPOLoss()
|
148
|
+
y = orpo_loss(lm_head.weight, x, target)
|
149
|
+
```
|
150
|
+
|
151
|
+
|
139
152
|
## Examples
|
140
153
|
|
141
154
|
| **Use Case** | **Description** |
|
@@ -58,9 +58,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=c4OQVJmhNOloj0JYSEc0j_cQuBb
|
|
58
58
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=jko6oq_XQdBSmXubp05E-_YXOyhtB5Bj75dg5YNwOsE,7517
|
59
59
|
liger_kernel/triton/__init__.py,sha256=yfRe0zMb47QnqjecZWG7LnanfCTzeku7SgWRAwNVmzU,101
|
60
60
|
liger_kernel/triton/monkey_patch.py,sha256=5BcGKTtdqeYchypBIBopGIWPx1-cFALz7sOKoEsqXJ0,1584
|
61
|
-
liger_kernel_nightly-0.5.2.
|
62
|
-
liger_kernel_nightly-0.5.2.
|
63
|
-
liger_kernel_nightly-0.5.2.
|
64
|
-
liger_kernel_nightly-0.5.2.
|
65
|
-
liger_kernel_nightly-0.5.2.
|
66
|
-
liger_kernel_nightly-0.5.2.
|
61
|
+
liger_kernel_nightly-0.5.2.dev20241212060541.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
62
|
+
liger_kernel_nightly-0.5.2.dev20241212060541.dist-info/METADATA,sha256=J64c14dbQAzCW0-j89DnVcgt1VxXesKDC-szl0_2dvU,21001
|
63
|
+
liger_kernel_nightly-0.5.2.dev20241212060541.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
64
|
+
liger_kernel_nightly-0.5.2.dev20241212060541.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
|
65
|
+
liger_kernel_nightly-0.5.2.dev20241212060541.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
66
|
+
liger_kernel_nightly-0.5.2.dev20241212060541.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|