liger-kernel-nightly 0.3.1.dev20241105010508__py3-none-any.whl → 0.3.1.dev20241105220546__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

@@ -22,7 +22,7 @@ from liger_kernel.transformers.fused_linear_cross_entropy import (
22
22
  @replace_return_docstrings(
23
23
  output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
24
24
  )
25
- def lce_forward(
25
+ def lce_forward_deprecated(
26
26
  self,
27
27
  input_ids: torch.LongTensor = None,
28
28
  attention_mask: Optional[torch.Tensor] = None,
@@ -136,3 +136,126 @@ def lce_forward(
136
136
  hidden_states=outputs.hidden_states,
137
137
  attentions=outputs.attentions,
138
138
  )
139
+
140
+
141
+ @add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
142
+ @replace_return_docstrings(
143
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
144
+ )
145
+ def lce_forward(
146
+ self,
147
+ input_ids: torch.LongTensor = None,
148
+ attention_mask: Optional[torch.Tensor] = None,
149
+ position_ids: Optional[torch.LongTensor] = None,
150
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
151
+ inputs_embeds: Optional[torch.FloatTensor] = None,
152
+ labels: Optional[torch.LongTensor] = None,
153
+ use_cache: Optional[bool] = None,
154
+ output_attentions: Optional[bool] = None,
155
+ output_hidden_states: Optional[bool] = None,
156
+ return_dict: Optional[bool] = None,
157
+ cache_position: Optional[torch.LongTensor] = None,
158
+ num_logits_to_keep: int = 0,
159
+ **loss_kwargs,
160
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
161
+ r"""
162
+ Args:
163
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
164
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
165
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
166
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
167
+
168
+ num_logits_to_keep (`int`, *optional*):
169
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
170
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
171
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
172
+
173
+ Returns:
174
+
175
+ Example:
176
+
177
+ ```python
178
+ >>> from transformers import AutoTokenizer, GemmaForCausalLM
179
+
180
+ >>> model = GemmaForCausalLM.from_pretrained("google/gemma-7b")
181
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
182
+
183
+ >>> prompt = "What is your favorite condiment?"
184
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
185
+
186
+ >>> # Generate
187
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
188
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
189
+ "What is your favorite condiment?"
190
+ ```"""
191
+ output_attentions = (
192
+ output_attentions
193
+ if output_attentions is not None
194
+ else self.config.output_attentions
195
+ )
196
+ output_hidden_states = (
197
+ output_hidden_states
198
+ if output_hidden_states is not None
199
+ else self.config.output_hidden_states
200
+ )
201
+ return_dict = (
202
+ return_dict if return_dict is not None else self.config.use_return_dict
203
+ )
204
+
205
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
206
+ outputs = self.model(
207
+ input_ids=input_ids,
208
+ attention_mask=attention_mask,
209
+ position_ids=position_ids,
210
+ past_key_values=past_key_values,
211
+ inputs_embeds=inputs_embeds,
212
+ use_cache=use_cache,
213
+ output_attentions=output_attentions,
214
+ output_hidden_states=output_hidden_states,
215
+ return_dict=return_dict,
216
+ cache_position=cache_position,
217
+ )
218
+
219
+ hidden_states = outputs[0]
220
+
221
+ logits = None
222
+ loss = None
223
+ # if in training mode, don't materialize logits
224
+ if self.training and (labels is not None):
225
+ # We do the same thing as ForCausalLMLoss but using Liger FLCE
226
+
227
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
228
+ shift_labels = labels[..., 1:].contiguous()
229
+
230
+ # flatten tokens
231
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
232
+ shift_labels = shift_labels.view(-1)
233
+
234
+ reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
235
+ lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
236
+
237
+ loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
238
+ if reduction == "sum":
239
+ loss /= loss_kwargs["num_items_in_batch"]
240
+
241
+ else: # if in inference mode materialize logits
242
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
243
+ if labels is not None:
244
+ loss = self.loss_function(
245
+ logits=logits,
246
+ labels=labels,
247
+ vocab_size=self.config.vocab_size,
248
+ **loss_kwargs,
249
+ )
250
+
251
+ if not return_dict:
252
+ output = (logits,) + outputs[1:]
253
+ return (loss,) + output if loss is not None else output
254
+
255
+ return CausalLMOutputWithPast(
256
+ loss=loss,
257
+ logits=logits,
258
