liesel-gam 0.0.4__py3-none-any.whl → 0.0.6a4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liesel_gam/__about__.py +1 -1
- liesel_gam/__init__.py +38 -1
- liesel_gam/builder/__init__.py +8 -0
- liesel_gam/builder/builder.py +2003 -0
- liesel_gam/builder/category_mapping.py +158 -0
- liesel_gam/builder/consolidate_bases.py +105 -0
- liesel_gam/builder/registry.py +561 -0
- liesel_gam/constraint.py +107 -0
- liesel_gam/dist.py +541 -1
- liesel_gam/kernel.py +18 -7
- liesel_gam/plots.py +946 -0
- liesel_gam/predictor.py +59 -20
- liesel_gam/var.py +1508 -126
- liesel_gam-0.0.6a4.dist-info/METADATA +559 -0
- liesel_gam-0.0.6a4.dist-info/RECORD +18 -0
- {liesel_gam-0.0.4.dist-info → liesel_gam-0.0.6a4.dist-info}/WHEEL +1 -1
- liesel_gam-0.0.4.dist-info/METADATA +0 -160
- liesel_gam-0.0.4.dist-info/RECORD +0 -11
- {liesel_gam-0.0.4.dist-info → liesel_gam-0.0.6a4.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,160 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: liesel_gam
|
|
3
|
-
Version: 0.0.4
|
|
4
|
-
Summary: Functionality for Generalized Additive Models in Liesel
|
|
5
|
-
Author: Johannes Brachem
|
|
6
|
-
License-File: LICENSE
|
|
7
|
-
Keywords: machine-learning,statistics
|
|
8
|
-
Classifier: Intended Audience :: Science/Research
|
|
9
|
-
Classifier: License :: OSI Approved :: MIT License
|
|
10
|
-
Classifier: Programming Language :: Python :: 3
|
|
11
|
-
Classifier: Programming Language :: Python :: 3.13
|
|
12
|
-
Requires-Python: >=3.13
|
|
13
|
-
Requires-Dist: liesel>=0.4
|
|
14
|
-
Description-Content-Type: text/markdown
|
|
15
|
-
|
|
16
|
-
# Generalized Additive Models Functionality in Liesel
|
|
17
|
-
|
|
18
|
-
[](https://github.com/liesel-devs/liesel_gam/actions/workflows/pre-commit.yml)
|
|
19
|
-
[](https://github.com/liesel-devs/liesel_gam/actions/workflows/pytest.yml)
|
|
20
|
-
[](https://github.com/liesel-devs/liesel_gam/actions/workflows/pytest.yml)
|
|
21
|
-
|
|
22
|
-
This package provides functionality to make the setup of
|
|
23
|
-
semiparametric generalized additive distributional regression models in [Liesel](https://github.com/liesel-devs/liesel)
|
|
24
|
-
convenient. It works nicely with [liesel-devs/smoothcon](https://github.com/liesel-devs/smoothcon),
|
|
25
|
-
which can be used to obtain basis and penalty matrices from the R package [mgcv](https://cran.r-project.org/web/packages/mgcv/index.html).
|
|
26
|
-
|
|
27
|
-
## Disclaimer
|
|
28
|
-
|
|
29
|
-
This package is experimental and under active development. That means:
|
|
30
|
-
|
|
31
|
-
- The API cannot be considered stable. If you depend on this package, pin the version.
|
|
32
|
-
- Testing has not been extensive as of now. Please check and verify!
|
|
33
|
-
- There is currently no documentation beyond this readme.
|
|
34
|
-
|
|
35
|
-
In any case, this package comes with no warranty or guarantees.
|
|
36
|
-
|
|
37
|
-
## Installation
|
|
38
|
-
|
|
39
|
-
You can install the development version from GitHub via pip:
|
|
40
|
-
|
|
41
|
-
```bash
|
|
42
|
-
pip install git+https://github.com/liesel-devs/liesel_gam.git
|
|
43
|
-
```
|
|
44
|
-
|
|
45
|
-
## Illustration
|
|
46
|
-
|
|
47
|
-
This is a short pseudo-code illustration without real data. For full examples, please
|
|
48
|
-
consider the [notebooks](https://github.com/liesel-devs/liesel_gam/blob/main/notebooks).
