liger-kernel-nightly 0.5.2.dev20241212030605__py3-none-any.whl → 0.5.2.dev20241212033924__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- liger_kernel/chunked_loss/dpo_loss.py +12 -2
- liger_kernel/chunked_loss/fused_linear_preference.py +42 -9
- {liger_kernel_nightly-0.5.2.dev20241212030605.dist-info → liger_kernel_nightly-0.5.2.dev20241212033924.dist-info}/METADATA +1 -1
- {liger_kernel_nightly-0.5.2.dev20241212030605.dist-info → liger_kernel_nightly-0.5.2.dev20241212033924.dist-info}/RECORD +8 -8
- {liger_kernel_nightly-0.5.2.dev20241212030605.dist-info → liger_kernel_nightly-0.5.2.dev20241212033924.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.2.dev20241212030605.dist-info → liger_kernel_nightly-0.5.2.dev20241212033924.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.2.dev20241212030605.dist-info → liger_kernel_nightly-0.5.2.dev20241212033924.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.2.dev20241212030605.dist-info → liger_kernel_nightly-0.5.2.dev20241212033924.dist-info}/top_level.txt +0 -0
@@ -59,6 +59,7 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
|
|
59
59
|
weight,
|
60
60
|
target,
|
61
61
|
bias=None,
|
62
|
+
ref_input=None,
|
62
63
|
ref_weight=None,
|
63
64
|
ref_bias=None,
|
64
65
|
ignore_index=-100,
|
@@ -79,6 +80,7 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
|
|
79
80
|
compute_nll_loss=compute_nll_loss,
|
80
81
|
compiled=compiled,
|
81
82
|
use_ref_model=use_ref_model,
|
83
|
+
ref_input=ref_input,
|
82
84
|
ref_weight=ref_weight,
|
83
85
|
ref_bias=ref_bias,
|
84
86
|
)
|
@@ -86,7 +88,7 @@ class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
|
|
86
88
|
@staticmethod
|
87
89
|
def backward(ctx, *grad_output):
|
88
90
|
grads = LigerFusedLinearPreferenceBase.backward(ctx, grad_output)[:4]
|
89
|
-
return *grads, None, None, None, None, None, None, None
|
91
|
+
return *grads, None, None, None, None, None, None, None, None
|
90
92
|
|
91
93
|
|
92
94
|
class LigerFusedLinearDPOLoss(torch.nn.Module):
|
@@ -118,13 +120,21 @@ class LigerFusedLinearDPOLoss(torch.nn.Module):
|
|
118
120
|
self.use_ref_model = use_ref_model
|
119
121
|
|
120
122
|
def forward(
|
121
|
-
self,
|
123
|
+
self,
|
124
|
+
lin_weight,
|
125
|
+
_input,
|
126
|
+
target,
|
127
|
+
bias=None,
|
128
|
+
ref_input=None,
|
129
|
+
ref_weight=None,
|
130
|
+
ref_bias=None,
|
122
131
|
):
|
123
132
|
return LigerFusedLinearDPOFunction.apply(
|
124
133
|
_input,
|
125
134
|
lin_weight,
|
126
135
|
target,
|
127
136
|
bias,
|
137
|
+
ref_input,
|
128
138
|
ref_weight,
|
129
139
|
ref_bias,
|
130
140
|
self.ignore_index,
|
@@ -29,7 +29,7 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
29
29
|
compute_nll_loss=True,
|
30
30
|
compiled=True,
|
31
31
|
use_ref_model=False,
|
32
|
-
|
32
|
+
ref_input=None,
|
33
33
|
ref_weight=None,
|
34
34
|
ref_bias=None,
|
35
35
|
**loss_kwargs,
|
@@ -97,20 +97,26 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
97
97
|
**loss_kwargs,
|
98
98
|
)
|
99
99
|
|
100
|
-
def fused_fwd_bwd(input_chunk, target_chunk):
|
100
|
+
def fused_fwd_bwd(input_chunk, target_chunk, ref_input_chunk):
|
101
101
|
"""
|
102
102
|
Fused forward and backward pass for a chunk of input and target.
