liger-kernel-nightly 0.5.10.dev20250624183504__py3-none-any.whl → 0.6.3.dev20251121010306__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

Files changed (68) hide show
  1. liger_kernel/chunked_loss/__init__.py +1 -0
  2. liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
  3. liger_kernel/chunked_loss/dpo_loss.py +54 -3
  4. liger_kernel/chunked_loss/functional.py +2 -0
  5. liger_kernel/chunked_loss/fused_linear_distillation.py +13 -2
  6. liger_kernel/chunked_loss/fused_linear_ppo.py +4 -0
  7. liger_kernel/chunked_loss/grpo_loss.py +38 -4
  8. liger_kernel/chunked_loss/jsd_loss.py +23 -7
  9. liger_kernel/ops/cross_entropy.py +118 -62
  10. liger_kernel/ops/fused_add_rms_norm.py +412 -0
  11. liger_kernel/ops/fused_linear_cross_entropy.py +113 -21
  12. liger_kernel/ops/geglu.py +1 -1
  13. liger_kernel/ops/layer_norm.py +124 -89
  14. liger_kernel/ops/llama4_rope.py +225 -0
  15. liger_kernel/ops/poly_norm.py +386 -0
  16. liger_kernel/ops/rms_norm.py +2 -2
  17. liger_kernel/ops/rope.py +1 -1
  18. liger_kernel/ops/swiglu.py +1 -1
  19. liger_kernel/ops/tiled_mlp.py +136 -0
  20. liger_kernel/transformers/__init__.py +50 -0
  21. liger_kernel/transformers/cross_entropy.py +8 -3
  22. liger_kernel/transformers/experimental/__init__.py +5 -0
  23. liger_kernel/transformers/functional.py +38 -6
  24. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  25. liger_kernel/transformers/fused_linear_cross_entropy.py +16 -4
  26. liger_kernel/transformers/llama4_rope.py +93 -0
  27. liger_kernel/transformers/model/falcon_h1.py +122 -0
  28. liger_kernel/transformers/model/gemma.py +28 -8
  29. liger_kernel/transformers/model/gemma2.py +31 -8
  30. liger_kernel/transformers/model/gemma3.py +100 -110
  31. liger_kernel/transformers/model/glm4.py +18 -5
  32. liger_kernel/transformers/model/glm4v.py +163 -0
  33. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  34. liger_kernel/transformers/model/internvl.py +157 -0
  35. liger_kernel/transformers/model/llama.py +26 -7
  36. liger_kernel/transformers/model/llama4.py +121 -0
  37. liger_kernel/transformers/model/llava.py +18 -6
  38. liger_kernel/transformers/model/loss_utils.py +34 -3
  39. liger_kernel/transformers/model/mistral.py +17 -10
  40. liger_kernel/transformers/model/mixtral.py +24 -9
  41. liger_kernel/transformers/model/mllama.py +18 -7
  42. liger_kernel/transformers/model/olmo2.py +18 -5
  43. liger_kernel/transformers/model/output_classes.py +147 -0
  44. liger_kernel/transformers/model/paligemma.py +41 -5
  45. liger_kernel/transformers/model/phi3.py +24 -159
  46. liger_kernel/transformers/model/qwen2.py +26 -4
  47. liger_kernel/transformers/model/qwen2_5_vl.py +21 -8
  48. liger_kernel/transformers/model/qwen2_vl.py +24 -7
  49. liger_kernel/transformers/model/qwen3.py +22 -6
  50. liger_kernel/transformers/model/qwen3_moe.py +27 -7
  51. liger_kernel/transformers/model/qwen3_next.py +146 -0
  52. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  53. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  54. liger_kernel/transformers/model/smollm3.py +199 -0
  55. liger_kernel/transformers/model/smolvlm.py +158 -0
  56. liger_kernel/transformers/monkey_patch.py +1090 -116
  57. liger_kernel/transformers/multi_token_attention.py +1 -1
  58. liger_kernel/transformers/poly_norm.py +42 -0
  59. liger_kernel/transformers/rms_norm.py +7 -0
  60. liger_kernel/transformers/rope.py +43 -0
  61. liger_kernel/transformers/tiled_mlp.py +133 -0
  62. {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/METADATA +26 -24
  63. liger_kernel_nightly-0.6.3.dev20251121010306.dist-info/RECORD +116 -0
  64. liger_kernel_nightly-0.5.10.dev20250624183504.dist-info/RECORD +0 -95
  65. {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/LICENSE +0 -0
  66. {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/NOTICE +0 -0
  67. {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/WHEEL +0 -0
  68. {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.3.dev20251121010306.dist-info}/top_level.txt +0 -0
@@ -4,11 +4,12 @@ from typing import Union
4
4
 