|
|
49
|
-
|
|
50
|
-
```python
|
|
51
|
-
import liesel.model as lsl
|
|
52
|
-
import liesel.goose as gs
|
|
53
|
-
|
|
54
|
-
import liesel_gam as gam
|
|
55
|
-
|
|
56
|
-
import jax.numpy as jnp
|
|
57
|
-
```
|
|
58
|
-
|
|
59
|
-
Set up the response model.
|
|
60
|
-
|
|
61
|
-
```python
|
|
62
|
-
loc = gam.AdditivePredictor("loc")
|
|
63
|
-
scale = gam.AdditivePredictor("scale", inv_link=jnp.exp) # terms will be added on the linked level
|
|
64
|
-
|
|
65
|
-
y = lsl.Var.new_obs(
|
|
66
|
-
value=...,
|
|
67
|
-
distribution=lsl.Dist(..., loc=loc, scale=scale),
|
|
68
|
-
name="y"
|
|
69
|
-
)
|
|
70
|
-
```
|
|
71
|
-
|
|
72
|
-
Add intercept terms
|
|
73
|
-
|
|
74
|
-
```python
|
|
75
|
-
loc += gam.Intercept(
|
|
76
|
-
value=0.0, # this is the default
|
|
77
|
-
distribution=None, # this is the default
|
|
78
|
-
inference=gs.MCMCSpec(gs.IWLSKernel), # supply inference information here
|
|
79
|
-
name="b0"
|
|
80
|
-
)
|
|
81
|
-
|
|
82
|
-
scale += gam.Intercept( # this term will be applied on the log link level
|
|
83
|
-
value=0.0,
|
|
84
|
-
distribution=None,
|
|
85
|
-
inference=gs.MCMCSpec(gs.IWLSKernel),
|
|
86
|
-
name="g0"
|
|
87
|
-
)
|
|
88
|
-
|
|
89
|
-
```
|
|
90
|
-
|
|
91
|
-
Add a smooth term, which can be any structured additive term defined by a basis matrix
|
|
92
|
-
and a penalty matrix. A potentially rank-deficient multivariate normal prior will
|
|
93
|
-
be set up for the coefficient of this term.
|
|
94
|
-
|
|
95
|
-
```python
|
|
96
|
-
loc += gam.SmoothTerm(
|
|
97
|
-
basis=...,
|
|
98
|
-
penalty=...,
|
|
99
|
-
scale=lsl.Var.new_param(..., name="tau"),
|
|
100
|
-
inference=gs.MCMCSpec(gs.IWLSKernel),
|
|
101
|
-
name="s(x)"
|
|
102
|
-
)
|
|
103
|
-
```
|
|
104
|
-
|
|
105
|
-
Add a linear term.
|
|
106
|
-
|
|
107
|
-
```python
|
|
108
|
-
loc += gam.LinearTerm(
|
|
109
|
-
x=..., # 1d-array or 2d-array are both allowed
|
|
110
|
-
distribution=lsl.Dist(...),
|
|
111
|
-
inference=gs.MCMCSpec(gs.IWLSKernel),
|
|
112
|
-
name="x"
|
|
113
|
-
)
|
|
114
|
-
```
|
|
115
|
-
|
|
116
|
-
Get a Liesel EngineBuilder instance to set up MCMC sampling.
|
|
117
|
-
|
|
118
|
-
```python
|
|
119
|
-
model = lsl.Model([y])
|
|
120
|
-
eb = gs.LieselMCMC(model).get_engine_builder() # get your engine builder instance
|
|
121
|
-
```
|
|
122
|
-
|
|
123
|
-
## Contents
|
|
124
|
-
|
|
125
|
-
```python
|
|
126
|
-
import liesel.model as lsl
|
|
127
|
-
import liesel.goose as gs
|
|
128
|
-
|
|
129
|
-
import liesel_gam as gam
|
|
130
|
-
```
|
|
131
|
-
|
|
132
|
-
This package provides the following classes and functions:
|
|
133
|
-
|
|
134
|
-
- `gam.AdditivePredictor`: A `lsl.Var` object that provides a convenient way to define an additive predictor.
|
|
135
|
-
- `gam.SmoothTerm`: A `lsl.Var` object that provides a convenient way to set up a structured additive term with a singular multivariate normal prior, given a basis matrix, a penalty matrix, and a `lsl.Var` representing the prior scale parameter.