|
103
103
|
"""
|
104
104
|
if bias is not None:
|
105
105
|
return torch.func.grad_and_value(
|
106
106
|
compute_loss, argnums=(0, 1, 3), has_aux=True
|
107
|
-
)(
|
107
|
+
)(
|
108
|
+
input_chunk,
|
109
|
+
weight,
|
110
|
+
target_chunk,
|
111
|
+
bias,
|
112
|
+
ref_input_chunk=ref_input_chunk,
|
113
|
+
)
|
108
114
|
else:
|
109
115
|
return torch.func.grad_and_value(
|
110
116
|
compute_loss, argnums=(0, 1), has_aux=True
|
111
|
-
)(input_chunk, weight, target_chunk)
|
117
|
+
)(input_chunk, weight, target_chunk, ref_input_chunk=ref_input_chunk)
|
112
118
|
|
113
|
-
def accumulate_chunk(input_chunk, target_chunk):
|
119
|
+
def accumulate_chunk(input_chunk, target_chunk, ref_input_chunk=None):
|
114
120
|
if bias is not None:
|
115
121
|
(chunk_grad_input, chunk_grad_weight, chunk_grad_bias), (
|
116
122
|
chunk_loss,
|
@@ -122,7 +128,7 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
122
128
|
chunk_nll_loss,
|
123
129
|
*aux_outputs,
|
124
130
|
),
|
125
|
-
) = fused_fwd_bwd(input_chunk, target_chunk)
|
131
|
+
) = fused_fwd_bwd(input_chunk, target_chunk, ref_input_chunk)
|
126
132
|
grad_bias.add_(chunk_grad_bias) # accumulate bias gradient
|
127
133
|
else:
|
128
134
|
(chunk_grad_input, chunk_grad_weight), (
|
@@ -135,7 +141,7 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
135
141
|
chunk_nll_loss,
|
136
142
|
*aux_outputs,
|
137
143
|
),
|
138
|
-
) = fused_fwd_bwd(input_chunk, target_chunk)
|
144
|
+
) = fused_fwd_bwd(input_chunk, target_chunk, ref_input_chunk)
|
139
145
|
|
140
146
|
# Accumulate gradients
|
141
147
|
grad_weight.add_(chunk_grad_weight)
|
@@ -182,18 +188,43 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
182
188
|
_rejected_input_chunks = torch.chunk(_input[len_chosen:], chunks=chunks, dim=0)
|
183
189
|
_rejected_target_chunks = torch.chunk(target[len_chosen:], chunks=chunks, dim=0)
|
184
190
|
|
191
|
+
if use_ref_model:
|
192
|
+
_ref_chosen_input_chunks = torch.chunk(
|
193
|
+
ref_input[:len_chosen], chunks=chunks, dim=0
|
194
|
+
)
|
195
|
+
_ref_rejected_input_chunks = torch.chunk(
|
196
|
+
ref_input[len_chosen:], chunks=chunks, dim=0
|
197
|
+
)
|
198
|
+
|
185
199
|
for (
|
186
200
|
chosen_input_chunk,
|
187
201
|
rejected_input_chunk,
|
188
202
|
chosen_target_chunk,
|
189
203
|
rejected_target_chunk,
|
204
|
+
ref_chosen_input_chunk,
|
205
|
+
ref_rejected_input_chunk,
|
190
206
|
) in zip(
|
191
207
|
_chosen_input_chunks,
|
192
208
|
_rejected_input_chunks,
|
193
209
|
_chosen_target_chunks,
|
194
210
|
_rejected_target_chunks,
|
211
|
+
(
|
212
|
+
_ref_chosen_input_chunks
|
213
|
+
if use_ref_model
|
214
|
+
else [None] * len(_chosen_input_chunks)
|
215
|
+
),
|
216
|
+
(
|
217
|
+
_ref_rejected_input_chunks
|
218
|
+
if use_ref_model
|
219
|
+
else [None] * len(_rejected_input_chunks)
|
220
|
+
),
|
195
221
|
):
|
196
222
|
input_chunk = torch.cat([chosen_input_chunk, rejected_input_chunk], dim=0)
|
223
|
+
ref_input_chunk = (
|
224
|
+
torch.cat([ref_chosen_input_chunk, ref_rejected_input_chunk], dim=0)
|
225
|
+
if use_ref_model
|
226
|
+
else None
|
227
|
+
)
|
197
228
|
target_chunk = torch.cat(
|
198
229
|
[chosen_target_chunk, rejected_target_chunk], dim=0
|
199
230
|
)
|
@@ -202,9 +233,10 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
202
233
|
torch._dynamo.mark_dynamic(input_chunk, 1)
|
203
234
|
torch._dynamo.mark_dynamic(target_chunk, 1)
|
204
235
|
torch._dynamo.mark_dynamic(target, 1)
|
236
|
+
torch._dynamo.mark_dynamic(ref_input_chunk, 1) if use_ref_model else None