5
5
  import torch
6
6
 
7
- from transformers.modeling_outputs import MoeCausalLMOutputWithPast
8
7
  from transformers.modeling_outputs import MoeModelOutputWithPast
9
8
  from transformers.models.mixtral.modeling_mixtral import load_balancing_loss_func
10
9
 
11
10
  from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerMoeCausalLMOutputWithPast
12
13
 
13
14
 
14
15
  def lce_forward(
@@ -26,8 +27,9 @@ def lce_forward(
26
27
  cache_position: Optional[torch.LongTensor] = None,
27
28
  logits_to_keep: Union[int, torch.Tensor] = 0,
28
29
  skip_logits: Optional[bool] = None,
30
+ return_dict: Optional[bool] = None,
29
31
  **kwargs,
30
- ) -> MoeCausalLMOutputWithPast:
32
+ ) -> LigerMoeCausalLMOutputWithPast:
31
33
  r"""
32
34
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
33
35
  Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
@@ -64,10 +66,10 @@ def lce_forward(
64
66
  output_router_logits = (
65
67
  output_router_logits if output_router_logits is not None else self.config.output_router_logits
66
68
  )
67
-
68
69
  output_hidden_states = (
69
70
  output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
70
71
  )
72
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
71
73
 
72
74
  # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
73
75
  outputs: MoeModelOutputWithPast = self.model(
@@ -92,12 +94,14 @@ def lce_forward(
92
94
  shift_labels = kwargs.pop("shift_labels", None)
93
95
  logits = None
94
96
  loss = None
97
+ token_accuracy = None
95
98
 
96
99
  if skip_logits is None:
97
100
  skip_logits = self.training and (labels is not None or shift_labels is not None)
98
101
 
102
+ # Compute loss
99
103
  if skip_logits:
100
- loss = LigerForCausalLMLoss(
104
+ result = LigerForCausalLMLoss(
101
105
  hidden_states=kept_hidden_states,
102
106
  lm_head_weight=self.lm_head.weight,
103
107
  labels=labels,
@@ -105,10 +109,17 @@ def lce_forward(
105
109
  hidden_size=self.config.hidden_size,
106
110
  **kwargs,
107
111
  )
112
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
108
113
  else: # if in inference model materialize logits
109
114
  logits = self.lm_head(kept_hidden_states)
110
- if labels is not None:
111
- loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
115
+ if labels is not None or shift_labels is not None:
116
+ loss = self.loss_function(
117
+ logits=logits,
118
+ labels=labels,
119
+ shift_labels=shift_labels,
120
+ vocab_size=self.vocab_size,
121
+ **kwargs,
122
+ )
112
123
 
113
124
  aux_loss = None
114
125
  if output_router_logits:
@@ -121,7 +132,15 @@ def lce_forward(
121
132
  if labels is not None:
122
133
  loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
123
134
 