+ past_key_values=outputs.past_key_values,
259
+ hidden_states=outputs.hidden_states,
260
+ attentions=outputs.attentions,
261
+ )
@@ -136,3 +136,6 @@ def lce_forward(
136
136
  hidden_states=outputs.hidden_states,
137
137
  attentions=outputs.attentions,
138
138
  )
139
+
140
+
141
+ # Note: Grad Acc is not fixed in mistral at transformer 4.46.1
@@ -22,7 +22,7 @@ from liger_kernel.transformers.fused_linear_cross_entropy import (
22
22
  @replace_return_docstrings(
23
23
  output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
24
24
  )
25
- def lce_forward(
25
+ def lce_forward_deprecated(
26
26
  self,
27
27
  input_ids: torch.LongTensor = None,
28
28
  attention_mask: Optional[torch.Tensor] = None,
@@ -157,3 +157,153 @@ def lce_forward(
157
157
  attentions=outputs.attentions,
158
158
  router_logits=outputs.router_logits,
159
159
  )
160
+
161
+
162
+ @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
163
+ @replace_return_docstrings(
164
+ output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
165
+ )
166
+ # Ignore copy
167
+ def lce_forward(
168
+ self,
169
+ input_ids: torch.LongTensor = None,
170
+ attention_mask: Optional[torch.Tensor] = None,
171
+ position_ids: Optional[torch.LongTensor] = None,
172
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
173
+ inputs_embeds: Optional[torch.FloatTensor] = None,
174
+ labels: Optional[torch.LongTensor] = None,
175
+ use_cache: Optional[bool] = None,
176
+ output_attentions: Optional[bool] = None,
177
+ output_hidden_states: Optional[bool] = None,
178
+ output_router_logits: Optional[bool] = None,
179
+ return_dict: Optional[bool] = None,
180
+ cache_position: Optional[torch.LongTensor] = None,
181
+ num_logits_to_keep: int = 0,
182
+ **loss_kwargs,
183
+ ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
184
+ r"""
185
+ Args:
186
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
187
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
188
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
189
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
190
+
191
+ num_logits_to_keep (`int`, *optional*):
192
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
193
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
194
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
195
+
196
+ Returns:
197
+
198
+ Example:
199
+
200
+ ```python
201
+ >>> from transformers import AutoTokenizer, MixtralForCausalLM
202
+
203
+ >>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
204
+ >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
205
+
206
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
207
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
208
+
209
+ >>> # Generate
210
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
211
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
212
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
213
+ ```"""
214
+
215
+ output_attentions = (
216
+ output_attentions
217
+ if output_attentions is not None
218
+ else self.config.output_attentions
219
+ )
220
+ output_router_logits = (
221
+ output_router_logits
222
+ if output_router_logits is not None
223
+ else self.config.output_router_logits
224
+ )
225
+
226
+ output_hidden_states = (
227
+ output_hidden_states
228
+ if output_hidden_states is not None
229
+ else self.config.output_hidden_states
230
+ )
231
+ return_dict = (
232
+ return_dict if return_dict is not None else self.config.use_return_dict
233
+ )
234
+
235
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
236
+ outputs = self.model(
237
+ input_ids=input_ids,
238
+ attention_mask=attention_mask,
239
+ position_ids=position_ids,
240
+ past_key_values=past_key_values,
241
+ inputs_embeds=inputs_embeds,
242
+ use_cache=use_cache,
243
+ output_attentions=output_attentions,
244
+ output_hidden_states=output_hidden_states,
245
+ output_router_logits=output_router_logits,
246
+ return_dict=return_dict,
247
+ cache_position=cache_position,
248
+ )
249
+
250
+ hidden_states = outputs[0]
251
+
252
+ logits = None
253
+ loss = None
254
+ # if in training mode, don't materialize logits
255
+ if self.training and (labels is not None):
256
+ # We do the same thing as ForCausalLMLoss but using Liger FLCE
257
+
258
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
259
+ shift_labels = labels[..., 1:].contiguous()
260
+
261
+ # flatten tokens
262
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
263
+ shift_labels = shift_labels.view(-1)
264
+
265
+ reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
266
+ lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
267
+
268
+ loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
269
+ if reduction == "sum":
270
+ loss /= loss_kwargs["num_items_in_batch"]
271
+
272
