liger-kernel-nightly 0.3.1.dev20241031001941__py3-none-any.whl → 0.3.1.dev20241031223324__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

Files changed (13) hide show
  1. liger_kernel/transformers/model/llama.py +129 -1
  2. liger_kernel/transformers/monkey_patch.py +15 -1
  3. {liger_kernel_nightly-0.3.1.dev20241031001941.dist-info → liger_kernel_nightly-0.3.1.dev20241031223324.dist-info}/METADATA +2 -2
  4. {liger_kernel_nightly-0.3.1.dev20241031001941.dist-info → liger_kernel_nightly-0.3.1.dev20241031223324.dist-info}/RECORD +13 -13
  5. {liger_kernel_nightly-0.3.1.dev20241031001941.dist-info → liger_kernel_nightly-0.3.1.dev20241031223324.dist-info}/LICENSE +0 -0
  6. {liger_kernel_nightly-0.3.1.dev20241031001941.dist-info → liger_kernel_nightly-0.3.1.dev20241031223324.dist-info}/LICENSE-Apache-2.0 +0 -0
  7. {liger_kernel_nightly-0.3.1.dev20241031001941.dist-info → liger_kernel_nightly-0.3.1.dev20241031223324.dist-info}/LICENSE-MIT-AutoAWQ +0 -0
  8. /liger_kernel_nightly-0.3.1.dev20241031001941.dist-info/LICENSE-MIT-Efficient Cross Entropy → /liger_kernel_nightly-0.3.1.dev20241031223324.dist-info/LICENSE-MIT-Efficient-Cross-Entropy +0 -0
  9. {liger_kernel_nightly-0.3.1.dev20241031001941.dist-info → liger_kernel_nightly-0.3.1.dev20241031223324.dist-info}/LICENSE-MIT-llmc +0 -0
  10. {liger_kernel_nightly-0.3.1.dev20241031001941.dist-info → liger_kernel_nightly-0.3.1.dev20241031223324.dist-info}/LICENSE-MIT-triton +0 -0
  11. {liger_kernel_nightly-0.3.1.dev20241031001941.dist-info → liger_kernel_nightly-0.3.1.dev20241031223324.dist-info}/NOTICE +0 -0
  12. {liger_kernel_nightly-0.3.1.dev20241031001941.dist-info → liger_kernel_nightly-0.3.1.dev20241031223324.dist-info}/WHEEL +0 -0
  13. {liger_kernel_nightly-0.3.1.dev20241031001941.dist-info → liger_kernel_nightly-0.3.1.dev20241031223324.dist-info}/top_level.txt +0 -0
@@ -22,7 +22,7 @@ from liger_kernel.transformers.fused_linear_cross_entropy import (
22
22
  @replace_return_docstrings(
23
23
  output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
24
24
  )
25
- def lce_forward(
25
+ def lce_forward_deprecated(
26
26
  self,
27
27
  input_ids: torch.LongTensor = None,
28
28
  attention_mask: Optional[torch.Tensor] = None,
@@ -145,3 +145,131 @@ def lce_forward(
145
145
  hidden_states=outputs.hidden_states,
146
146
  attentions=outputs.attentions,
147
147
  )
148
+
149
+
150
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
151
+ @replace_return_docstrings(
152
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
153
+ )
154
+ def lce_forward(
155
+ self,
156
+ input_ids=None,
157
+ attention_mask=None,
158
+ position_ids=None,
159
+ past_key_values=None,
160
+ inputs_embeds=None,
161
+ labels=None,
162
+ use_cache=None,
163
+ output_attentions=None,
164
+ output_hidden_states=None,
165
+ return_dict=None,
166
+ cache_position=None,
167
+ num_logits_to_keep=0,
168
+ **kwargs,
169
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
170
+ r"""
171
+ Args:
172
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
173
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
174
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
175
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
176
+
177
+ num_logits_to_keep (`int`, *optional*):
178
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
179
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
180
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
181
+
182
+ Returns:
183
+
184
+ Example:
185
+
186
+ ```python
187
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
188
+
189
+ >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
190
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
191
+
192
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
193
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
194
+
195
+ >>> # Generate
196
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
197
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
198
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
199
+ ```"""
200
+
201
+ output_attentions = (
202
+ output_attentions
203
+ if output_attentions is not None
204
+ else self.config.output_attentions
205
+ )
206
+ output_hidden_states = (
207
+ output_hidden_states
208
+ if output_hidden_states is not None
209
+ else self.config.output_hidden_states
210
+ )
211
+ return_dict = (
212
+ return_dict if return_dict is not None else self.config.use_return_dict
213
+ )
214
+
215
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
216
+ outputs = self.model(
217
+ input_ids=input_ids,
218
+ attention_mask=attention_mask,
219
+ position_ids=position_ids,
220
+ past_key_values=past_key_values,
221
+ inputs_embeds=inputs_embeds,
222
+ use_cache=use_cache,
223
+ output_attentions=output_attentions,
224
+ output_hidden_states=output_hidden_states,
225
+ return_dict=return_dict,
226
+ cache_position=cache_position,
227
+ **kwargs,
228
+ )
229
+
230
+ hidden_states = outputs[0]
231
+
232
+ if self.config.pretraining_tp > 1:
233
+ raise Exception("Liger Kernel does not support pretraining_tp!!")
234
+
235
+ logits = None
236
+ loss = None
237
+ # if in training mode, don't materialize logits
238
+ if self.training and (labels is not None):
239
+ # We do the same thing as ForCausalLMLoss but using Liger FLCE
240
+
241
+ shift_hidden_states = hidden_states[..., :-1, :].contiguous()
242
+ shift_labels = labels[..., 1:].contiguous()
243
+
244
+ # flatten tokens
245
+ shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
246
+ shift_labels = shift_labels.view(-1)
247
+
248
+ reduction = "sum" if "num_items_in_batch" in kwargs else "mean"
249
+ lce = LigerFusedLinearCrossEntropyLoss(reduction=reduction)
250
+
251
+ loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
252
+ if reduction == "sum":
253
+ loss /= kwargs["num_items_in_batch"]
254
+
255
+ else: # if in inference mode materialize logits
256
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
257
+ if labels is not None:
258
+ loss = self.loss_function(
259
+ logits=logits,
260
+ labels=labels,
261
+ vocab_size=self.config.vocab_size,
262
+ **kwargs,
263
+ )
264
+
265
+ if not return_dict:
266
+ output = (logits,) + outputs[1:]
267
+ return (loss,) + output if loss is not None else output
268
+
269
+ return CausalLMOutputWithPast(
270
+ loss=loss,
271
+ logits=logits,
272
+ past_key_values=outputs.past_key_values,
273
+ hidden_states=outputs.hidden_states,
274
+ attentions=outputs.attentions,
275
+ )
@@ -3,6 +3,8 @@ import logging
3
3
  from functools import partial
4
4
  from typing import Callable
5
5
 