124
- return MoeCausalLMOutputWithPast(
135
+ if not return_dict:
136
+ output = (logits,) + outputs[1:]
137
+ output = ((aux_loss,) + output) if aux_loss is not None else output
138
+ output = ((loss,) + output) if loss is not None else output
139
+ output = output + (token_accuracy,) if token_accuracy is not None else output
140
+ return output
141
+
142
+ # Return custom output class with accuracy field
143
+ return LigerMoeCausalLMOutputWithPast(
125
144
  loss=loss,
126
145
  aux_loss=aux_loss,
127
146
  logits=logits,
@@ -129,4 +148,5 @@ def lce_forward(
129
148
  hidden_states=outputs.hidden_states,
130
149
  attentions=outputs.attentions,
131
150
  router_logits=outputs.router_logits,
151
+ token_accuracy=token_accuracy,
132
152
  )
@@ -0,0 +1,146 @@
1
+ from typing import TYPE_CHECKING
2
+ from typing import List
3
+ from typing import Optional
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.modeling_outputs import MoeModelOutputWithPast
9
+
10
+ if TYPE_CHECKING:
11
+ from transformers.models.qwen3_next.modeling_qwen3_next import load_balancing_loss_func
12
+
13
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
14
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
15
+ from liger_kernel.transformers.model.output_classes import LigerMoeCausalLMOutputWithPast
16
+
17
+
18
+ def lce_forward(
19
+ self,
20
+ input_ids: Optional[torch.LongTensor] = None,
21
+ attention_mask: Optional[torch.Tensor] = None,
22
+ position_ids: Optional[torch.LongTensor] = None,
23
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
24
+ inputs_embeds: Optional[torch.FloatTensor] = None,
25
+ labels: Optional[torch.LongTensor] = None,
26
+ use_cache: Optional[bool] = None,
27
+ output_attentions: Optional[bool] = None,
28
+ output_hidden_states: Optional[bool] = None,
29
+ output_router_logits: Optional[bool] = None,
30
+ cache_position: Optional[torch.LongTensor] = None,
31
+ logits_to_keep: Union[int, torch.Tensor] = 0,
32
+ skip_logits: Optional[bool] = None,
33
+ return_dict: Optional[bool] = None,
34
+ **kwargs,
35
+ ) -> LigerMoeCausalLMOutputWithPast:
36
+ r"""
37
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
38
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
39
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
40
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
41
+
42
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
43
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
44
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
45
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
46
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
47
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
48
+
49
+ Returns:
50
+
51
+ Example:
52
+
53
+ ```python
54
+ >>> from transformers import AutoModelForCausalLM, AutoTokenizer
55
+
56
+ >>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Next-80B-A3B-Instruct")
57
+ >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Next-80B-A3B-Instruct")
58
+
59
+ >>> prompt = "Give me a short introduction to large language model."
60
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
61
+
62
+ >>> # Generate
63
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
64
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
65
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
66
+ ```"""
67
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
68
+ output_router_logits = (
69
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
70
+ )
71
+ output_hidden_states = (
72
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
73
+ )
74
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
75
+
76
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
77
+ outputs: MoeModelOutputWithPast = self.model(
78
+ input_ids=input_ids,
79
+ attention_mask=attention_mask,
80
+ position_ids=position_ids,
81
+ past_key_values=past_key_values,
82
+ inputs_embeds=inputs_embeds,
83
+ use_cache=use_cache,
84
+ output_attentions=output_attentions,
85
+ output_hidden_states=output_hidden_states,