+ else: # if in inference mode materialize logits
273
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
274
+ if labels is not None:
275
+ loss = self.loss_function(
276
+ logits=logits,
277
+ labels=labels,
278
+ vocab_size=self.config.vocab_size,
279
+ **loss_kwargs,
280
+ )
281
+
282
+ aux_loss = None
283
+ if output_router_logits:
284
+ aux_loss = load_balancing_loss_func(
285
+ outputs.router_logits if return_dict else outputs[-1],
286
+ self.num_experts,
287
+ self.num_experts_per_tok,
288
+ attention_mask,
289
+ )
290
+ if labels is not None:
291
+ loss += self.router_aux_loss_coef * aux_loss.to(
292
+ loss.device
293
+ ) # make sure to reside in the same device
294
+
295
+ if not return_dict:
296
+ output = (logits,) + outputs[1:]
297
+ if output_router_logits:
298
+ output = (aux_loss,) + output
299
+ return (loss,) + output if loss is not None else output
300
+
301
+ return MoeCausalLMOutputWithPast(
302
+ loss=loss,
303
+ aux_loss=aux_loss,
304
+ logits=logits,
305
+ past_key_values=outputs.past_key_values,
306
+ hidden_states=outputs.hidden_states,
307
+ attentions=outputs.attentions,
308
+ router_logits=outputs.router_logits,
309
+ )
@@ -19,7 +19,7 @@ from liger_kernel.transformers.fused_linear_cross_entropy import (
19
19
  @replace_return_docstrings(
20
20
  output_type=CausalLMOutputWithPast, config_class="MllamaTextConfig"
21
21
  )
22
- def lce_forward(
22
+ def lce_forward_deprecated(
23
23
  self,
24
24
  input_ids: torch.LongTensor = None,
25
25
  attention_mask: Optional[torch.Tensor] = None,
@@ -140,3 +140,135 @@ def lce_forward(
140
140
  hidden_states=outputs.hidden_states,
141
141
  attentions=outputs.attentions,
142
142
  )
143
+
144
+
145
+ @add_start_docstrings_to_model_forward(MLLAMA_INPUTS_DOCSTRING)
146
+ @replace_return_docstrings(
147
+ output_type=CausalLMOutputWithPast, config_class="MllamaTextConfig"
148
+ )
149
+ def lce_forward(
150
+ self,
151
+ input_ids: torch.LongTensor = None,
152
+ attention_mask: Optional[torch.Tensor] = None,
153
+ position_ids: Optional[torch.LongTensor] = None,
154
+ cross_attention_states: Optional[torch.LongTensor] = None,
155
+ cross_attention_mask: Optional[torch.LongTensor] = None,
156
+ full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
157
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
158
+ inputs_embeds: Optional[torch.FloatTensor] = None,
159
+ labels: Optional[torch.LongTensor] = None,
160
+ use_cache: Optional[bool] = None,
161
+ output_attentions: Optional[bool] = None,
162
+ output_hidden_states: Optional[bool] = None,
163
+ return_dict: Optional[bool] = None,
164
+ cache_position: Optional[torch.LongTensor] = None,
165
+ num_logits_to_keep: int = 0,
166
+ **loss_kwargs,
167
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
168
+ r"""
169
+ Args:
170
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
171
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
172
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
173
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
174
+
175
+ num_logits_to_keep (`int`, *optional*):
176
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
177
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
178
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
179
+
180
+ Returns:
181
+
182
+ Example:
183
+
184
+ ```python
185
+ >>> from transformers import AutoTokenizer, MllamaForCausalLM
186
+
187
+ >>> model = MllamaForCausalLM.from_pretrained("Llama-3.2-11B-Vision")
188
+ >>> tokenizer = AutoTokenizer.from_pretrained("Llama-3.2-11B-Vision")
189
+
190
+ >>> prompt = "If I had to write a haiku, it would be:"
191
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
192
+
193
+ >>> # Generate
194
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=40, do_sample=True, temperature=0.6)
195
+ >>> result = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
196
+ >>> print(result)
197
+ If I had to write a haiku, it would be: "Snowflakes gently fall" - simple, yet peaceful.
198
+ I love the idea of snowflakes gently falling, each one
199
+ ```
200
+ """
201
+ output_attentions = (
202
+ output_attentions
203
+ if output_attentions is not None
204
+ else self.config.output_attentions
205
+ )
206
+ output_hidden_states = (
207
+ output_hidden_states
208
+ if output_hidden_states is not None
209
+ else self.config.output_hidden_states
210
+ )
211
+ return_dict = (
212
+ return_dict if return_dict is not None else self.config.use_return_dict
213
+ )
214
+
215
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
216
+ outputs = self.model(
217
+ input_ids=input_ids,
218
+ cross_attention_states=cross_attention_states,
219
+ attention_mask=attention_mask,
220
+ position_ids=position_ids,
221
+ cross_attention_mask=cross_attention_mask,
