lifejacket 0.2.1__py3-none-any.whl → 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -18,16 +18,16 @@ logging.basicConfig(
18
18
  )
19
19
 
20
20
 
21
- def form_adaptive_meat_adjustments_directly(
21
+ def form_adjusted_meat_adjustments_directly(
22
22
  theta_dim: int,
23
23
  beta_dim: int,
24
24
  joint_adaptive_bread_inverse_matrix: jnp.ndarray,
25
25
  per_user_estimating_function_stacks: jnp.ndarray,
26
26
  study_df: pd.DataFrame,
27
- in_study_col_name: str,
27
+ active_col_name: str,
28
28
  action_col_name: str,
29
29
  calendar_t_col_name: str,
30
- user_id_col_name: str,
30
+ subject_id_col_name: str,
31
31
  action_prob_func: callable,
32
32
  action_prob_func_args: dict,
33
33
  action_prob_func_args_beta_index: int,
@@ -205,10 +205,10 @@ def form_adaptive_meat_adjustments_directly(
205
205
 
206
206
  pi_and_weight_gradients_by_calendar_t = calculate_pi_and_weight_gradients(
207
207
  study_df,
208
- in_study_col_name,
208
+ active_col_name,
209
209
  action_col_name,
210
210
  calendar_t_col_name,
211
- user_id_col_name,
211
+ subject_id_col_name,
212
212
  action_prob_func,
213
213
  action_prob_func_args,
214
214
  action_prob_func_args_beta_index,
@@ -220,9 +220,9 @@ def form_adaptive_meat_adjustments_directly(
220
220
  inference_func,
221
221
  inference_func_args_theta_index,
222
222
  user_ids,
223
- user_id_col_name,
223
+ subject_id_col_name,
224
224
  action_prob_col_name,
225
- in_study_col_name,
225
+ active_col_name,
226
226
  calendar_t_col_name,
227
227
  )
228
228
  # Take the outer product of each row of (per_user_meat_adjustments_stacked + per_user_inference_estimating_functions_stacked)