liger-kernel-nightly 0.5.10.dev20250606224356__py3-none-any.whl → 0.5.10.dev20250609223356__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/transformers/model/llava.py +83 -153
- liger_kernel/transformers/monkey_patch.py +4 -3
- {liger_kernel_nightly-0.5.10.dev20250606224356.dist-info → liger_kernel_nightly-0.5.10.dev20250609223356.dist-info}/METADATA +1 -1
- {liger_kernel_nightly-0.5.10.dev20250606224356.dist-info → liger_kernel_nightly-0.5.10.dev20250609223356.dist-info}/RECORD +8 -8
- {liger_kernel_nightly-0.5.10.dev20250606224356.dist-info → liger_kernel_nightly-0.5.10.dev20250609223356.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.10.dev20250606224356.dist-info → liger_kernel_nightly-0.5.10.dev20250609223356.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.10.dev20250606224356.dist-info → liger_kernel_nightly-0.5.10.dev20250609223356.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.10.dev20250606224356.dist-info → liger_kernel_nightly-0.5.10.dev20250609223356.dist-info}/top_level.txt +0 -0
@@ -7,10 +7,9 @@ import torch
|
|
7
7
|
|
8
8
|
from torch.nn import CrossEntropyLoss
|
9
9
|
from transformers.models.llava.modeling_llava import LlavaCausalLMOutputWithPast
|
10
|
-
from transformers.utils import is_torchdynamo_compiling
|
11
|
-
from transformers.utils.deprecation import deprecate_kwarg
|
12
10
|
|
13
11
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
12
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
14
13
|
|
15
14
|
|
16
15
|
def lce_forward_deprecated(
|
@@ -28,6 +27,11 @@ def lce_forward_deprecated(
|
|
28
27
|
output_attentions: Optional[bool] = None,
|
29
28
|
output_hidden_states: Optional[bool] = None,
|
30
29
|
return_dict: Optional[bool] = None,
|
30
|
+
cache_position: Optional[torch.LongTensor] = None,
|
31
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
32
|
+
image_sizes: torch.Tensor = None,
|
33
|
+
skip_logits: Optional[bool] = None,
|
34
|
+
**lm_kwargs,
|
31
35
|
) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
|
32
36
|
r"""
|
33
37
|
Args:
|
@@ -36,10 +40,12 @@ def lce_forward_deprecated(
|
|
36
40
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
37
41
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
38
42
|
|
39
|
-
|
40
|
-
|
43
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
44
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
41
45
|
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
42
46
|
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
47
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
48
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
43
49
|
|
44
50
|
|
45
51
|
Returns:
|
@@ -65,7 +71,6 @@ def lce_forward_deprecated(
|
|
65
71
|
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
66
72
|
"USER: \nWhat's the content of the image? ASSISTANT: The image features a busy city street with a stop sign prominently displayed"
|
67
73
|
```"""
|
68
|
-
|
69
74
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
70
75
|
output_hidden_states = (
|
71
76
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
@@ -89,73 +94,24 @@ def lce_forward_deprecated(
|
|
89
94
|
)
|
90
95
|
|
91
96
|
if inputs_embeds is None:
|
92
|
-
# 1. Extra the input embeddings
|
93
97
|
inputs_embeds = self.get_input_embeddings()(input_ids)
|
94
98
|
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
selected_image_feature = selected_image_feature[:, 1:]
|
103
|
-
elif vision_feature_select_strategy == "full":
|
104
|
-
selected_image_feature = selected_image_feature
|
105
|
-
else:
|
106
|
-
raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}")
|
107
|
-
|
108
|
-
image_features = self.multi_modal_projector(selected_image_feature)
|
109
|
-
inputs_embeds = inputs_embeds.to(image_features.dtype)
|
110
|
-
inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features(
|
111
|
-
image_features, inputs_embeds, input_ids, attention_mask, labels
|
112
|
-
)
|
113
|
-
|
114
|
-
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
|
115
|
-
# generation with cache
|
116
|
-
elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
|
117
|
-
# Retrieve the first layer to inspect the logits and mask out the hidden states
|