222
+ full_text_row_masked_out_mask=full_text_row_masked_out_mask,
223
+ past_key_values=past_key_values,
224
+ inputs_embeds=inputs_embeds,
225
+ use_cache=use_cache,
226
+ output_attentions=output_attentions,
227
+ output_hidden_states=output_hidden_states,
228
+ return_dict=return_dict,
229
+ cache_position=cache_position,
230
+ )
231
+
232
+ hidden_states = outputs[0]
233
+
234
+ logits = None
235
+ loss = None
236
+ # if in training mode, don't materialize logits
237
+ if self.training and (labels is not None):
238
+ # We do the same thing as ForCausalLMLoss but using Liger FLCE
239
+
240
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
241
+ shift_labels = labels[..., 1:].contiguous()
242
+
243
+ # flatten tokens
244
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
245
+ shift_labels = shift_labels.view(-1)
246
+
247
+ reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
248
+ lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
249
+
250
+ loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
251
+ if reduction == "sum":
252
+ loss /= loss_kwargs["num_items_in_batch"]
253
+
254
+ else: # if in inference mode materialize logits
255
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
256
+ if labels is not None:
257
+ loss = self.loss_function(
258
+ logits=logits,
259
+ labels=labels,
260
+ vocab_size=self.config.vocab_size,
261
+ **loss_kwargs,
262
+ )
263
+
264
+ if not return_dict:
265
+ output = (logits,) + outputs[1:]
266
+ return (loss,) + output if loss is not None else output
267
+
268
+ return CausalLMOutputWithPast(
269
+ loss=loss,
270
+ logits=logits,
271
+ past_key_values=outputs.past_key_values,
272
+ hidden_states=outputs.hidden_states,
273
+ attentions=outputs.attentions,
274
+ )
@@ -21,7 +21,7 @@ from liger_kernel.transformers.fused_linear_cross_entropy import (
21
21
  @replace_return_docstrings(
22
22
  output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
23
23
  )
24
- def lce_forward(
24
+ def lce_forward_deprecated(
25
25
  self,
26
26
  input_ids: torch.LongTensor = None,
27
27
  attention_mask: Optional[torch.Tensor] = None,
@@ -135,3 +135,140 @@ def lce_forward(
135
135
  hidden_states=outputs.hidden_states,
136
136
  attentions=outputs.attentions,
137
137
  )
138
+
139
+
140
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
141
+ @replace_return_docstrings(
142
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
143
+ )
144
+ def lce_forward(
145
+ self,
146
+ input_ids: torch.LongTensor = None,
147
+ attention_mask: Optional[torch.Tensor] = None,
148
+ position_ids: Optional[torch.LongTensor] = None,
149
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
150
+ inputs_embeds: Optional[torch.FloatTensor] = None,
151
+ labels: Optional[torch.LongTensor] = None,
152
+ use_cache: Optional[bool] = None,
153
+ output_attentions: Optional[bool] = None,
154
+ output_hidden_states: Optional[bool] = None,
155
+ return_dict: Optional[bool] = None,
156
+ cache_position: Optional[torch.LongTensor] = None,
157
+ num_logits_to_keep: int = 0,
158
+ **loss_kwargs,
159
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
160
+ r"""
161
+ Args:
162
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
163
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
164
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
165
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
166
+
167
+ num_logits_to_keep (`int`, *optional*):
168
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
169
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
170
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
171
+
172
+ Returns:
173
+
174
+ Example:
175
+
176
+ ```python
177
+ >>> from transformers import AutoTokenizer, Phi3ForCausalLM
178
+
179
+ >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
180
+ >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
181
+
182
+ >>> prompt = "This is an example script ."
183
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
184
+
185
+ >>> # Generate
186
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
187
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
188
+ 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
189
+ ```"""
190
+
191
+ from transformers.models.phi3.modeling_phi3 import logging
192
+
193
+ logger = logging.get_logger(__name__)
194
+
195
+ if (
196
+ use_cache
197
+ and self.config.rope_scaling
198
+ and cache_position is not None
199
+ and cache_position[0] == self.config.original_max_position_embeddings
200
+ ):
201
+ logger.warning(
202
+ f"If you are not using the generate method, you may encounter nonsensical outputs after the {self.config.original_max_position_embeddings}th token, as the KV cache needs to be recomputed."
203
+ )
204
+
205