6
+ import transformers
7
+ from packaging import version
6
8
  from transformers import PreTrainedModel
7
9
 
8
10
  from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss
@@ -10,6 +12,9 @@ from liger_kernel.transformers.geglu import LigerGEGLUMLP
10
12
  from liger_kernel.transformers.layer_norm import LigerLayerNorm
11
13
  from liger_kernel.transformers.model.gemma import lce_forward as gemma_lce_forward
12
14
  from liger_kernel.transformers.model.llama import lce_forward as llama_lce_forward
15
+ from liger_kernel.transformers.model.llama import (
16
+ lce_forward_deprecated as llama_lce_forward_deprecated,
17
+ )
13
18
  from liger_kernel.transformers.model.mistral import lce_forward as mistral_lce_forward
14
19
  from liger_kernel.transformers.model.mixtral import lce_forward as mixtral_lce_forward
15
20
  from liger_kernel.transformers.model.phi3 import lce_forward as phi3_lce_forward
@@ -22,6 +27,8 @@ from liger_kernel.transformers.swiglu import (
22
27
  LigerSwiGLUMLP,
23
28
  )
24
29
 
30
+ transformer_version = version.parse(transformers.__version__)
31
+
25
32
  logger = logging.getLogger(__name__)
26
33
 
27
34
 
@@ -88,7 +95,14 @@ def apply_liger_kernel_to_llama(
88
95
  if cross_entropy:
89
96
  modeling_llama.CrossEntropyLoss = LigerCrossEntropyLoss
90
97
  if fused_linear_cross_entropy:
91
- modeling_llama.LlamaForCausalLM.forward = llama_lce_forward
98
+ if transformer_version >= version.parse("4.46.0"):
99
+ modeling_llama.LlamaForCausalLM.forward = llama_lce_forward
100
+ else: # if version < 4.46.0
101
+ logger.warning(
102
+ "Support for transformers versions < 4.46.0 will soon be discontinued due to issues with incorrect gradient accumulation. "
103
+ "Please consider upgrading to avoid potential issues. See details: https://github.com/huggingface/transformers/pull/34191"
104
+ )
105
+ modeling_llama.LlamaForCausalLM.forward = llama_lce_forward_deprecated
92
106
 
