liger-kernel-nightly 0.4.2.dev20241121054604__py3-none-any.whl → 0.4.2.dev20241121225747__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/ops/fused_linear_jsd.py +1 -1
- liger_kernel/ops/jsd.py +19 -10
- liger_kernel/transformers/functional.py +127 -12
- liger_kernel/transformers/fused_linear_jsd.py +1 -4
- liger_kernel/transformers/jsd.py +1 -4
- {liger_kernel_nightly-0.4.2.dev20241121054604.dist-info → liger_kernel_nightly-0.4.2.dev20241121225747.dist-info}/METADATA +3 -3
- {liger_kernel_nightly-0.4.2.dev20241121054604.dist-info → liger_kernel_nightly-0.4.2.dev20241121225747.dist-info}/RECORD +11 -11
- {liger_kernel_nightly-0.4.2.dev20241121054604.dist-info → liger_kernel_nightly-0.4.2.dev20241121225747.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.4.2.dev20241121054604.dist-info → liger_kernel_nightly-0.4.2.dev20241121225747.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.4.2.dev20241121054604.dist-info → liger_kernel_nightly-0.4.2.dev20241121225747.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.4.2.dev20241121054604.dist-info → liger_kernel_nightly-0.4.2.dev20241121225747.dist-info}/top_level.txt +0 -0
@@ -202,7 +202,7 @@ class LigerFusedLinearJSDFunction(torch.autograd.Function):
|
|
202
202
|
teacher_input (torch.tensor): input of the last projection layer in teacher model, with shape (B*T, H), where B is batch size, T is sequence length, H is hidden dimension.
|
203
203
|
teacher_weight (torch.tensor): the last projection layer in teacher model, with shape (V, H), where V is vocab size
|
204
204
|
shift_labels (Optional[torch.LongTensor]): indicator of next predicted vocab with shape (BT) where each value is in [0, V-1].
|
205
|
-
jsd_beta (float): coefficient beta of generalized JSD in the
|
205
|
+
jsd_beta (float): coefficient beta of generalized JSD in the interval [0, 1]. It implements forward/reverse KL when beta equals 0 and 1 respectively. Default: `0.5`
|
206
206
|
ignore_index (int): the index to ignore. Default: -100
|
207
207
|
temperature (float): temperature in softmax function to control the output probability distribution. Default: `1.0`
|
208
208
|
|
liger_kernel/ops/jsd.py
CHANGED
@@ -18,7 +18,7 @@ def _jsd_kernel(
|
|
18
18
|
dX_ptr,
|
19
19
|
dX_stride,
|
20
20
|
label_ptr,
|
21
|
-
beta,
|
21
|
+
beta: tl.constexpr,
|
22
22
|
n_non_ignore: int,
|
23
23
|
ignore_index: tl.constexpr,
|
24
24
|
n_cols,
|
@@ -50,17 +50,26 @@ def _jsd_kernel(
|
|
50
50
|
X = tl.load(X_ptr + offsets, mask=mask, other=float("-inf")).to(tl.float32)
|
51
51
|
Y = tl.load(Y_ptr + offsets, mask=mask, other=float("-inf")).to(tl.float32)
|
52
52
|
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
53
|
+
if beta == 0.0: # forward KL
|
54
|
+
Y_prob = tl.exp(Y)
|
55
|
+
loss = Y_prob * (Y - X)
|
56
|
+
dX = -Y_prob
|
57
|
+
elif beta == 1.0:
|
58
|
+
X_prob = tl.exp(X)
|
59
|
+
loss = X_prob * (X - Y)
|
60
|
+
dX = loss + X_prob
|
61
|
+
else:
|
62
|
+
Q = tl.exp(X)
|
63
|
+
P = tl.exp(Y)
|
64
|
+
M = beta * P + (1 - beta) * Q
|
65
|
+
log_M = tl.log(M)
|
66
|
+
|
67
|
+
loss = beta * P * Y + (1 - beta) * Q * X - M * log_M
|
68
|
+
dX = (1 - beta) * Q * (X - log_M)
|
57
69
|
|
58
|
-
loss = beta * P * Y + (1 - beta) * Q * X - M * log_M
|
59
|
-
# reduction == "batchmean"
|
60
70
|
loss = loss / n_non_ignore
|
71
|
+
dX = dX / n_non_ignore
|
61
72
|
tl.store(loss_ptr + offsets, loss, mask=mask)
|
62
|
-
|
63
|
-
dX = (1 - beta) * Q * (X - log_M) / n_non_ignore
|
64
73
|
tl.store(dX_ptr + offsets, dX, mask=mask)
|
65
74
|
|
66
75
|
|
@@ -142,7 +151,7 @@ class LigerJSDFunction(torch.autograd.Function):
|
|
142
151
|
_input (torch.Tensor): predict values with shape (BT, V) in logspace
|
143
152
|
target (torch.Tensor): ground truth values with shape (BT, V) in logspace
|
144
153
|
shift_labels (Optional[torch.LongTensor]): indicator of next predicted vocab with shape (BT) where each value is in [0, V-1].