+ output_attentions = (
206
+ output_attentions
207
+ if output_attentions is not None
208
+ else self.config.output_attentions
209
+ )
210
+ output_hidden_states = (
211
+ output_hidden_states
212
+ if output_hidden_states is not None
213
+ else self.config.output_hidden_states
214
+ )
215
+ return_dict = (
216
+ return_dict if return_dict is not None else self.config.use_return_dict
217
+ )
218
+
219
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
220
+ outputs = self.model(
221
+ input_ids=input_ids,
222
+ attention_mask=attention_mask,
223
+ position_ids=position_ids,
224
+ past_key_values=past_key_values,
225
+ inputs_embeds=inputs_embeds,
226
+ use_cache=use_cache,
227
+ output_attentions=output_attentions,
228
+ output_hidden_states=output_hidden_states,
229
+ return_dict=return_dict,
230
+ )
231
+
232
+ hidden_states = outputs[0]
233
+
234
+ logits = None
235
+ loss = None
236
+ # if in training mode, don't materialize logits
237
+ if self.training and (labels is not None):
238
+ # We do the same thing as ForCausalLMLoss but using Liger FLCE
239
+
240
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
241
+ shift_labels = labels[..., 1:].contiguous()
242
+
243
+ # flatten tokens
244
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
245
+ shift_labels = shift_labels.view(-1)
246
+
247
+ reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
248
+ lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
249
+
250
+ loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
251
+ if reduction == "sum":
252
+ loss /= loss_kwargs["num_items_in_batch"]
253
+
254
+ else: # if in inference mode materialize logits
255
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
256
+ if labels is not None:
257
+ loss = self.loss_function(
258
+ logits=logits,
259
+ labels=labels,
260
+ vocab_size=self.config.vocab_size,
261
+ **loss_kwargs,
262
+ )
263
+
264
+ if not return_dict:
265
+ output = (logits,) + outputs[1:]
266
+ return (loss,) + output if loss is not None else output
267
+
268
+ return CausalLMOutputWithPast(
269
+ loss=loss,
270
+ logits=logits,
271
+ past_key_values=outputs.past_key_values,
272
+ hidden_states=outputs.hidden_states,
273
+ attentions=outputs.attentions,
274
+ )
@@ -21,7 +21,7 @@ from liger_kernel.transformers.fused_linear_cross_entropy import (
21
21
  @replace_return_docstrings(
22
22
  output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
23
23
  )
24
- def lce_forward(
24
+ def lce_forward_deprecated(
25
25
  self,
26
26
  input_ids: torch.LongTensor = None,
27
27
  attention_mask: Optional[torch.Tensor] = None,
@@ -134,3 +134,123 @@ def lce_forward(
134
134
  hidden_states=outputs.hidden_states,
135
135
  attentions=outputs.attentions,
136
136
  )
137
+
138
+
139
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
140
+ @replace_return_docstrings(
141
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
142
+ )
143
+ def lce_forward(
144
+ self,
145
+ input_ids: torch.LongTensor = None,
146
+ attention_mask: Optional[torch.Tensor] = None,
147
+ position_ids: Optional[torch.LongTensor] = None,
148
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
149
+ inputs_embeds: Optional[torch.FloatTensor] = None,
150
+ labels: Optional[torch.LongTensor] = None,
151
+ use_cache: Optional[bool] = None,
152
+ output_attentions: Optional[bool] = None,
153
+ output_hidden_states: Optional[bool] = None,
154
+ return_dict: Optional[bool] = None,
155
+ cache_position: Optional[torch.LongTensor] = None,
156
+ num_logits_to_keep: int = 0,
157
+ **loss_kwargs,
158
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
159
+ r"""
160
+ Args:
161
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
162
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
163
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
164
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
165
+
166
+ num_logits_to_keep (`int`, *optional*):
167
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
168
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
169
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
170
+
171
+ Returns:
172
+
173
+ Example:
174
+
175
+ ```python
176
+ >>> from transformers import AutoTokenizer, Qwen2ForCausalLM
177
+
178
+ >>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
179
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
180
+
181
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
182
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
183
+
184
+ >>> # Generate
185
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
186
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
187
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
188
+ ```"""
189
+
190
+ output_attentions = (
191
+ output_attentions
192