93
107
  if model is not None:
94
108
  # The model instance already exists, so we need to additionally patch the
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: liger_kernel_nightly
3
- Version: 0.3.1.dev20241031001941
3
+ Version: 0.3.1.dev20241031223324
4
4
  Summary: Efficient Triton kernels for LLM Training
5
5
  License: BSD 2-CLAUSE LICENSE
6
6
  Copyright 2024 LinkedIn Corporation
@@ -31,7 +31,7 @@ Description-Content-Type: text/markdown
31
31
  License-File: LICENSE
32
32
  License-File: LICENSE-Apache-2.0
33
33
  License-File: LICENSE-MIT-AutoAWQ
34
- License-File: LICENSE-MIT-Efficient Cross Entropy
34
+ License-File: LICENSE-MIT-Efficient-Cross-Entropy
35
35
  License-File: LICENSE-MIT-llmc
36
36
  License-File: LICENSE-MIT-triton
37
37
  License-File: NOTICE
@@ -23,7 +23,7 @@ liger_kernel/transformers/geglu.py,sha256=QcrME_8ooIn0xa59LaC0aoOdRrBIFd11Y0bAyF
23
23
  liger_kernel/transformers/jsd.py,sha256=W-5CypO2mx4-bUWOxq1KScfCdoXlLoYbtt5xBnRzMs4,3056
24
24
  liger_kernel/transformers/kl_div.py,sha256=qVhjBg6tjRyue5iZ3NFxo8uySY4JuIFJyv0IM_50F24,431
25
25
  liger_kernel/transformers/layer_norm.py,sha256=fd6o4kSHJWolQMWxh-l1qObfgL08ruNbUoBiANKX1ow,972
26
- liger_kernel/transformers/monkey_patch.py,sha256=Tr2m4QlFp_qQuARA6cUalFA60SVHttIvsz1qD4aK0oI,32876
26
+ liger_kernel/transformers/monkey_patch.py,sha256=f8Mm3LaBB2NehbLyEK3kz1rE4u98QJna9OyM2XAy6NI,33607
27
27
  liger_kernel/transformers/rms_norm.py,sha256=4XfMQI6dORF7s_5qUqVHKWv-3IUomaimU2dg-NwnpoM,1035
28
28
  liger_kernel/transformers/rope.py,sha256=m-ah8vZBYW8tfplTXCiAPMHJWlB1tdp_JPXJeWE-Boo,943
29
29
  liger_kernel/transformers/swiglu.py,sha256=0-tVJ8xEYfhxnduc16PflXFj8sZPxdx9sHUn3hfwCI4,2468
@@ -31,7 +31,7 @@ liger_kernel/transformers/trainer_integration.py,sha256=W3ON51O5GkyzNJsItz0y5rKx
31
31
  liger_kernel/transformers/experimental/embedding.py,sha256=HpckiAMKM8-SRxKDcGTqortVxnjhwpZsfsp9lfjqfeM,895
32
32
  liger_kernel/transformers/model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
33
33
  liger_kernel/transformers/model/gemma.py,sha256=EcdkGbSj_qroTDFl0Sc_HLyDyY0xcDhwrgkM_wkXnw8,4987
34
- liger_kernel/transformers/model/llama.py,sha256=cKZp1bAMIBagfbW4GFbwXBVaDKq92zBRnkGH-rk3VoA,5424
34
+ liger_kernel/transformers/model/llama.py,sha256=XZ5rBck_2uVHHKQ5bsbVPio_Pd545BjTwTpAA0uLZAA,10028
35
35
  liger_kernel/transformers/model/mistral.py,sha256=_MQJrDntlxBO5cJwgTjr2rk2nNd5FAXVnzcTg_PEekQ,5079
36
36
  liger_kernel/transformers/model/mixtral.py,sha256=51FghRY8aGBWat7KSgTeFDqdStDiXY3dEJepByNhEOE,5847
37
37
  liger_kernel/transformers/model/mllama.py,sha256=S00P0pJrGHOWBx170TPYZbQ0djv0__m8Dqv1FvKZUyE,5926
@@ -40,14 +40,14 @@ liger_kernel/transformers/model/qwen2.py,sha256=3inWFXGHYT7wA10OR6bq3mDUBrr10AS5
40
40
  liger_kernel/transformers/model/qwen2_vl.py,sha256=ymsm9aQpSUiSU12GY8FO608p9dSHOz4TCnNI1htX5bk,6975
41
41