|
145
|
-
beta (float): coefficient beta of generalized JSD in the
|
154
|
+
beta (float): coefficient beta of generalized JSD in the interval [0, 1]. It implements forward/reverse KL when beta equals 0 and 1 respectively. Default: `0.5`
|
146
155
|
ignore_index (int): the index to ignore. Default: -100
|
147
156
|
|
148
157
|
Returns:
|
@@ -15,18 +15,6 @@ from liger_kernel.ops.rms_norm import LigerRMSNormFunction
|
|
15
15
|
from liger_kernel.ops.rope import LigerRopeFunction
|
16
16
|
from liger_kernel.ops.swiglu import LigerSiLUMulFunction
|
17
17
|
|
18
|
-
liger_swiglu = LigerSiLUMulFunction.apply
|
19
|
-
liger_fused_linear_cross_entropy = LigerFusedLinearCrossEntropyFunction.apply
|
20
|
-
liger_geglu = LigerGELUMulFunction.apply
|
21
|
-
liger_rms_norm = LigerRMSNormFunction.apply
|
22
|
-
liger_rope = LigerRopeFunction.apply
|
23
|
-
liger_qwen2vl_mrope = LigerQwen2VLMRopeFunction.apply
|
24
|
-
liger_layer_norm = LigerLayerNormFunction.apply
|
25
|
-
liger_kl_div = LigerKLDivLossFunction.apply
|
26
|
-
liger_jsd = LigerJSDFunction.apply
|
27
|
-
liger_fused_linear_jsd = LigerFusedLinearJSDFunction.apply
|
28
|
-
liger_group_norm = LigerGroupNormFunction.apply
|
29
|
-
|
30
18
|
|
31
19
|
# conform to the function signature in https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
|
32
20
|
# `weight` and `size_average` are placeholders and not implemented yet
|
@@ -56,3 +44,130 @@ def liger_cross_entropy(
|
|
56
44
|
if not return_z_loss:
|
57
45
|
return loss
|
58
46
|
return loss, z_loss
|
47
|
+
|
48
|
+
|
49
|
+
def liger_fused_linear_cross_entropy(
|
50
|
+
input,
|
51
|
+
weight,
|
52
|
+
target,
|
53
|
+
bias=None,
|
54
|
+
ignore_index: int = -100,
|
55
|
+
lse_square_scale: float = 0.0,
|
56
|
+
label_smoothing: float = 0.0,
|
57
|
+
reduction: str = "mean",
|
58
|
+
softcap: Optional[float] = None,
|
59
|
+
):
|
60
|
+
return LigerFusedLinearCrossEntropyFunction.apply(
|
61
|
+
input,
|
62
|
+
weight,
|
63
|
+
target,
|
64
|
+
bias,
|
65
|
+
ignore_index,
|
66
|
+
lse_square_scale,
|
67
|
+
label_smoothing,
|
68
|
+
reduction,
|
69
|
+
softcap,
|
70
|
+
)
|
71
|
+
|
72
|
+
|
73
|
+
def liger_fused_linear_jsd(
|
74
|
+
student_input,
|
75
|
+
student_weight,
|
76
|
+
teacher_input,
|
77
|
+
teacher_weight,
|
78
|
+
shift_labels=None,
|
79
|
+
jsd_beta: float = 0.5,
|
80
|
+
ignore_index: int = -100,
|
81
|
+
temperature: float = 1.0,
|
82
|
+
):
|
83
|
+
return LigerFusedLinearJSDFunction.apply(
|
84
|
+
student_input,
|
85
|
+
student_weight,
|
86
|
+
teacher_input,
|
87
|
+
teacher_weight,
|
88
|
+
shift_labels,
|
89
|
+
jsd_beta,