+ if output_attentions is not None
193
+ else self.config.output_attentions
194
+ )
195
+ output_hidden_states = (
196
+ output_hidden_states
197
+ if output_hidden_states is not None
198
+ else self.config.output_hidden_states
199
+ )
200
+ return_dict = (
201
+ return_dict if return_dict is not None else self.config.use_return_dict
202
+ )
203
+
204
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
205
+ outputs = self.model(
206
+ input_ids=input_ids,
207
+ attention_mask=attention_mask,
208
+ position_ids=position_ids,
209
+ past_key_values=past_key_values,
210
+ inputs_embeds=inputs_embeds,
211
+ use_cache=use_cache,
212
+ output_attentions=output_attentions,
213
+ output_hidden_states=output_hidden_states,
214
+ return_dict=return_dict,
215
+ cache_position=cache_position,
216
+ )
217
+
218
+ hidden_states = outputs[0]
219
+
220
+ logits = None
221
+ loss = None
222
+ # if in training mode, don't materialize logits
223
+ if self.training and (labels is not None):
224
+ # We do the same thing as ForCausalLMLoss but using Liger FLCE
225
+
226
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
227
+ shift_labels = labels[..., 1:].contiguous()
228
+
229
+ # flatten tokens
230
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
231
+ shift_labels = shift_labels.view(-1)
232
+
233
+ reduction = "sum" if "num_items_in_batch" in loss_kwargs else "mean"
234
+ lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
235
+
236
+ loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
237
+ if reduction == "sum":
238
+ loss /= loss_kwargs["num_items_in_batch"]
239
+
240
+ else: # if in inference mode materialize logits
241
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
242
+ if labels is not None:
243
+ loss = self.loss_function(
244
+ logits=logits,
245
+ labels=labels,
246
+ vocab_size=self.config.vocab_size,
247
+ **loss_kwargs,
248
+ )
249
+
250
+ return CausalLMOutputWithPast(
251
+ loss=loss,
252
+ logits=logits,
253
+ past_key_values=outputs.past_key_values,
254
+ hidden_states=outputs.hidden_states,
255
+ attentions=outputs.attentions,
256
+ )
@@ -80,6 +80,7 @@ def lce_forward(
80
80
  >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
81
81
  "The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
82
82
  ```"""
83
+ # FIXME: The code is outdated and not compatible with transformer >= 4.46.1
83
84
 
84
85
  output_attentions = (
85
86
  output_attentions
@@ -11,14 +11,26 @@ from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss
11
11
  from liger_kernel.transformers.geglu import LigerGEGLUMLP
12
12
  from liger_kernel.transformers.layer_norm import LigerLayerNorm
13
13
  from liger_kernel.transformers.model.gemma import lce_forward as gemma_lce_forward
14
+ from liger_kernel.transformers.model.gemma import (
15
+ lce_forward_deprecated as gemma_lce_forward_deprecated,
16
+ )
14
17
  from liger_kernel.transformers.model.llama import lce_forward as llama_lce_forward
15
18
  from liger_kernel.transformers.model.llama import (
16
19
  lce_forward_deprecated as llama_lce_forward_deprecated,
17
20
  )
18
21
  from liger_kernel.transformers.model.mistral import lce_forward as mistral_lce_forward
19
22
  from liger_kernel.transformers.model.mixtral import lce_forward as mixtral_lce_forward
23
+ from liger_kernel.transformers.model.mixtral import (
24
+ lce_forward_deprecated as mixtral_lce_forward_deprecated,
25
+ )
20
26
  from liger_kernel.transformers.model.phi3 import lce_forward as phi3_lce_forward
27
+ from liger_kernel.transformers.model.phi3 import (
28
+ lce_forward_deprecated as phi3_lce_forward_deprecated,
29
+ )
21
30
  from liger_kernel.transformers.model.qwen2 import lce_forward as qwen2_lce_forward
31
+ from liger_kernel.transformers.model.qwen2 import (
32
+ lce_forward_deprecated as qwen2_lce_forward_deprecated,
33
+ )
22
34
  from liger_kernel.transformers.rms_norm import LigerRMSNorm
23
35
  from liger_kernel.transformers.rope import liger_rotary_pos_emb
24
36
  from liger_kernel.transformers.swiglu import (
@@ -30,6 +42,8 @@ from liger_kernel.transformers.swiglu import (
30
42
  transformer_version = version.parse(transformers.__version__)
31
43
 
32
44
  logger = logging.getLogger(__name__)
45
+ SUPPORTED_TRANSFORMER_VERSION = "4.46.1"
46
+ TRANSFORMER_DEPRECATION_WARNING = "Support for transformers versions < 4.46.1 will soon be discontinued due to issues with incorrect gradient accumulation. \n Please consider upgrading to avoid potential issues. See details: https://github.com/huggingface/transformers/pull/34191"
33
47
 
34
48
 
35
49
  def _bind_method_to_module(module, method_name: str, new_method: Callable):
@@ -95,13 +109,10 @@ def apply_liger_kernel_to_llama(
95
109
  if cross_entropy:
96
110
