liger-kernel-nightly 0.5.10.dev20250606182408__py3-none-any.whl → 0.5.10.dev20250609223356__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -7,10 +7,9 @@ import torch
7
7
 
8
8
  from torch.nn import CrossEntropyLoss
9
9
  from transformers.models.llava.modeling_llava import LlavaCausalLMOutputWithPast
10
- from transformers.utils import is_torchdynamo_compiling
11
- from transformers.utils.deprecation import deprecate_kwarg
12
10
 
13
11
  from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
12
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
14
13
 
15
14
 
16
15
  def lce_forward_deprecated(
@@ -28,6 +27,11 @@ def lce_forward_deprecated(
28
27
  output_attentions: Optional[bool] = None,
29
28
  output_hidden_states: Optional[bool] = None,
30
29
  return_dict: Optional[bool] = None,
30
+ cache_position: Optional[torch.LongTensor] = None,
31
+ logits_to_keep: Union[int, torch.Tensor] = 0,
32
+ image_sizes: torch.Tensor = None,
33
+ skip_logits: Optional[bool] = None,
34
+ **lm_kwargs,
31
35
  ) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
32
36
  r"""
33
37
  Args:
@@ -36,10 +40,12 @@ def lce_forward_deprecated(
36
40
  config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
37
41
  (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
38
42
 
39
- num_logits_to_keep (`int`, *optional*):
40
- Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
43
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
44
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
41
45
  `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
42
46
  token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
47
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
48
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
43
49
 
44
50
 
45
51
  Returns:
@@ -65,7 +71,6 @@ def lce_forward_deprecated(
65
71
  >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
66
72
  "USER: \nWhat's the content of the image? ASSISTANT: The image features a busy city street with a stop sign prominently displayed"
67
73
  ```"""
68
-
69
74
  output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
70
75
  output_hidden_states = (
71
76
  output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
@@ -89,73 +94,24 @@ def lce_forward_deprecated(
89
94
  )
90
95
 
91
96
  if inputs_embeds is None:
92
- # 1. Extra the input embeddings
93
97
  inputs_embeds = self.get_input_embeddings()(input_ids)
94
98
 
95
- # 2. Merge text and images
96
- if pixel_values is not None and input_ids.shape[1] != 1:
97
- image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
98
- # this is not memory efficient at all (output_hidden_states=True) will save all the hidden stated.
99
- selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
100
-
101
- if vision_feature_select_strategy == "default":
102
- selected_image_feature = selected_image_feature[:, 1:]
103
- elif vision_feature_select_strategy == "full":
104
- selected_image_feature = selected_image_feature
105
- else:
106
- raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}")
107
-
108
- image_features = self.multi_modal_projector(selected_image_feature)
109
- inputs_embeds = inputs_embeds.to(image_features.dtype)
110
- inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features(
111
- image_features, inputs_embeds, input_ids, attention_mask, labels
112
- )
113
-
114
- # In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
115
- # generation with cache
116
- elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
117
- # Retrieve the first layer to inspect the logits and mask out the hidden states
118
- # that are set to 0
119
- first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
120
-
121
- # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
122
- batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
123
-
124
- # Get the target length
125
- target_length = input_ids.shape[1]
126
- past_length = first_layer_past_key_value.shape[-1]
127
-
128
- extended_attention_mask = torch.ones(
129
- (attention_mask.shape[0], past_length),
130
- dtype=attention_mask.dtype,
131
- device=attention_mask.device,
132
- )
133
-
134
- # Filter out only the tokens that can be un-attended, this can happen
135
- # if one uses Llava + Fused modules where the cache on the
136
- # first iteration is already big enough, or if one passes custom cache
137
- valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
138
- new_batch_index = batch_index[valid_indices]
139
- new_non_attended_tokens = non_attended_tokens[valid_indices]
140
-
141
- # Zero-out the places where we don't need to attend
142
- extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
143
-
144
- attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
145
- position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
146
-
147
- # TODO: @raushan retain only the new behavior after v4.47
148
- elif image_features is not None:
149
- n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
150
- n_image_features = image_features.shape[0] * image_features.shape[1]
99
+ if pixel_values is not None:
100
+ image_features = self.get_image_features(
101
+ pixel_values=pixel_values,
102
+ vision_feature_layer=vision_feature_layer,
103
+ vision_feature_select_strategy=vision_feature_select_strategy,
104
+ image_sizes=image_sizes,
105
+ )
151
106
 
152
- if n_image_tokens != n_image_features:
107
+ special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
108
+ special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
109
+ if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
110
+ n_image_tokens = (input_ids == self.config.image_token_index).sum()
111
+ n_image_features = image_features.shape[0] * image_features.shape[1]
153
112
  raise ValueError(
154
113
  f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
155
114
  )
156
- special_image_mask = (
157
- (input_ids == self.config.image_token_index).unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
158
- )
159
115
  image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
160
116
  inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
161
117
 
@@ -168,13 +124,19 @@ def lce_forward_deprecated(
168
124
  output_attentions=output_attentions,
169
125
  output_hidden_states=output_hidden_states,
170
126
  return_dict=return_dict,
127
+ cache_position=cache_position,
128
+ logits_to_keep=logits_to_keep,
129
+ **lm_kwargs,
171
130
  )
172
131
  hidden_states = outputs[0]
173
132
 
174
133
  loss = None
175
134
  logits = None
176
135
 
177
- if self.training and (labels is not None):
136
+ # Overwrite skip_logits, since llava never materializes logits
137
+ skip_logits = labels is not None
138
+
139
+ if skip_logits:
178
140
  # Shift so that tokens < n predict n
179
141
  if attention_mask is not None:
180
142
  # we use the input attention mask to shift the logits and labels, because it is 2D.
@@ -189,21 +151,34 @@ def lce_forward_deprecated(
189
151
  shift_labels = labels[..., 1:].contiguous()
190
152
 
191
153
  lce = LigerFusedLinearCrossEntropyLoss()
192
- loss = lce(self.language_model.lm_head.weight, shift_hidden_states, shift_labels)
154
+ loss = lce(
155
+ self.language_model.lm_head.weight,
156
+ shift_hidden_states.view(-1, shift_hidden_states.size(-1)),
157
+ shift_labels.view(-1).to(shift_hidden_states.device),
158
+ )
193
159
  else:
194
160
  logits = self.language_model.lm_head(hidden_states)
195
161
  if labels is not None:
196
- # Shift so that tokens < n predict n
162
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
163
+ logits = logits.float()
164
+ shift_logits = logits[..., :-1, :]
165
+ shift_labels = labels[..., 1:]
197
166
  if attention_mask is not None:
198
- shift_attention_mask = attention_mask[..., 1:]
199
- shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
200
- shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
167
+ # we use the input attention mask to shift the logits and labels, because it is 2D.
168
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
169
+ shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
170
+ shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
171
+ shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
201
172
  else:
202
- shift_logits = logits[..., :-1, :].contiguous()
203
- shift_labels = labels[..., 1:].contiguous()
173
+ shift_logits = shift_logits.contiguous()
174
+ shift_labels = shift_labels.contiguous()
204
175
  # Flatten the tokens
205
176
  loss_fct = CrossEntropyLoss()
206
- loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device))
177
+
178
+ flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
179
+ flat_labels = shift_labels.view(-1).to(shift_logits.device)
180
+ loss = loss_fct(flat_logits, flat_labels)
181
+
207
182
  if not return_dict:
208
183
  # NOTE: This part has not been tested.
209
184
  output = outputs[1:]
@@ -215,10 +190,9 @@ def lce_forward_deprecated(
215
190
  past_key_values=outputs.past_key_values,
216
191
  hidden_states=outputs.hidden_states,
217
192
  attentions=outputs.attentions,
193
+ image_hidden_states=image_features if pixel_values is not None else None,
218
194
  )
219
195
 
220
-
221
- @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
222
196
  def lce_forward(
223
197
  self,
224
198
  input_ids: torch.LongTensor = None,
@@ -292,103 +266,59 @@ def lce_forward(
292
266
  else self.config.vision_feature_select_strategy
293
267
  )
294
268
 
295
- if (input_ids is None) ^ (inputs_embeds is not None):
296
- raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
297
-
298
- if pixel_values is not None and inputs_embeds is not None:
299
- raise ValueError(
300
- "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
301
- )
302
-
303
- if inputs_embeds is None:
304
- inputs_embeds = self.get_input_embeddings()(input_ids)
305
-
306
- if pixel_values is not None:
307
- image_features = self.get_image_features(
308
- pixel_values=pixel_values,
309
- vision_feature_layer=vision_feature_layer,
310
- vision_feature_select_strategy=vision_feature_select_strategy,
311
- image_sizes=image_sizes,
312
- )
313
-
314
- special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
315
- special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
316
- if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
317
- n_image_tokens = (input_ids == self.config.image_token_index).sum()
318
- n_image_features = image_features.shape[0] * image_features.shape[1]
319
- raise ValueError(
320
- f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
321
- )
322
- image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
323
- inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
324
-
325
- outputs = self.language_model.model(
269
+ outputs = self.model(
270
+ input_ids=input_ids,
271
+ pixel_values=pixel_values,
326
272
  attention_mask=attention_mask,
327
273
  position_ids=position_ids,
328
274
  past_key_values=past_key_values,
329
275
  inputs_embeds=inputs_embeds,
276
+ vision_feature_layer=vision_feature_layer,
277
+ vision_feature_select_strategy=vision_feature_select_strategy,
330
278
  use_cache=use_cache,
331
279
  output_attentions=output_attentions,
332
280
  output_hidden_states=output_hidden_states,
333
- return_dict=return_dict,
281
+ return_dict=True,
334
282
  cache_position=cache_position,
335
- logits_to_keep=logits_to_keep,
283
+ image_sizes=image_sizes,
336
284
  **lm_kwargs,
337
285
  )
338
286
  hidden_states = outputs[0]
287
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
288
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
289
+ kept_hidden_states = hidden_states[:, slice_indices, :]
339
290
 
340
- loss = None
291
+ shift_labels = lm_kwargs.pop("shift_labels", None)
341
292
  logits = None
293
+ loss = None
342
294
 
343
- # Overwrite skip_logits, since llava never materializes logits
344
- skip_logits = labels is not None
295
+ if skip_logits and labels is None and shift_labels is None:
296
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
345
297
 
346
- if skip_logits:
347
- # Shift so that tokens < n predict n
348
- if attention_mask is not None:
349
- # we use the input attention mask to shift the logits and labels, because it is 2D.
350
- # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
351
- shift_attention_mask = attention_mask[:, -(hidden_states.shape[1] - 1) :].to(hidden_states.device)
352
- shift_hidden_states = hidden_states[..., :-1, :][
353
- shift_attention_mask.to(hidden_states.device) != 0
354
- ].contiguous()
355
- shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
356
- else:
357
- shift_hidden_states = hidden_states[..., :-1, :].contiguous()
358
- shift_labels = labels[..., 1:].contiguous()
298
+ if skip_logits is None:
299
+ # By default, if in training mode, don't materialize logits
300
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
359
301
 
360
- lce = LigerFusedLinearCrossEntropyLoss()
361
- loss = lce(
362
- self.language_model.lm_head.weight,
363
- shift_hidden_states.view(-1, shift_hidden_states.size(-1)),
364
- shift_labels.view(-1).to(shift_hidden_states.device),
302
+ if skip_logits:
303
+ loss = LigerForCausalLMLoss(
304
+ hidden_states=kept_hidden_states,
305
+ lm_head_weight=self.lm_head.weight,
306
+ labels=labels,
307
+ shift_labels=shift_labels,
308
+ hidden_size=self.config.text_config.hidden_size,
309
+ **lm_kwargs,
365
310
  )
311
+
366
312
  else:
367
- logits = self.language_model.lm_head(hidden_states)
313
+ logits = self.lm_head(kept_hidden_states)
368
314
  if labels is not None:
369
- # Upcast to float if we need to compute the loss to avoid potential precision issues
370
- logits = logits.float()
371
- shift_logits = logits[..., :-1, :]
372
- shift_labels = labels[..., 1:]
373
- if attention_mask is not None:
374
- # we use the input attention mask to shift the logits and labels, because it is 2D.