|
90
|
+
ignore_index,
|
91
|
+
temperature,
|
92
|
+
)
|
93
|
+
|
94
|
+
|
95
|
+
def liger_geglu(a, b):
|
96
|
+
return LigerGELUMulFunction.apply(a, b)
|
97
|
+
|
98
|
+
|
99
|
+
def liger_group_norm(
|
100
|
+
X,
|
101
|
+
affine_scaling_weight,
|
102
|
+
affine_shifting_bias,
|
103
|
+
num_channels,
|
104
|
+
num_groups,
|
105
|
+
eps,
|
106
|
+
):
|
107
|
+
return LigerGroupNormFunction.apply(
|
108
|
+
X,
|
109
|
+
affine_scaling_weight,
|
110
|
+
affine_shifting_bias,
|
111
|
+
num_channels,
|
112
|
+
num_groups,
|
113
|
+
eps,
|
114
|
+
)
|
115
|
+
|
116
|
+
|
117
|
+
def liger_jsd(
|
118
|
+
input,
|
119
|
+
target,
|
120
|
+
shift_labels=None,
|
121
|
+
beta: float = 0.5,
|
122
|
+
ignore_index: int = -100,
|
123
|
+
):
|
124
|
+
return LigerJSDFunction.apply(
|
125
|
+
input,
|
126
|
+
target,
|
127
|
+
shift_labels,
|
128
|
+
beta,
|
129
|
+
ignore_index,
|
130
|
+
)
|
131
|
+
|
132
|
+
|
133
|
+
# conform to the function signature in https://pytorch.org/docs/stable/generated/torch.nn.functional.kl_div.html#torch.nn.functional.kl_div
|
134
|
+
# `size_average` and `mean` are being deprecated in torch API and are placeholders here
|
135
|
+
def liger_kl_div(
|
136
|
+
input,
|
137
|
+
target,
|
138
|
+
size_average: bool = True,
|
139
|
+
reduce: bool = True,
|
140
|
+
reduction: str = "mean",
|
141
|
+
log_target: bool = False,
|
142
|
+
eps: float = 1e-10,
|
143
|
+
):
|
144
|
+
# Note: the default reduction in torch is `mean`, but being `batchmean` in Liger
|
145
|
+
return LigerKLDivLossFunction.apply(
|
146
|
+
input,
|
147
|
+
target,
|
148
|
+
reduction,
|
149
|
+
log_target,
|
150
|
+
eps,
|
151
|
+
)
|
152
|
+
|
153
|
+
|
154
|
+
def liger_layer_norm(X, W, B, eps):
|
155
|
+
return LigerLayerNormFunction.apply(X, W, B, eps)
|
156
|
+
|
157
|
+
|
158
|
+
def liger_qwen2vl_mrope(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
|
159
|
+
return LigerQwen2VLMRopeFunction.apply(q, k, cos, sin, mrope_section, unsqueeze_dim)
|
160
|
+
|
161
|
+
|
162
|
+
def liger_rms_norm(
|
163
|
+
X, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True
|
164
|
+
):
|
165
|
+
return LigerRMSNormFunction.apply(X, W, eps, offset, casting_mode, in_place)
|
166
|
+
|
167
|
+
|
168
|
+
def liger_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
169
|
+
return LigerRopeFunction.apply(q, k, cos, sin, position_ids, unsqueeze_dim)
|
170
|
+
|
171
|
+
|
172
|
+
def liger_swiglu(a, b):
|
173
|
+
return LigerSiLUMulFunction.apply(a, b)
|
@@ -12,7 +12,7 @@ class LigerFusedLinearJSD(torch.nn.Module):
|
|
12
12
|
the materialization of the large logits tensor.