86
+ output_router_logits=output_router_logits,
87
+ cache_position=cache_position,
88
+ **kwargs,
89
+ )
90
+
91
+ hidden_states = outputs.last_hidden_state
92
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
93
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
94
+ kept_hidden_states = hidden_states[:, slice_indices, :]
95
+
96
+ shift_labels = kwargs.pop("shift_labels", None)
97
+ logits = None
98
+ loss = None
99
+ token_accuracy = None
100
+
101
+ if skip_logits is None:
102
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
103
+
104
+ if skip_logits:
105
+ result = LigerForCausalLMLoss(
106
+ hidden_states=kept_hidden_states,
107
+ lm_head_weight=self.lm_head.weight,
108
+ labels=labels,
109
+ shift_labels=shift_labels,
110
+ hidden_size=self.config.hidden_size,
111
+ **kwargs,
112
+ )
113
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
114
+ else: # if in inference model materialize logits
115
+ logits = self.lm_head(kept_hidden_states)
116
+ if labels is not None or shift_labels is not None:
117
+ loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
118
+
119
+ aux_loss = None
120
+ if output_router_logits:
121
+ aux_loss = load_balancing_loss_func(
122
+ outputs.router_logits,
123
+ self.num_experts,
124
+ self.num_experts_per_tok,
125
+ attention_mask,
126
+ )
127
+ if labels is not None:
128
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
129
+
130
+ if not return_dict:
131
+ output = (logits,) + outputs[1:]
132
+ output = ((aux_loss,) + output) if aux_loss is not None else output
133
+ output = ((loss,) + output) if loss is not None else output
134
+ output = output + (token_accuracy,) if token_accuracy is not None else output
135
+ return output
136
+
137
+ return LigerMoeCausalLMOutputWithPast(
138
+ loss=loss,
139
+ aux_loss=aux_loss,
140
+ logits=logits,
141
+ past_key_values=outputs.past_key_values,
142
+ hidden_states=outputs.hidden_states,
143
+ attentions=outputs.attentions,
144
+ router_logits=outputs.router_logits,
145
+ token_accuracy=token_accuracy,
146
+ )
@@ -0,0 +1,150 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.utils import can_return_tuple
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerQwen3VLCausalLMOutputWithPast
13
+
14
+
15
+ @can_return_tuple
16
+ def lce_forward(
17
+ self,
18
+ input_ids: torch.LongTensor = None,
19
+ attention_mask: Optional[torch.Tensor] = None,
20
+ position_ids: Optional[torch.LongTensor] = None,
21
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
22
+ inputs_embeds: Optional[torch.FloatTensor] = None,
23
+ labels: Optional[torch.LongTensor] = None,
24
+ use_cache: Optional[bool] = None,
25
+ output_attentions: Optional[bool] = None,
26
+ output_hidden_states: Optional[bool] = None,
27
+ return_dict: Optional[bool] = None,
28
+ pixel_values: Optional[torch.Tensor] = None,
29
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
30
+ image_grid_thw: Optional[torch.LongTensor] = None,
31
+ video_grid_thw: Optional[torch.LongTensor] = None,
32
+ rope_deltas: Optional[torch.LongTensor] = None,
33
+ cache_position: Optional[torch.LongTensor] = None,
34
+ second_per_grid_ts: Optional[torch.Tensor] = None,
35
+ skip_logits: Optional[bool] = None,
36
+ **kwargs,
37
+ ) -> Union[Tuple, LigerQwen3VLCausalLMOutputWithPast]:
38
+ """
39
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
40
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
41
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
42
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
43
+ pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)):
44
+ The tensors corresponding to the input videos. Pixel values can be obtained using
45
+ [`AutoImageProcessor`]. See [`Qwen2_5_VLImageProcessor.__call__`] for details. [`Qwen2_5_VLProcessor`] uses
46
+ [`Qwen2_5_VLImageProcessor`] for processing videos.
47
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
48
+ The temporal, height and width of feature shape of each image in LLM.
49
