liger-kernel-nightly 0.4.2.dev20241210024415__py3-none-any.whl → 0.4.2.dev20241210031049__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.4.2.dev20241210024415
3
+ Version: 0.4.2.dev20241210031049
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -127,6 +127,8 @@ Requires-Dist: transformers~=4.0; extra == "transformers"
127
127
 
128
128
  **Liger Kernel** is a collection of Triton kernels designed specifically for LLM training. It can effectively increase multi-GPU **training throughput by 20%** and reduces **memory usage by 60%**. We have implemented **Hugging Face Compatible** `RMSNorm`, `RoPE`, `SwiGLU`, `CrossEntropy`, `FusedLinearCrossEntropy`, and more to come. The kernel works out of the box with [Flash Attention](https://github.com/Dao-AILab/flash-attention), [PyTorch FSDP](https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html), and [Microsoft DeepSpeed](https://github.com/microsoft/DeepSpeed). We welcome contributions from the community to gather the best kernels for LLM training.
129
129
 
130
+ We've also added optimized Post-Training kernels that deliver **up to 80% memory savings** for alignment and distillation tasks. We support losses like DPO, CPO, ORPO, SimPO, JSD, and many more.
131
+
130
132
  ## Supercharge Your Model with Liger Kernel
131
133
 
132
134
  ![Banner](https://raw.githubusercontent.com/linkedin/Liger-Kernel/main/docs/images/banner.GIF)
@@ -150,6 +152,7 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and
150
152
  | [**Lightning Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/lightning) | Increase 15% throughput and reduce memory usage by 40% with LLaMA3-8B on MMLU dataset using 8 A100s with DeepSpeed ZeRO3 |
151
153
  | [**Medusa Multi-head LLM (Retraining Phase)**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) | Reduce memory usage by 80% with 5 LM heads and improve throughput by 40% using 8 A100s with FSDP |
152
154
  | [**Vision-Language Model SFT**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/huggingface/run_qwen2_vl.sh) | Finetune Qwen2-VL on image-text data using 4 A100s with FSDP |
155
+ | [**Liger ORPO Trainer**](https://github.com/linkedin/Liger-Kernel/blob/main/examples/alignment/run_orpo.py) | Align Llama 3.2 using Liger ORPO Trainer with FSDP with 50% memory reduction |
153
156
 
154
157
  ## Key Features
155
158
 
@@ -56,9 +56,9 @@ liger_kernel/transformers/model/qwen2.py,sha256=EyhSSzQOskGjSnCsKMZpd1s5IAIlHd5P
56
56
  liger_kernel/transformers/model/qwen2_vl.py,sha256=bIQe2bWiY--G84FhCD29Gdi64_qHP6vbcGsK6vKysQE,8547
57
57
  liger_kernel/triton/__init__.py,sha256=yfRe0zMb47QnqjecZWG7LnanfCTzeku7SgWRAwNVmzU,101
58
58
  liger_kernel/triton/monkey_patch.py,sha256=5BcGKTtdqeYchypBIBopGIWPx1-cFALz7sOKoEsqXJ0,1584
59
- liger_kernel_nightly-0.4.2.dev20241210024415.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
60
- liger_kernel_nightly-0.4.2.dev20241210024415.dist-info/METADATA,sha256=vBNqhKF4kGPoe0LseCP5IIrX2gpybtq94X-LyfrQv8w,19755
61
- liger_kernel_nightly-0.4.2.dev20241210024415.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
62
- liger_kernel_nightly-0.4.2.dev20241210024415.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
63
- liger_kernel_nightly-0.4.2.dev20241210024415.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
64
- liger_kernel_nightly-0.4.2.dev20241210024415.dist-info/RECORD,,
59
+ liger_kernel_nightly-0.4.2.dev20241210031049.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
60
+ liger_kernel_nightly-0.4.2.dev20241210031049.dist-info/METADATA,sha256=nD-a5P0jaalxb91EL_k_SH_NgXGQiOcpobAe_sci2a8,20148
61
+ liger_kernel_nightly-0.4.2.dev20241210031049.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
62
+ liger_kernel_nightly-0.4.2.dev20241210031049.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
63
+ liger_kernel_nightly-0.4.2.dev20241210031049.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
64
+ liger_kernel_nightly-0.4.2.dev20241210031049.dist-info/RECORD,,