|
13
13
|
|
14
14
|
Args:
|
15
|
-
jsd_beta (float): coefficient beta of generalized JSD in the
|
15
|
+
jsd_beta (float): coefficient beta of generalized JSD in the interval [0, 1]. It implements forward/reverse KL when beta equals 0 and 1 respectively. Default: `0.5`
|
16
16
|
ignore_index (int): The index to ignore in the target. Default: `-100`
|
17
17
|
temperature (float): temperature in softmax function to control the output probability distribution. Default: `1.0`
|
18
18
|
|
@@ -70,9 +70,6 @@ class LigerFusedLinearJSD(torch.nn.Module):
|
|
70
70
|
|
71
71
|
def __init__(self, jsd_beta=0.5, ignore_index=-100, temperature=1.0):
|
72
72
|
super().__init__()
|
73
|
-
assert (
|
74
|
-
jsd_beta > 0 and jsd_beta < 1
|
75
|
-
), f"beta must be greater than 0 and less than 1. Got: {jsd_beta}"
|
76
73
|
assert temperature != 0, "temperature cannot be 0."
|
77
74
|
self.jsd_beta = jsd_beta
|
78
75
|
self.temperature = temperature
|
liger_kernel/transformers/jsd.py
CHANGED
@@ -18,7 +18,7 @@ class LigerJSD(torch.nn.Module):
|
|
18
18
|
:math:`P` denotes the teacher model and :math:`Q` denotes the student model.
|
19
19
|
|
20
20
|
Args:
|
21
|
-
beta (float): coefficient beta of generalized JSD in the
|
21
|
+
beta (float): coefficient beta of generalized JSD in the interval [0, 1]. It implements forward/reverse KL when beta equals 0 and 1 respectively. Default: `0.5`
|
22
22
|
ignore_index (int): The index to ignore in the target. Default: `-100`
|
23
23
|
|
24
24
|
Shape:
|
@@ -58,9 +58,6 @@ class LigerJSD(torch.nn.Module):
|
|
58
58
|
|
59
59
|
def __init__(self, beta: float = 0.5, ignore_index: int = -100):
|
60
60
|
super().__init__()
|
61
|
-
assert (
|
62
|
-
beta > 0 and beta < 1
|
63
|
-
), f"beta must be greater than 0 and less than 1. Got: {beta}"
|
64
61
|
self.beta = beta
|
65
62
|
self.ignore_index = ignore_index
|
66
63
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: liger_kernel_nightly
|
3
|
-
Version: 0.4.2.
|
3
|
+
Version: 0.4.2.dev20241121225747
|
4
4
|
Summary: Efficient Triton kernels for LLM Training
|
5
5
|
License: BSD 2-CLAUSE LICENSE
|
6
6
|
Copyright 2024 LinkedIn Corporation
|
@@ -303,8 +303,8 @@ $$\text{GeGLU}(x)=\text{GELU}(xW+b)\otimes(xV+c)$$
|
|
303
303
|
<!-- TODO: verify vocab sizes are accurate -->
|
304
304
|
- **FusedLinearCrossEntropy**: Peak memory usage of cross entropy loss is further improved by fusing the model head with the CE loss and chunking the input for block-wise loss and gradient calculation, a technique inspired by [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy). It achieves >4X memory reduction for 128k vocab size. **This is highly effective for large batch size, large sequence length, and large vocabulary sizes.** Please refer to the [Medusa example](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) for individual kernel usage.
|
305
305
|
- **KLDivergence**: [KL Divergence](https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html) is implemented by fusing the forward into a single triton kernel, with reduction done outside the kernel. It achieves ~1.5X speed and ~15% memory reduction for 128K vocab size.