375
- # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
376
- shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
377
- shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
378
- shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
379
- else:
380
- shift_logits = shift_logits.contiguous()
381
- shift_labels = shift_labels.contiguous()
382
- # Flatten the tokens
383
- loss_fct = CrossEntropyLoss()
315
+ loss = self.loss_function(
316
+ logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
317
+ )
384
318
 
385
- flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
386
- flat_labels = shift_labels.view(-1).to(shift_logits.device)
387
- loss = loss_fct(flat_logits, flat_labels)
388
319
 
389
320
  if not return_dict:
390
- # NOTE: This part has not been tested.
391
- output = outputs[1:]
321
+ output = (logits,) + outputs[1:]
392
322
  return (loss,) + output if loss is not None else output
393
323
 
394
324
  return LlavaCausalLMOutputWithPast(
@@ -397,5 +327,5 @@ def lce_forward(
397
327
  past_key_values=outputs.past_key_values,
398
328
  hidden_states=outputs.hidden_states,
399
329
  attentions=outputs.attentions,
400
- image_hidden_states=image_features if pixel_values is not None else None,
330
+ image_hidden_states=outputs.image_hidden_states,
401
331
  )
@@ -314,13 +314,14 @@ def apply_liger_kernel_to_llava(
314
314
  logger.warning(TRANSFORMER_DEPRECATION_WARNING)
315
315
  modeling_llava.nn.CrossEntropyLoss = LigerCrossEntropyLoss
316
316
  if fused_linear_cross_entropy:
317
- if transformer_version >= version.parse("4.49.0"):
317
+ if transformer_version >= version.parse("4.52.0"):
318
318
  modeling_llava.LlavaForConditionalGeneration.forward = llava_lce_forward
319
+ elif transformer_version >= version.parse("4.49.0") and transformer_version < version.parse("4.52.0"):
320
+ modeling_llava.LlavaForConditionalGeneration.forward = llava_lce_forward_deprecated
319
321
  else: # if version < 4.49.0
320
322
  logger.warning(
321
- "Support for transformers versions < 4.49.0 will soon be discontinued due to issues with incorrect legacy processing. \n Please consider upgrading to avoid potential issues. See details: https://github.com/huggingface/transformers/pull/35526"
323
+ "The latest version of Liger does not support transformers < 4.49.0 for llava. Please downgrade your liger version or upgrade your transformer version."
322
324
  )
323
- modeling_llava.LlavaForConditionalGeneration.forward = llava_lce_forward_deprecated
324
325
 
325
326
  if model is not None:
326
327
  text_model_name, vision_model_name = model.config.text_config.model_type, model.config.vision_config.model_type
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.5.10.dev20250606182408
3
+ Version: 0.5.10.dev20250609223356
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -53,7 +53,7 @@ liger_kernel/transformers/grpo_loss.py,sha256=uAkUNKSnUGEOqa82L9w2e6AI1kcmG8K45-
53
53
  liger_kernel/transformers/jsd.py,sha256=DGqRnxIZxsvxo0_tbbxX3b-sDbDjC_yKufyRIHCcScY,2979
54
54
  liger_kernel/transformers/kl_div.py,sha256=WLffFbh1EExD2Eb1F7lN11fo9JJC-0751WJjZAF1Fj8,409
55
55