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
50
+ The temporal, height and width of feature shape of each video in LLM.
51
+ rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
52
+ The rope index difference between sequence length and multimodal rope.
53
+ second_per_grid_ts (`torch.Tensor` of shape `(num_videos)`, *optional*):
54
+ The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs.
55
+ Example:
56
+ ```python
57
+ >>> from PIL import Image
58
+ >>> import requests
59
+ >>> from transformers import AutoProcessor, Qwen3VLForConditionalGeneration
60
+ >>> model = Qwen3VLForConditionalGeneration.from_pretrained("Qwen/Qwen3-VL")
61
+ >>> processor = AutoProcessor.from_pretrained("Qwen/Qwen3-VL")
62
+ >>> messages = [
63
+ {
64
+ "role": "user",
65
+ "content": [
66
+ {"type": "image"},
67
+ {"type": "text", "text": "What is shown in this image?"},
68
+ ],
69
+ },
70
+ ]
71
+ >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
72
+ >>> image = Image.open(requests.get(url, stream=True).raw)
73
+ >>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
74
+ >>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
75
+ >>> # Generate
76
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
77
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
78
+ "The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
79
+ ```"""
80
+
81
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
82
+ output_hidden_states = (
83
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
84
+ )
85
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
86
+
87
+ outputs = self.model(
88
+ input_ids=input_ids,
89
+ pixel_values=pixel_values,
90
+ pixel_values_videos=pixel_values_videos,
91
+ image_grid_thw=image_grid_thw,
92
+ video_grid_thw=video_grid_thw,
93
+ second_per_grid_ts=second_per_grid_ts,
94
+ position_ids=position_ids,
95
+ attention_mask=attention_mask,
96
+ past_key_values=past_key_values,
97
+ inputs_embeds=inputs_embeds,
98
+ use_cache=use_cache,
99
+ output_attentions=output_attentions,
100
+ output_hidden_states=output_hidden_states,
101
+ return_dict=return_dict,
102
+ cache_position=cache_position,
103
+ **kwargs,
104
+ )
105
+
106
+ hidden_states = outputs[0]
107
+
108
+ shift_labels = kwargs.pop("shift_labels", None)
109
+ loss = None
110
+ logits = None
111
+ token_accuracy = None
112
+
113
+ if skip_logits and labels is None and shift_labels is None:
114
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
115
+
116
+ if skip_logits is None:
117
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
118
+
119
+ if skip_logits:
120
+ result = LigerForCausalLMLoss(
121
+ hidden_states=hidden_states,
122
+ lm_head_weight=self.lm_head.weight,
123
+ labels=labels,
124
+ shift_labels=shift_labels,
125
+ hidden_size=self.config.text_config.hidden_size,
126
+ **kwargs,
127
+ )
128
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
129
+ else:
130
+ logits = self.lm_head(hidden_states)
131
+
132
+ loss = None
133
+ if labels is not None:
134
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size)
135
+
136
+ if not return_dict:
137
+ output = (logits,) + outputs[1:]
138
+ output = (loss,) + output if loss is not None else output
139
+ output = output + (token_accuracy,) if token_accuracy is not None else output
140
+ return output
141
+
142
+ return LigerQwen3VLCausalLMOutputWithPast(
143
+ loss=loss,
144
+ logits=logits,
145
+ past_key_values=outputs.past_key_values,
146
+ hidden_states=outputs.hidden_states,
147
+ attentions=outputs.attentions,
148
+ rope_deltas=outputs.rope_deltas,
149
+ token_accuracy=token_accuracy,
150
+ )
@@ -0,0 +1,126 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.models.qwen3_vl_moe.modeling_qwen3_vl_moe import load_balancing_loss_func
9
+ from transformers.utils import can_return_tuple
10
+
11
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
12
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
13
+ from liger_kernel.transformers.model.output_classes import LigerQwen3VLMoeCausalLMOutputWithPast
14
+
15
+