|
306
|
-
- **JSD**: [Generalized JSD](https://arxiv.org/pdf/2306.13649) (Jensen-Shannon divergence), is implemented by computing both the loss and gradient in the forward pass. It achieves ~1.5X speed and ~54% memory reduction for 128k vocab size.
|
307
|
-
- **FusedLinearJSD**: Peak memory usage of JSD loss is further improved by fusing the model head with the JSD and chunking the input for block-wise loss and gradient calculation. It achieves ~85% memory reduction for 128k vocab size where batch size $\times$ sequence length is 8192.
|
306
|
+
- **JSD**: [Generalized JSD](https://arxiv.org/pdf/2306.13649) (Jensen-Shannon divergence), is implemented by computing both the loss and gradient in the forward pass. It achieves ~1.5X speed and ~54% memory reduction for 128k vocab size. **NOTE**: It implements forward/reverse KL when `beta` equals 0 and 1 respectively.
|
307
|
+
- **FusedLinearJSD**: Peak memory usage of JSD loss is further improved by fusing the model head with the JSD and chunking the input for block-wise loss and gradient calculation. It achieves ~85% memory reduction for 128k vocab size where batch size $\times$ sequence length is 8192. **NOTE**: It implements forward/reverse KL when `beta` equals 0 and 1 respectively.
|
308
308
|
|
309
309
|
|
310
310
|
### Experimental Kernels
|
@@ -9,10 +9,10 @@ liger_kernel/chunked_loss/simpo_loss.py,sha256=Jpl_U6DfxlzyHnlKN2i05K0vwz-ouiTmx
|
|
9
9
|
liger_kernel/ops/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
10
|
liger_kernel/ops/cross_entropy.py,sha256=sfUb7-jIZp0EKXjg1DYy2Wdzw_Mg-mHmGoR5bpdm4tw,15526
|
11
11
|
liger_kernel/ops/fused_linear_cross_entropy.py,sha256=ib7M3AjJE164yMfuS9R39k-5qnDgYOXptIT146lqYbg,9964
|
12
|
-
liger_kernel/ops/fused_linear_jsd.py,sha256=
|
12
|
+
liger_kernel/ops/fused_linear_jsd.py,sha256=nOv4zwfxHqqepKEmMsQuz-B3H-gRjyo8uClpmqSGLYA,9693
|
13
13
|
liger_kernel/ops/geglu.py,sha256=MQL4zyzneZqZYUGPvb1QjI_EYT9_pKfSDgR25WD9jrI,4127
|
14
14
|
liger_kernel/ops/group_norm.py,sha256=VaRErVJGR4JqgXXvuIjNGTn3E2egjLtU1y3ymwIf4d8,10961
|
15
|
-
liger_kernel/ops/jsd.py,sha256=
|
15
|
+
liger_kernel/ops/jsd.py,sha256=Ap2b0_geCl6fqBXLI1IS6Yn6GlO-8LgPmnOW3y47dus,6151
|
16
16
|
liger_kernel/ops/kl_div.py,sha256=03FNXfvCb6M-56hhFepAFV9p6brArPR6KOKkdGD34mw,8374
|
17
17
|
liger_kernel/ops/layer_norm.py,sha256=unGMYMOPqtkM9aTrokhcqgPmsV2AUN7Yzv86isVB9OI,7422
|
18
18
|
liger_kernel/ops/qwen2vl_mrope.py,sha256=xZvQnhkSTjU-k6KiiRn9e0SYO1ESs1jmuZFMICduLpc,8552
|
@@ -25,12 +25,12 @@ liger_kernel/ops/experimental/mm_int8int2.py,sha256=JpGVZCgRC6T8XMUJ_QbZRS2XU1bh
|
|
25
25
|
liger_kernel/transformers/__init__.py,sha256=gia-eBxr7TLxU0GdDf8AfCY4WgDlFLqIGSt7EoQGsBA,1336