  modeling_llama.CrossEntropyLoss = LigerCrossEntropyLoss
97
111
  if fused_linear_cross_entropy:
98
- if transformer_version >= version.parse("4.46.0"):
112
+ if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
99
113
  modeling_llama.LlamaForCausalLM.forward = llama_lce_forward
100
- else: # if version < 4.46.0
101
- logger.warning(
102
- "Support for transformers versions < 4.46.0 will soon be discontinued due to issues with incorrect gradient accumulation. "
103
- "Please consider upgrading to avoid potential issues. See details: https://github.com/huggingface/transformers/pull/34191"
104
- )
114
+ else: # if version < 4.46.1
115
+ logger.warning(TRANSFORMER_DEPRECATION_WARNING)
105
116
  modeling_llama.LlamaForCausalLM.forward = llama_lce_forward_deprecated
106
117
 
107
118
  if model is not None:
@@ -170,6 +181,9 @@ def apply_liger_kernel_to_mllama(
170
181
  )
171
182
 
172
183
  from liger_kernel.transformers.model.mllama import lce_forward as mllama_lce_forward
184
+ from liger_kernel.transformers.model.mllama import (
185
+ lce_forward_deprecated as mllama_lce_forward_deprecated,
186
+ )
173
187
 
174
188
  if rope:
175
189
  modeling_mllama.apply_rotary_pos_emb = liger_rotary_pos_emb
@@ -182,9 +196,11 @@ def apply_liger_kernel_to_mllama(
182
196
  if cross_entropy:
183
197
  modeling_mllama.CrossEntropyLoss = LigerCrossEntropyLoss
184
198
  if fused_linear_cross_entropy:
185
- # MllamaForConditionalGeneration uses MllamaForCausalLM under the hood
186
- # for the loss calculation, so we need to patch the forward method of MllamaForCausalLM
187
- modeling_mllama.MllamaForCausalLM.forward = mllama_lce_forward
199
+ if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
200
+ modeling_mllama.MllamaForCausalLM.forward = mllama_lce_forward
201
+ else: # if version < 4.46.1
202
+ logger.warning(TRANSFORMER_DEPRECATION_WARNING)
203
+ modeling_mllama.MllamaForCausalLM.forward = mllama_lce_forward_deprecated
188
204
 
189
205
  if model is not None:
190
206
  # The model instance already exists, so we need to additionally patch the
@@ -332,7 +348,11 @@ def apply_liger_kernel_to_mixtral(
332
348
  if cross_entropy:
333
349
  modeling_mixtral.CrossEntropyLoss = LigerCrossEntropyLoss
334
350
  if fused_linear_cross_entropy:
335
- modeling_mixtral.MixtralForCausalLM.forward = mixtral_lce_forward
351
+ if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
352
+ modeling_mixtral.MixtralForCausalLM.forward = mixtral_lce_forward
353
+ else: # if version < 4.46.1
354
+ logger.warning(TRANSFORMER_DEPRECATION_WARNING)
355
+ modeling_mixtral.MixtralForCausalLM.forward = mixtral_lce_forward_deprecated
336
356
  if swiglu:
337
357
  modeling_mixtral.MixtralBlockSparseTop2MLP = LigerBlockSparseTop2MLP
338
358
 
@@ -408,7 +428,11 @@ def apply_liger_kernel_to_gemma(
408
428
  if geglu:
409
429
  modeling_gemma.GemmaMLP = LigerGEGLUMLP
410
430
  if fused_linear_cross_entropy:
411
- modeling_gemma.GemmaForCausalLM.forward = gemma_lce_forward
431
+ if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
432
+ modeling_gemma.GemmaForCausalLM.forward = gemma_lce_forward
433
+ else: # if version < 4.46.1
434
+ logger.warning(TRANSFORMER_DEPRECATION_WARNING)
435
+ modeling_gemma.GemmaForCausalLM.forward = gemma_lce_forward_deprecated
412
436
 
413
437
  if model is not None:
414
438
  # The model instance already exists, so we need to additionally patch the
@@ -539,8 +563,16 @@ def apply_liger_kernel_to_qwen2(
539
563
  modeling_qwen2.Qwen2RMSNorm = LigerRMSNorm
540
564
  if cross_entropy:
541
565
  modeling_qwen2.CrossEntropyLoss = LigerCrossEntropyLoss
566
+
567
+ # import pdb; pdb.set_trace()
542
568
  if fused_linear_cross_entropy:
543
- modeling_qwen2.Qwen2ForCausalLM.forward = qwen2_lce_forward
569
+
570
+ if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
571
+ modeling_qwen2.Qwen2ForCausalLM.forward = qwen2_lce_forward
572
+ else: # if version < 4.46.1
573
+ logger.warning(TRANSFORMER_DEPRECATION_WARNING)
574
+ modeling_qwen2.Qwen2ForCausalLM.forward = qwen2_lce_forward_deprecated
575
+
544
576
  if swiglu:
545
577
  modeling_qwen2.Qwen2MLP = LigerSwiGLUMLP
546
578
 
@@ -566,6 +598,7 @@ def apply_liger_kernel_to_qwen2(
566
598
  if rms_norm:
567
599
  _patch_rms_norm_module(decoder_layer.input_layernorm)
568
600
  _patch_rms_norm_module(decoder_layer.post_attention_layernorm)
601
+ print("Applied Liger kernels to Qwen2")
569
602
 
570
603
 
571
604
  def apply_liger_kernel_to_qwen2_vl(
@@ -684,7 +717,11 @@ def apply_liger_kernel_to_phi3(
684
717
  if cross_entropy:
685
718
  modeling_phi3.CrossEntropyLoss = LigerCrossEntropyLoss
686
719
  if fused_linear_cross_entropy:
687
- modeling_phi3.Phi3ForCausalLM.forward = phi3_lce_forward
720