16
+ @can_return_tuple
17
+ def lce_forward(
18
+ self,
19
+ input_ids: torch.LongTensor = None,
20
+ attention_mask: Optional[torch.Tensor] = None,
21
+ position_ids: Optional[torch.LongTensor] = None,
22
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
23
+ inputs_embeds: Optional[torch.FloatTensor] = None,
24
+ labels: Optional[torch.LongTensor] = None,
25
+ use_cache: Optional[bool] = None,
26
+ output_attentions: Optional[bool] = None,
27
+ output_hidden_states: Optional[bool] = None,
28
+ return_dict: Optional[bool] = None,
29
+ pixel_values: Optional[torch.Tensor] = None,
30
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
31
+ image_grid_thw: Optional[torch.LongTensor] = None,
32
+ video_grid_thw: Optional[torch.LongTensor] = None,
33
+ rope_deltas: Optional[torch.LongTensor] = None,
34
+ cache_position: Optional[torch.LongTensor] = None,
35
+ second_per_grid_ts: Optional[torch.Tensor] = None,
36
+ skip_logits: Optional[bool] = None,
37
+ **kwargs,
38
+ ) -> Union[Tuple, LigerQwen3VLMoeCausalLMOutputWithPast]:
39
+ """
40
+ Qwen3-VL-MoE forward with fused linear cross entropy support mirroring Qwen3-VL behaviour.
41
+ """
42
+
43
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
44
+ output_hidden_states = (
45
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
46
+ )
47
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
48
+
49
+ outputs = self.model(
50
+ input_ids=input_ids,
51
+ pixel_values=pixel_values,
52
+ pixel_values_videos=pixel_values_videos,
53
+ image_grid_thw=image_grid_thw,
54
+ video_grid_thw=video_grid_thw,
55
+ second_per_grid_ts=second_per_grid_ts,
56
+ position_ids=position_ids,
57
+ attention_mask=attention_mask,
58
+ past_key_values=past_key_values,
59
+ inputs_embeds=inputs_embeds,
60
+ use_cache=use_cache,
61
+ output_attentions=output_attentions,
62
+ output_hidden_states=output_hidden_states,
63
+ return_dict=return_dict,
64
+ cache_position=cache_position,
65
+ **kwargs,
66
+ )
67
+
68
+ hidden_states = outputs[0]
69
+
70
+ shift_labels = kwargs.pop("shift_labels", None)
71
+ loss = None
72
+ logits = None
73
+ token_accuracy = None
74
+
75
+ if skip_logits and labels is None and shift_labels is None:
76
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
77
+
78
+ if skip_logits is None:
79
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
80
+
81
+ if skip_logits:
82
+ result = LigerForCausalLMLoss(
83
+ hidden_states=hidden_states,
84
+ lm_head_weight=self.lm_head.weight,
85
+ labels=labels,
86
+ shift_labels=shift_labels,
87
+ hidden_size=self.config.text_config.hidden_size,
88
+ **kwargs,
89
+ )
90
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
91
+ else:
92
+ logits = self.lm_head(hidden_states)
93
+
94
+ if labels is not None:
95
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size)
96
+
97
+ # Compute auxiliary load-balancing loss for MoE when requested
98
+ aux_loss = None
99
+ if kwargs.get("output_router_logits", False):
100
+ aux_loss = load_balancing_loss_func(
101
+ outputs.router_logits,
102
+ self.config.text_config.num_experts,
103
+ self.config.text_config.num_experts_per_tok,
104
+ attention_mask,
105
+ )
106
+ # If we computed training loss, add the scaled aux loss to it
107
+ if loss is not None and aux_loss is not None:
108
+ loss = loss + self.config.text_config.router_aux_loss_coef * aux_loss.to(loss.device)
109
+
110
+ if not return_dict:
111
+ output = (logits,) + outputs[1:]
112
+ output = (loss,) + output if loss is not None else output
113
+ output = output + (aux_loss,) if aux_loss is not None else output
114
+ output = output + (token_accuracy,) if token_accuracy is not None else output
115
+ return output
116
+
117
+ return LigerQwen3VLMoeCausalLMOutputWithPast(
118
+ loss=loss,
119
+ logits=logits,
120
+ past_key_values=outputs.past_key_values,
121
+ hidden_states=outputs.hidden_states,
122
+ attentions=outputs.attentions,
123
+ rope_deltas=outputs.rope_deltas,
124
+ aux_loss=aux_loss,
125
+ token_accuracy=token_accuracy,
126
+ )