|
26
26
|
liger_kernel/transformers/auto_model.py,sha256=RMIwQHSiXoksXFTIqFZ4PLBgoqkxJJAT3q1Qh47bGN8,1552
|
27
27
|
liger_kernel/transformers/cross_entropy.py,sha256=yEm_YQ7oa3_BzT3hdW6KrAslduhSqWcJQVNZZDcWCg4,1758
|
28
|
-
liger_kernel/transformers/functional.py,sha256=
|
28
|
+
liger_kernel/transformers/functional.py,sha256=sUBoU8Vb4pLpr9G6IdkRsToYgh-rCXL4OLYat7Tv_GU,4450
|
29
29
|
liger_kernel/transformers/fused_linear_cross_entropy.py,sha256=_i0PXSp5iZ9pKXdEeZ4lvHCENJYjV4y74yz3ZRG5XQg,1484
|
30
|
-
liger_kernel/transformers/fused_linear_jsd.py,sha256=
|
30
|
+
liger_kernel/transformers/fused_linear_jsd.py,sha256=bZ4otCvWBuOnA5XdQL-FzZVItJlDt-ht9e_pG7PG93E,3999
|
31
31
|
liger_kernel/transformers/geglu.py,sha256=QcrME_8ooIn0xa59LaC0aoOdRrBIFd11Y0bAyF0NfCw,1130
|
32
32
|
liger_kernel/transformers/group_norm.py,sha256=FJ9R7mS9G1wO-GRIQ6QKSmIhnZ6nQ6GIkE4NnX_hnn0,2241
|
33
|
-
liger_kernel/transformers/jsd.py,sha256=
|
33
|
+
liger_kernel/transformers/jsd.py,sha256=sbr8DnKSYZJH9pv2rpmboNijYGpZKbhb2-WSGp5_v6g,3001
|
34
34
|
liger_kernel/transformers/kl_div.py,sha256=qVhjBg6tjRyue5iZ3NFxo8uySY4JuIFJyv0IM_50F24,431
|
35
35
|
liger_kernel/transformers/layer_norm.py,sha256=fd6o4kSHJWolQMWxh-l1qObfgL08ruNbUoBiANKX1ow,972
|
36
36
|
liger_kernel/transformers/monkey_patch.py,sha256=Fk2v4GZQDJzfh3Cpc6BHNJbs_tungDyWmqS9nuG9Lc4,38406
|
@@ -52,9 +52,9 @@ liger_kernel/transformers/model/qwen2.py,sha256=EyhSSzQOskGjSnCsKMZpd1s5IAIlHd5P
|
|
52
52
|
liger_kernel/transformers/model/qwen2_vl.py,sha256=bIQe2bWiY--G84FhCD29Gdi64_qHP6vbcGsK6vKysQE,8547
|
53
53
|
liger_kernel/triton/__init__.py,sha256=yfRe0zMb47QnqjecZWG7LnanfCTzeku7SgWRAwNVmzU,101
|
54
54
|
liger_kernel/triton/monkey_patch.py,sha256=5BcGKTtdqeYchypBIBopGIWPx1-cFALz7sOKoEsqXJ0,1584
|
55
|
-
liger_kernel_nightly-0.4.2.
|
56
|
-
liger_kernel_nightly-0.4.2.
|
57
|
-
liger_kernel_nightly-0.4.2.
|
58
|
-
liger_kernel_nightly-0.4.2.
|
59
|
-
liger_kernel_nightly-0.4.2.
|
60
|
-
liger_kernel_nightly-0.4.2.
|
55
|
+
liger_kernel_nightly-0.4.2.dev20241121225747.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
|
56
|
+
liger_kernel_nightly-0.4.2.dev20241121225747.dist-info/METADATA,sha256=_x0oNBWnmCOeIMGuUSKIpU4v2_j8cG-2u-gfzz071hM,21891
|
57
|
+
liger_kernel_nightly-0.4.2.dev20241121225747.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
|
58
|
+
liger_kernel_nightly-0.4.2.dev20241121225747.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
|
59
|
+
liger_kernel_nightly-0.4.2.dev20241121225747.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
|
60
|
+
liger_kernel_nightly-0.4.2.dev20241121225747.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|