  liger_kernel/triton/__init__.py,sha256=yfRe0zMb47QnqjecZWG7LnanfCTzeku7SgWRAwNVmzU,101
42
42
  liger_kernel/triton/monkey_patch.py,sha256=5BcGKTtdqeYchypBIBopGIWPx1-cFALz7sOKoEsqXJ0,1584
43
- liger_kernel_nightly-0.3.1.dev20241031001941.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
44
- liger_kernel_nightly-0.3.1.dev20241031001941.dist-info/LICENSE-Apache-2.0,sha256=NRaCIsL9eblGS35gk4WKTC0usNYnR_mgRHJTKqz2_UE,11348
45
- liger_kernel_nightly-0.3.1.dev20241031001941.dist-info/LICENSE-MIT-AutoAWQ,sha256=pfiOyInrAPY3xQbvV1i-gOqNZK7QEyIepT1IbqOYYYo,1067
46
- liger_kernel_nightly-0.3.1.dev20241031001941.dist-info/LICENSE-MIT-Efficient Cross Entropy,sha256=PaC9HqyFYTy-ClS0H8Zfa2motJuTppjECXmjHwJcaOk,1063
47
- liger_kernel_nightly-0.3.1.dev20241031001941.dist-info/LICENSE-MIT-llmc,sha256=kyFLt_XUcXS88CuxQt5-PjOcLjpJP2m-T4gtqZf3GLc,1071
48
- liger_kernel_nightly-0.3.1.dev20241031001941.dist-info/LICENSE-MIT-triton,sha256=wL6W8IwsKiyHtzXubg8TCXhRZuo8S83EPdqXffYtqWg,1131
49
- liger_kernel_nightly-0.3.1.dev20241031001941.dist-info/METADATA,sha256=-QULBKpe1DszKDOgeTyHreRY6sZwvjhaJ9GLkAANDwU,27717
50
- liger_kernel_nightly-0.3.1.dev20241031001941.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
51
- liger_kernel_nightly-0.3.1.dev20241031001941.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
52
- liger_kernel_nightly-0.3.1.dev20241031001941.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
53
- liger_kernel_nightly-0.3.1.dev20241031001941.dist-info/RECORD,,
43
+ liger_kernel_nightly-0.3.1.dev20241031223324.dist-info/LICENSE,sha256=OhzLDHJ0to4a8sodVLELZiCFylZ1NAAYLs-HrjPy0ag,1312
44
+ liger_kernel_nightly-0.3.1.dev20241031223324.dist-info/LICENSE-Apache-2.0,sha256=NRaCIsL9eblGS35gk4WKTC0usNYnR_mgRHJTKqz2_UE,11348
45
+ liger_kernel_nightly-0.3.1.dev20241031223324.dist-info/LICENSE-MIT-AutoAWQ,sha256=pfiOyInrAPY3xQbvV1i-gOqNZK7QEyIepT1IbqOYYYo,1067
46
+ liger_kernel_nightly-0.3.1.dev20241031223324.dist-info/LICENSE-MIT-Efficient-Cross-Entropy,sha256=PaC9HqyFYTy-ClS0H8Zfa2motJuTppjECXmjHwJcaOk,1063
47
+ liger_kernel_nightly-0.3.1.dev20241031223324.dist-info/LICENSE-MIT-llmc,sha256=kyFLt_XUcXS88CuxQt5-PjOcLjpJP2m-T4gtqZf3GLc,1071
48
+ liger_kernel_nightly-0.3.1.dev20241031223324.dist-info/LICENSE-MIT-triton,sha256=wL6W8IwsKiyHtzXubg8TCXhRZuo8S83EPdqXffYtqWg,1131
49
+ liger_kernel_nightly-0.3.1.dev20241031223324.dist-info/METADATA,sha256=JNz-iC5NI_se6C7VjRrhBfJVgYKJ1IdlAyLNdnZOxXI,27717
50
+ liger_kernel_nightly-0.3.1.dev20241031223324.dist-info/NOTICE,sha256=njwnoPZLh9AN8SJQzxvCGLHi-8X__AvWRze6joNXIY8,2066
51
+ liger_kernel_nightly-0.3.1.dev20241031223324.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
52
+ liger_kernel_nightly-0.3.1.dev20241031223324.dist-info/top_level.txt,sha256=2eghu4hA3LnkM7ElW92tQ8zegWKgSbeo-k-aGe1YnvY,13
53
+ liger_kernel_nightly-0.3.1.dev20241031223324.dist-info/RECORD,,