118
|
-
# that are set to 0
|
119
|
-
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
|
120
|
-
|
121
|
-
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
|
122
|
-
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
|
123
|
-
|
124
|
-
# Get the target length
|
125
|
-
target_length = input_ids.shape[1]
|
126
|
-
past_length = first_layer_past_key_value.shape[-1]
|
127
|
-
|
128
|
-
extended_attention_mask = torch.ones(
|
129
|
-
(attention_mask.shape[0], past_length),
|
130
|
-
dtype=attention_mask.dtype,
|
131
|
-
device=attention_mask.device,
|
132
|
-
)
|
133
|
-
|
134
|
-
# Filter out only the tokens that can be un-attended, this can happen
|
135
|
-
# if one uses Llava + Fused modules where the cache on the
|
136
|
-
# first iteration is already big enough, or if one passes custom cache
|
137
|
-
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
|
138
|
-
new_batch_index = batch_index[valid_indices]
|
139
|
-
new_non_attended_tokens = non_attended_tokens[valid_indices]
|
140
|
-
|
141
|
-
# Zero-out the places where we don't need to attend
|
142
|
-
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
|
143
|
-
|
144
|
-
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
|
145
|
-
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
146
|
-
|
147
|
-
# TODO: @raushan retain only the new behavior after v4.47
|
148
|
-
elif image_features is not None:
|
149
|
-
n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
|
150
|
-
n_image_features = image_features.shape[0] * image_features.shape[1]
|
99
|
+
if pixel_values is not None:
|
100
|
+
image_features = self.get_image_features(
|
101
|
+
pixel_values=pixel_values,
|
102
|
+
vision_feature_layer=vision_feature_layer,
|
103
|
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
104
|
+
image_sizes=image_sizes,
|
105
|
+
)
|
151
106
|
|
152
|
-
|
107
|
+
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
|
108
|
+
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
|
109
|
+
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
|
110
|
+
n_image_tokens = (input_ids == self.config.image_token_index).sum()
|
111
|
+
n_image_features = image_features.shape[0] * image_features.shape[1]
|
153
112
|
raise ValueError(
|
154
113
|
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
155
114
|
)
|
156
|
-
special_image_mask = (
|
157
|
-
(input_ids == self.config.image_token_index).unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
|
158
|
-
)
|
159
115
|
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
160
116
|
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
161
117
|
|
@@ -168,13 +124,19 @@ def lce_forward_deprecated(
|
|
168
124
|
output_attentions=output_attentions,
|
169
125
|
output_hidden_states=output_hidden_states,
|
170
126
|
return_dict=return_dict,
|
127
|
+
cache_position=cache_position,
|
128
|
+
logits_to_keep=logits_to_keep,
|
129
|
+
**lm_kwargs,
|
171
130
|
)
|
172
131
|
hidden_states = outputs[0]
|
173
132
|
|
174
133
|
loss = None
|
175
134
|
logits = None
|
176
135
|
|
177
|
-
|
136
|
+
# Overwrite skip_logits, since llava never materializes logits
|
137
|
+
skip_logits = labels is not None
|
138
|
+
|
139
|
+
if skip_logits:
|
178
140
|
# Shift so that tokens < n predict n
|
179
141
|
if attention_mask is not None:
|
180
142
|
# we use the input attention mask to shift the logits and labels, because it is 2D.
|
@@ -189,21 +151,34 @@ def lce_forward_deprecated(
|
|
189
151
|
shift_labels = labels[..., 1:].contiguous()
|
190
152
|
|
191
153
|
lce = LigerFusedLinearCrossEntropyLoss()
|
192
|
-
loss = lce(
|
154
|
+
loss = lce(
|
155
|
+
self.language_model.lm_head.weight,
|
156
|
+
shift_hidden_states.view(-1, shift_hidden_states.size(-1)),
|
157
|
+
shift_labels.view(-1).to(shift_hidden_states.device),
|
158
|
+
)
|
193
159
|
else:
|
194
160
|
logits = self.language_model.lm_head(hidden_states)
|
195
161
|
if labels is not None:
|
196
|
-
#
|
162
|
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
163
|
+
logits = logits.float()
|
164
|
+
shift_logits = logits[..., :-1, :]
|
165
|
+
shift_labels = labels[..., 1:]
|
197
166
|
if attention_mask is not None:
|
198
|
-
|
199
|
-
|
200
|
-
|
167
|
+
# we use the input attention mask to shift the logits and labels, because it is 2D.
|
168
|
+
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
|
169
|
+
shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
|
170
|
+
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
|
171
|
+
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
|
201
172
|
else:
|
202
|
-
shift_logits =
|
203
|
-
shift_labels =
|
173
|
+
shift_logits = shift_logits.contiguous()
|
174
|
+
shift_labels = shift_labels.contiguous()
|
204
175
|
# Flatten the tokens
|
205
176
|
loss_fct = CrossEntropyLoss()
|
206
|
-
|
177
|
+
|
178
|
+
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
|
179
|
+
flat_labels = shift_labels.view(-1).to(shift_logits.device)
|
180
|
+
loss = loss_fct(flat_logits, flat_labels)
|
181
|
+
|
207
182
|
if not return_dict:
|
208
183
|
# NOTE: This part has not been tested.
|
209
184
|
output = outputs[1:]
|
@@ -215,10 +190,9 @@ def lce_forward_deprecated(
|
|
215
190
|
past_key_values=outputs.past_key_values,
|
216
191
|
hidden_states=outputs.hidden_states,
|
217
192
|
attentions=outputs.attentions,
|
193
|
+
image_hidden_states=image_features if pixel_values is not None else None,
|
218
194
|
)
|
219
195
|
|
220
|
-
|
221
|
-
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
222
196
|
def lce_forward(
|
223
197
|
self,
|
224
198
|
input_ids: torch.LongTensor = None,
|
@@ -292,103 +266,59 @@ def lce_forward(
|
|
292
266
|
else self.config.vision_feature_select_strategy
|
293
267
|
)
|
294
268
|
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
if pixel_values is not None and inputs_embeds is not None:
|
299
|
-
raise ValueError(
|
300
|
-
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
|
301
|
-
)
|
302
|
-
|
303
|
-
if inputs_embeds is None:
|
304
|
-
inputs_embeds = self.get_input_embeddings()(input_ids)
|
305
|
-
|
306
|
-
if pixel_values is not None:
|
307
|
-
image_features = self.get_image_features(
|
308
|
-
pixel_values=pixel_values,
|
309
|
-
vision_feature_layer=vision_feature_layer,
|
310
|
-
vision_feature_select_strategy=vision_feature_select_strategy,
|
311
|
-
image_sizes=image_sizes,
|
312
|
-
)
|
313
|
-
|
314
|
-
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
|
315
|
-
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
|
316
|
-
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
|
317
|
-
n_image_tokens = (input_ids == self.config.image_token_index).sum()
|
318
|
-
n_image_features = image_features.shape[0] * image_features.shape[1]
|
319
|
-
raise ValueError(
|
320
|
-
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
321
|
-
)
|
322
|
-
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
323
|
-
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
324
|
-
|
325
|
-
outputs = self.language_model.model(
|
269
|
+
outputs = self.model(
|
270
|
+
input_ids=input_ids,
|
271
|
+
pixel_values=pixel_values,
|
326
272
|
attention_mask=attention_mask,
|
327
273
|
position_ids=position_ids,
|
328
274
|
past_key_values=past_key_values,
|
329
275
|
inputs_embeds=inputs_embeds,
|
276
|
+
vision_feature_layer=vision_feature_layer,
|
277
|
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
330
278
|
use_cache=use_cache,
|
331
279
|
output_attentions=output_attentions,
|
332
280
|
output_hidden_states=output_hidden_states,
|
333
|
-
return_dict=
|
281
|
+
return_dict=True,
|
334
282
|
cache_position=cache_position,
|
335
|
-
|
283
|
+
image_sizes=image_sizes,
|
336
284
|
**lm_kwargs,
|
337
285
|
)
|
338
286
|
hidden_states = outputs[0]
|
287
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
288
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
289
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
339
290
|
|
340
|
-
|
291
|
+
shift_labels = lm_kwargs.pop("shift_labels", None)
|
341
292
|
logits = None
|
293
|
+
loss = None
|
342
294
|
|
343
|
-
|
344
|
-
|
295
|
+
if skip_logits and labels is None and shift_labels is None:
|
296
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
345
297
|
|
346
|
-
if skip_logits:
|
347
|
-
#
|
348
|
-
|
349
|
-
# we use the input attention mask to shift the logits and labels, because it is 2D.
|
350
|
-
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
|
351
|
-
shift_attention_mask = attention_mask[:, -(hidden_states.shape[1] - 1) :].to(hidden_states.device)
|
352
|
-
shift_hidden_states = hidden_states[..., :-1, :][
|
353
|
-
shift_attention_mask.to(hidden_states.device) != 0
|
354
|
-
].contiguous()
|
355
|
-
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
|
356
|
-
else:
|
357
|
-
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
358
|
-
shift_labels = labels[..., 1:].contiguous()
|
298
|
+
if skip_logits is None:
|
299
|
+
# By default, if in training mode, don't materialize logits
|
300
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
359
301
|
|
360
|
-
|
361
|
-
loss =
|
362
|
-
|
363
|
-
|
364
|
-
|
302
|
+
if skip_logits:
|
303
|
+
loss = LigerForCausalLMLoss(
|
304
|
+
hidden_states=kept_hidden_states,
|
305
|
+
lm_head_weight=self.lm_head.weight,
|
306
|
+
labels=labels,
|
307
|
+
shift_labels=shift_labels,
|
308
|
+
hidden_size=self.config.text_config.hidden_size,
|
309
|
+
**lm_kwargs,
|
365
310
|
)
|
311
|
+
|
366
312
|
else:
|
367
|
-
logits = self.
|
313
|
+
logits = self.lm_head(kept_hidden_states)
|
368
314
|
if labels is not None:
|
369
|
-
|
370
|
-
|
371
|
-
|
372
|
-
shift_labels = labels[..., 1:]
|
373
|
-
if attention_mask is not None:
|
374
|
-
# we use the input attention mask to shift the logits and labels, because it is 2D.
|
375
|
-
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
|
376
|
-
shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
|
377
|
-
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
|
378
|
-
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
|
379
|
-
else:
|
380
|
-
shift_logits = shift_logits.contiguous()
|
381
|
-
shift_labels = shift_labels.contiguous()
|
382
|
-
# Flatten the tokens
|
383
|
-
loss_fct = CrossEntropyLoss()
|
315
|
+
loss = self.loss_function(
|
316
|
+
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
|
317
|
+
)
|
384
318
|
|
385
|
-
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
|
386
|
-
flat_labels = shift_labels.view(-1).to(shift_logits.device)
|
387
|
-
loss = loss_fct(flat_logits, flat_labels)
|
388
319
|
|
389
320
|
if not return_dict:
|
390
|
-
|
391
|
-
output = outputs[1:]
|
321
|
+
output = (logits,) + outputs[1:]
|
392
322
|
return (loss,) + output if loss is not None else output
|
393
323
|
|
394
324
|
return LlavaCausalLMOutputWithPast(
|
@@ -397,5 +327,5 @@ def lce_forward(
|
|
397
327
|
past_key_values=outputs.past_key_values,
|
398
328
|
hidden_states=outputs.hidden_states,
|
399
329
|
attentions=outputs.attentions,
|
400
|
-
image_hidden_states=
|
330
|
+
image_hidden_states=outputs.image_hidden_states,
|
401
331
|
)
|
@@ -314,13 +314,14 @@ def apply_liger_kernel_to_llava(
|
|
314
314
|
logger.warning(TRANSFORMER_DEPRECATION_WARNING)
|
315
315
|
modeling_llava.nn.CrossEntropyLoss = LigerCrossEntropyLoss
|
316
316
|
if fused_linear_cross_entropy:
|
317
|
-
if transformer_version >= version.parse("4.
|
317
|
+
if transformer_version >= version.parse("4.52.0"):
|
318
318
|
modeling_llava.LlavaForConditionalGeneration.forward = llava_lce_forward
|
319
|
+
elif transformer_version >= version.parse("4.49.0") and transformer_version < version.parse("4.52.0"):
|
320
|
+
modeling_llava.LlavaForConditionalGeneration.forward = llava_lce_forward_deprecated
|
319
321
|
else: # if version < 4.49.0
|
320
322
|
logger.warning(
|
321
|
-
"
|
323
|
+
"The latest version of Liger does not support transformers < 4.49.0 for llava. Please downgrade your liger version or upgrade your transformer version."