+ if transformer_version >= version.parse(SUPPORTED_TRANSFORMER_VERSION):
721
+ modeling_phi3.Phi3ForCausalLM.forward = phi3_lce_forward
722
+ else: # if version < 4.46.1
723
+ logger.warning(TRANSFORMER_DEPRECATION_WARNING)
724
+ modeling_phi3.Phi3ForCausalLM.forward = phi3_lce_forward_deprecated
688
725
 
689
726
  if model is not None:
690
727
  # The model instance already exists, so we need to additionally patch the
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.3.1.dev20241105010508
3
+ Version: 0.3.1.dev20241105220546
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -23,26 +23,26 @@ liger_kernel/transformers/geglu.py,sha256=QcrME_8ooIn0xa59LaC0aoOdRrBIFd11Y0bAyF
23
23
  liger_kernel/transformers/jsd.py,sha256=W-5CypO2mx4-bUWOxq1KScfCdoXlLoYbtt5xBnRzMs4,3056
24
24
  liger_kernel/transformers/kl_div.py,sha256=qVhjBg6tjRyue5iZ3NFxo8uySY4JuIFJyv0IM_50F24,431
25
25
  liger_kernel/transformers/layer_norm.py,sha256=fd6o4kSHJWolQMWxh-l1qObfgL08ruNbUoBiANKX1ow,972
26
- liger_kernel/transformers/monkey_patch.py,sha256=f8Mm3LaBB2NehbLyEK3kz1rE4u98QJna9OyM2XAy6NI,33607
26
+ liger_kernel/transformers/monkey_patch.py,sha256=qetRIZmdHIDxE0TtWP5-rWS91NuGgRYRZBTqzJUojkI,35507
27
27
  liger_kernel/transformers/rms_norm.py,sha256=4XfMQI6dORF7s_5qUqVHKWv-3IUomaimU2dg-NwnpoM,1035
28
28
  liger_kernel/transformers/rope.py,sha256=m-ah8vZBYW8tfplTXCiAPMHJWlB1tdp_JPXJeWE-Boo,943
29
29
  liger_kernel/transformers/swiglu.py,sha256=0-tVJ8xEYfhxnduc16PflXFj8sZPxdx9sHUn3hfwCI4,2468
30
30
  liger_kernel/transformers/trainer_integration.py,sha256=W3ON51O5GkyzNJsItz0y5rKx-uy2f2cFfveZpqbUdhw,123
31
31
  liger_kernel/transformers/experimental/embedding.py,sha256=HpckiAMKM8-SRxKDcGTqortVxnjhwpZsfsp9lfjqfeM,895
32
32
  liger_kernel/transformers/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
33
- liger_kernel/transformers/model/gemma.py,sha256=EcdkGbSj_qroTDFl0Sc_HLyDyY0xcDhwrgkM_wkXnw8,4987
33
+ liger_kernel/transformers/model/gemma.py,sha256=R4huxuR48gkLrdT8KqV7As2v9dZtEmcGVz6YG1ZmuJE,9692
34
34
  liger_kernel/transformers/model/llama.py,sha256=RinsgC_eR-YNvZd2SHPQxZ4eyR3uViaTFCM3SvI5nks,10426
35
- liger_kernel/transformers/model/mistral.py,sha256=_MQJrDntlxBO5cJwgTjr2rk2nNd5FAXVnzcTg_PEekQ,5079
36
- liger_kernel/transformers/model/mixtral.py,sha256=51FghRY8aGBWat7KSgTeFDqdStDiXY3dEJepByNhEOE,5847
37
- liger_kernel/transformers/model/mllama.py,sha256=S00P0pJrGHOWBx170TPYZbQ0djv0__m8Dqv1FvKZUyE,5926
38
- liger_kernel/transformers/model/phi3.py,sha256=9CBaWcMbfiLnbTUk5TsbpHNqw75cU2_VXBUDJ575w7w,5028
39
- liger_kernel/transformers/model/qwen2.py,sha256=3inWFXGHYT7wA10OR6bq3mDUBrr10AS5mxK3L-VAMLM,4974
40
- liger_kernel/transformers/model/qwen2_vl.py,sha256=ymsm9aQpSUiSU12GY8FO608p9dSHOz4TCnNI1htX5bk,6975
35
+ liger_kernel/transformers/model/mistral.py,sha256=XpL1rlWg_llvW3z_Hf_d8WQs7uQaH4ds7EZ2SxjQHsU,5144
36
+ liger_kernel/transformers/model/mixtral.py,sha256=nyDS1dBpsOXYC2DuW59Hgu7ZrGftrHuWPfNqjcNPIxs,11503
37
+ liger_kernel/transformers/model/mllama.py,sha256=mesNCgj0Ea1O-fqRD4LVxDJ1CR2abY_zAzK_bfVzkiU,11222
38
+ liger_kernel/transformers/model/phi3.py,sha256=xUZPlaPKwknLjHc3uUW3EPodm1h0vD3G7Qnhh51v-Io,10332
39
+ liger_kernel/transformers/model/qwen2.py,sha256=EyhSSzQOskGjSnCsKMZpd1s5IAIlHd5PBO3q0MoCs00,9619
40
+ liger_kernel/transformers/model/qwen2_vl.py,sha256=j6xAhp9AG195dsZK5f8dFYVM9uKtWApZrggT5Y08jn4,7055
41
41
  liger_kernel/triton/__init__.py,sha256=yfRe0zMb47QnqjecZWG7LnanfCTzeku7SgWRAwNVmzU,101
42
42
  liger_kernel/triton/monkey_patch.py,sha256=5BcGKTtdqeYchypBIBopGIWPx1-cFALz7sOKoEsqXJ0,1584
43
- liger_kernel_nightly-0.3.1.dev20241105010508.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
44
- liger_kernel_nightly-0.3.1.dev20241105010508.dist-info/METADATA,sha256=E5RcJoYN3O2Ax-ye189nkt9nfqwPau9muoXuB76ZiR0,27720
45
- liger_kernel_nightly-0.3.1.dev20241105010508.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
46
- liger_kernel_nightly-0.3.1.dev20241105010508.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
47
- liger_kernel_nightly-0.3.1.dev20241105010508.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
48
- liger_kernel_nightly-0.3.1.dev20241105010508.dist-info/RECORD,,
43
+ liger_kernel_nightly-0.3.1.dev20241105220546.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
44
+ liger_kernel_nightly-0.3.1.dev20241105220546.dist-info/METADATA,sha256=vjm2XnEHcuQZqnTLDZWT6_wIWnV1kKGlRkvbCF2roTY,27720
45
+ liger_kernel_nightly-0.3.1.dev20241105220546.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
46
+ liger_kernel_nightly-0.3.1.dev20241105220546.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
47
+ liger_kernel_nightly-0.3.1.dev20241105220546.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
48
+ liger_kernel_nightly-0.3.1.dev20241105220546.dist-info/RECORD,,