|
205
237
|
|
206
238
|
# accumulate loss, gradients, and metrics
|
207
|
-
accumulate_chunk(input_chunk, target_chunk)
|
239
|
+
accumulate_chunk(input_chunk, target_chunk, ref_input_chunk)
|
208
240
|
|
209
241
|
# combine grad_chosen_inputs and grad_rejected_inputs
|
210
242
|
grad_inputs = grad_chosen_inputs + grad_rejected_inputs
|
@@ -301,6 +333,7 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
301
333
|
beta=0.1,
|
302
334
|
compute_nll_loss=True,
|
303
335
|
use_ref_model=False,
|
336
|
+
ref_input_chunk=None,
|
304
337
|
ref_weight=None,
|
305
338
|
ref_bias=None,
|
306
339
|
**loss_kwargs,
|
@@ -357,7 +390,7 @@ class LigerFusedLinearPreferenceBase(torch.autograd.Function):
|
|
357
390
|
ref_rejected_logits,
|
358
391
|
ref_chosen_nll_loss,
|
359
392
|
) = LigerFusedLinearPreferenceBase.chunk_forward(
|
360
|
-
|
393
|
+
ref_input_chunk,
|
361
394
|
ref_weight,
|
362
395
|
target_chunk,
|
363
396
|
ref_bias,
|
@@ -4,10 +4,10 @@ liger_kernel/utils.py,sha256=HJa-xVKOohDn6pLVIx-Fv0V9h0QAL3qZGQNRICI-OpI,249
|
|
4
4
|
liger_kernel/chunked_loss/README.md,sha256=K6rucm6nqHpWCmxUOhBYcE3apwQxAy0TfRUippR7Icw,2243
|
5
5
|
liger_kernel/chunked_loss/__init__.py,sha256=R2wCcz4Y0kTAve926DH3k182XKezpXeACMHj05g9Mm8,346
|
6
6
|
liger_kernel/chunked_loss/cpo_loss.py,sha256=Qu1Ul2A12sp6CqIT-atPbHWFb_LLtINEA9mOpIRx_0g,3097
|
7
|
-
liger_kernel/chunked_loss/dpo_loss.py,sha256=
|
7
|
+
liger_kernel/chunked_loss/dpo_loss.py,sha256=9S67SzKkLyoBmHGx8bkmthSNHlCT2ikBy9CCdb7wGj0,4381
|
8
8
|
liger_kernel/chunked_loss/functional.py,sha256=9Gr-YXIuEzEJkBUhDx3G2fuQayckLor7cC7svhmPML4,549
|
9
9
|
liger_kernel/chunked_loss/fused_linear_distillation.py,sha256=2BH6DCPjsR2zS6zcwFPcIIZRhLF8SohjGdKsAJ_301o,10222
|
10
|
-
liger_kernel/chunked_loss/fused_linear_preference.py,sha256=
|
10
|
+
liger_kernel/chunked_loss/fused_linear_preference.py,sha256=AsovMdfsOjgWVxtDhZ_rXqpahMsKTg8YueXnZcHt1XQ,16376
|
11
11
|
liger_kernel/chunked_loss/orpo_loss.py,sha256=ZuKGjbkIYzV4UzvupNdq6vyxCp7-BztQkUt8ZnFvKos,3531
|
12
12
|
liger_kernel/chunked_loss/simpo_loss.py,sha256=Wa4LOlDG9PbJkOOkKg8hbKvnKgg7OTBz6-qIkwPK1yw,3275
|
13
13
|
liger_kernel/ops/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -58,9 +58,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=c4OQVJmhNOloj0JYSEc0j_cQuBb
|
|
58
58
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=jko6oq_XQdBSmXubp05E-_YXOyhtB5Bj75dg5YNwOsE,7517
|
59
59
|
liger_kernel/triton/__init__.py,sha256=yfRe0zMb47QnqjecZWG7LnanfCTzeku7SgWRAwNVmzU,101
|
60
60
|
liger_kernel/triton/monkey_patch.py,sha256=5BcGKTtdqeYchypBIBopGIWPx1-cFALz7sOKoEsqXJ0,1584
|
61
|
-
liger_kernel_nightly-0.5.2.
|
62
|
-
liger_kernel_nightly-0.5.2.
|
63
|
-
liger_kernel_nightly-0.5.2.
|
64
|
-
liger_kernel_nightly-0.5.2.
|
65
|
-
liger_kernel_nightly-0.5.2.
|
66
|
-
liger_kernel_nightly-0.5.2.
|
61
|
+
liger_kernel_nightly-0.5.2.dev20241212033924.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
62
|
+
liger_kernel_nightly-0.5.2.dev20241212033924.dist-info/METADATA,sha256=ayx2_ON0TY-xC2ba0fpG3x5Vgx5b_SQCIRx-qw455u8,20260
|
63
|
+
liger_kernel_nightly-0.5.2.dev20241212033924.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
64
|
+
liger_kernel_nightly-0.5.2.dev20241212033924.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
|
65
|
+
liger_kernel_nightly-0.5.2.dev20241212033924.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
66
|
+
liger_kernel_nightly-0.5.2.dev20241212033924.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|