|
|
136
|
-
- The alternative constructor `gam.SmoothTerm.new_ig` can be used to quickly set up a term with an inverse gamma prior on the prior variance parameter. This variance parameter will be initialized with a suitable Gibbs kernel.
|
|
137
|
-
- `gam.LinearTerm`: A `lsl.Var` object that provides a convenient way to set up a linear term.
|
|
138
|
-
- `gam.Intercept`: A `lsl.Var` parameter object that represents an intercept.
|
|
139
|
-
- `gam.Basis`: An observed `lsl.Var` object that represents a basis matrix.
|
|
140
|
-
|
|
141
|
-
A bit more behind the scenes:
|
|
142
|
-
|
|
143
|
-
- `gam.MultivariateNormalSingular`: An implementation of the singular multivariate normal distribution in the `tensorflow_probability` interface.
|
|
144
|
-
- `gam.star_ig_gibbs` and `gam.init_star_ig_gibbs`: Shortcuts for setting up a `gs.GibbsKernel` for a variance parameter with an inverse gamma prior.
|
|
145
|
-
|
|
146
|
-
## Usage
|
|
147
|
-
|
|
148
|
-
Usage is illustrated in the following notebooks.
|
|
149
|
-
|
|
150
|
-
- [notebooks/test_gam_gibbs.ipynb](https://github.com/liesel-devs/liesel_gam/blob/main/notebooks/test_gam_gibbs.ipynb): Uses the `gam.SmoothTerm.new_ig` constructor for the quickest and most convenient setup.
|
|
151
|
-
- [notebooks/test_gam_manual.ipynb](https://github.com/liesel-devs/liesel_gam/blob/main/notebooks/test_gam_manual.ipynb): Uses `gam.SmoothTerm` with a manually initialized scale parameter. This is less convenient, but demonstrates how to use any `lsl.Var` for the scale parameter.
|
|
152
|
-
|
|
153
|
-
## Usage with bases and penalties from `mgcv` via `smoothcon`
|
|
154
|
-
|
|
155
|
-
We can get access to a large class of possible basis and penalty matrices by
|
|
156
|
-
interfacing with the wonderful R package [mgcv](https://cran.r-project.org/web/packages/mgcv/index.html)
|
|
157
|
-
via [liesel-devs/smoothcon](https://github.com/liesel-devs/smoothcon).
|
|
158
|
-
|
|
159
|
-
Example notebooks that illustrate smoothcon usage are provided in the [smoothcon
|
|
160
|
-
repository](https://github.com/liesel-devs/smoothcon/tree/main/notebooks).
|
|
@@ -1,11 +0,0 @@
|
|
|
1
|
-
liesel_gam/__about__.py,sha256=1mptEzQihbdyqqzMgdns_j5ZGK9gz7hR2bsgA_TnjO4,22
|
|
2
|
-
liesel_gam/__init__.py,sha256=BlkbwITQP5raDtDdtg69C5yZB_pdptVcwgE3uAJWvNQ,455
|
|
3
|
-
liesel_gam/dist.py,sha256=ZrxMjGRqNWWNGE2NAPAfvabEO6QeHteZaKFG-G6BFBI,3466
|
|
4
|
-
liesel_gam/kernel.py,sha256=x1cPHf8orgv_X1824GYvgjIYPLydljq2Gp3xEgvAMSE,1552
|
|
5
|
-
liesel_gam/predictor.py,sha256=SMfo7fybgAcYN9WqSyyCMmic_5GROUv6ui_aRzXdJwc,1473
|
|
6
|
-
liesel_gam/roles.py,sha256=eZeuZI5YccNzlrgqOR5ltREB4dRBV4k4afZt9701doM,335
|
|
7
|
-
liesel_gam/var.py,sha256=4-KEQLupQUok8ZWaiL-UF0eSRnXndeamtc3dyg6TbI0,6444
|
|
8
|
-
liesel_gam-0.0.4.dist-info/METADATA,sha256=y7ldCSSJaS-h9P0LoDKV2DMBteYisdBIjD5NpD2Ry64,6067
|
|
9
|
-
liesel_gam-0.0.4.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
10
|
-
liesel_gam-0.0.4.dist-info/licenses/LICENSE,sha256=pjhYbDHmDl8Gms9kI5nPaJoWte2QGB0F6Cwa1r9jsQ0,1063
|
|
11
|
-
liesel_gam-0.0.4.dist-info/RECORD,,
|
|
File without changes
|