  liger_kernel/transformers/layer_norm.py,sha256=c9pk3PEasOKYR0rhe5e5nNrnYKVCEW4VC8S6LpCq9EQ,906
56
- liger_kernel/transformers/monkey_patch.py,sha256=drSPROAsiphnLPl2lFPBUvG_u4oIufDKEklqnDyy0vY,74584
56
+ liger_kernel/transformers/monkey_patch.py,sha256=Z9HcewGGKPruHU9NHfocV4vvdj13TuIfhmBnuNw1hk0,74606
57
57
  liger_kernel/transformers/multi_token_attention.py,sha256=l9VDICK0dfmifUDW668hGscP8AHq2rYcM2oGUa3baRQ,1751
58
58
  liger_kernel/transformers/qwen2vl_mrope.py,sha256=5EwSqrMdsL9MYspeBMXBsNJKvH0MOmRrtJXAJlnnlOI,1047
59
59
  liger_kernel/transformers/rms_norm.py,sha256=eErIr1n-13oVrc1VJY07lqazYelw_vlu9Az__RmXPSE,2717
@@ -70,7 +70,7 @@ liger_kernel/transformers/model/gemma2.py,sha256=ORmzklEAMpk93nToRo4d_ZJbM4ScVE2
70
70
  liger_kernel/transformers/model/gemma3.py,sha256=JI4jj9K660HeRsofB6cpkCHBQ0OsazElArRtKUehUmw,15945
71
71
  liger_kernel/transformers/model/glm4.py,sha256=GlnEhdGJuDIqp2R9qC54biY3HwV1tWmfpJm6ijoAsrM,5257
72
72
  liger_kernel/transformers/model/llama.py,sha256=LcIxVfF0PXXWHBVJa6Ody_5fAtIpxQcI4jC_j-o51fU,12503
73
- liger_kernel/transformers/model/llava.py,sha256=ONdpx96AVbbL8QDQvHSm08jMJPz3tzkbeO92IRbAb1A,19270
73
+ liger_kernel/transformers/model/llava.py,sha256=hzPeBfDBbgu9UXMdbjgFRaKYKZZaNb4FbTngn6bLcGg,15020
74
74
  liger_kernel/transformers/model/loss_utils.py,sha256=WWAMdiONPaXpIvxyOim_0igLrYh0yyOok5Q9_L9xvZw,1787
75
75
  liger_kernel/transformers/model/mistral.py,sha256=okKkyashfFLfhjIT--f3JY6JHOslOtDI8U1dlpBC2Zs,5565
76
76
  liger_kernel/transformers/model/mixtral.py,sha256=VY-y73IyjcCyWyI7ahxXLw0fJrhgjYfr1xwRYtsHX0o,11396
@@ -87,9 +87,9 @@ liger_kernel/transformers/trainer/__init__.py,sha256=p7yQfklV8-467qSz_ZMimkbDF7H
87
87
  liger_kernel/transformers/trainer/orpo_trainer.py,sha256=tX0h63aOFe3rNqTmk6JpMf75UPo981yzEa6TghnjS0Q,5370
88
88
  liger_kernel/triton/__init__.py,sha256=qCiCamzCRv6lpV8IqpAc9YMdNKC7GKurClWceQPnlis,92
89
89
  liger_kernel/triton/monkey_patch.py,sha256=Rd0hUHAzDkFfHvnX7-PBaNK5EKnZhtfM_h-fgQH9HPY,1568
90
- liger_kernel_nightly-0.5.10.dev20250606182408.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
91
- liger_kernel_nightly-0.5.10.dev20250606182408.dist-info/METADATA,sha256=764bP9ZeY2N1vaqqE92BFRP9RvdR9a8k10FwZs4XS9A,24309
92
- liger_kernel_nightly-0.5.10.dev20250606182408.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
93
- liger_kernel_nightly-0.5.10.dev20250606182408.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
94
- liger_kernel_nightly-0.5.10.dev20250606182408.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
95
- liger_kernel_nightly-0.5.10.dev20250606182408.dist-info/RECORD,,
90
+ liger_kernel_nightly-0.5.10.dev20250609223356.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
91
+ liger_kernel_nightly-0.5.10.dev20250609223356.dist-info/METADATA,sha256=wn7QobLSoNLSi0rDXabRP1Rn5s5hXnyToI11iH-edq0,24309
92
+ liger_kernel_nightly-0.5.10.dev20250609223356.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
93
+ liger_kernel_nightly-0.5.10.dev20250609223356.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
94
+ liger_kernel_nightly-0.5.10.dev20250609223356.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
95
+ liger_kernel_nightly-0.5.10.dev20250609223356.dist-info/RECORD,,