|
322
324
|
)
|
323
|
-
modeling_llava.LlavaForConditionalGeneration.forward = llava_lce_forward_deprecated
|
324
325
|
|
325
326
|
if model is not None:
|
326
327
|
text_model_name, vision_model_name = model.config.text_config.model_type, model.config.vision_config.model_type
|
@@ -53,7 +53,7 @@ liger_kernel/transformers/grpo_loss.py,sha256=uAkUNKSnUGEOqa82L9w2e6AI1kcmG8K45-
|
|
53
53
|
liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
|
54
54
|
liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
|
55
55
|
liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
|
56
|
-
liger_kernel/transformers/monkey_patch.py,sha256=
|
56
|
+
liger_kernel/transformers/monkey_patch.py,sha256=Z9HcewGGKPruHU9NHfocV4vvdj13TuIfhmBnuNw1hk0,74606
|
57
57
|
liger_kernel/transformers/multi_token_attention.py,sha256=l9VDICK0dfmifUDW668hGscP8AHq2rYcM2oGUa3baRQ,1751
|
58
58
|
liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
|
59
59
|
liger_kernel/transformers/rms_norm.py,sha256=eErIr1n-13oVrc1VJY07lqazYelw_vlu9Az__RmXPSE,2717
|
@@ -70,7 +70,7 @@ liger_kernel/transformers/model/gemma2.py,sha256=ORmzklEAMpk93nToRo4d_ZJbM4ScVE2
|
|
70
70
|
liger_kernel/transformers/model/gemma3.py,sha256=JI4jj9K660HeRsofB6cpkCHBQ0OsazElArRtKUehUmw,15945
|
71
71
|
liger_kernel/transformers/model/glm4.py,sha256=GlnEhdGJuDIqp2R9qC54biY3HwV1tWmfpJm6ijoAsrM,5257
|
72
72
|
liger_kernel/transformers/model/llama.py,sha256=LcIxVfF0PXXWHBVJa6Ody_5fAtIpxQcI4jC_j-o51fU,12503
|
73
|
-
liger_kernel/transformers/model/llava.py,sha256=
|
73
|
+
liger_kernel/transformers/model/llava.py,sha256=hzPeBfDBbgu9UXMdbjgFRaKYKZZaNb4FbTngn6bLcGg,15020
|
74
74
|
liger_kernel/transformers/model/loss_utils.py,sha256=WWAMdiONPaXpIvxyOim_0igLrYh0yyOok5Q9_L9xvZw,1787
|
75
75
|
liger_kernel/transformers/model/mistral.py,sha256=okKkyashfFLfhjIT--f3JY6JHOslOtDI8U1dlpBC2Zs,5565
|
76
76
|
liger_kernel/transformers/model/mixtral.py,sha256=VY-y73IyjcCyWyI7ahxXLw0fJrhgjYfr1xwRYtsHX0o,11396
|
@@ -87,9 +87,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
|
|
87
87
|
liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
|
88
88
|
liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
|
89
89
|
liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
|
90
|
-
liger_kernel_nightly-0.5.10.
|
91
|
-
liger_kernel_nightly-0.5.10.
|
92
|
-
liger_kernel_nightly-0.5.10.
|
93
|
-
liger_kernel_nightly-0.5.10.
|
94
|
-
liger_kernel_nightly-0.5.10.
|
95
|
-
liger_kernel_nightly-0.5.10.
|
90
|
+
liger_kernel_nightly-0.5.10.dev20250609223356.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
91
|
+
liger_kernel_nightly-0.5.10.dev20250609223356.dist-info/METADATA,sha256=wn7QobLSoNLSi0rDXabRP1Rn5s5hXnyToI11iH-edq0,24309
|
92
|
+
liger_kernel_nightly-0.5.10.dev20250609223356.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
93
|
+
liger_kernel_nightly-0.5.10.dev20250609223356.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
|
94
|
+
liger_kernel_nightly-0.5.10.dev20250609223356.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
95
|
+
liger_kernel_nightly-0.5.10.dev20250609223356.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|