lidb 2.0.20__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of lidb might be problematic. Click here for more details.

lidb/svc/data.py ADDED
@@ -0,0 +1,138 @@
1
+ # Copyright (c) ZhangYundi.
2
+ # Licensed under the MIT License.
3
+ # Created on 2025/10/11 11:01
4
+ # Description:
5
+
6
+ import queue
7
+ import time
8
+ from collections.abc import Callable
9
+
10
+ import polars as pl
11
+ import threading
12
+ import logair
13
+
14
+ class DataService:
15
+
16
+ def __init__(self, cache_size: int = 5):
17
+ self._max_cache_size = cache_size
18
+ self._cache = queue.Queue(maxsize=self._max_cache_size)
19
+ self._cache_dict: dict[str, dict[str, pl.DataFrame]] = dict() # 用于快速查找的字典
20
+ self.stop_event = threading.Event()
21
+ self._data_thread = None
22
+ self.is_running = False
23
+ self._fn = None
24
+
25
+ def put_data(self, key: str, data: dict[str, pl.DataFrame]):
26
+ self._cache.put(key)
27
+ self._cache_dict[key] = data
28
+
29
+ def get_data(self) -> pl.DataFrame:
30
+ try:
31
+ key = self._cache.get_nowait()
32
+ data = self._cache_dict.pop(key)
33
+ return key, data, False
34
+ except queue.Empty:
35
+ return "", None, True
36
+
37
+ def _data_loading_worder(self,
38
+ keys: list[str],
39
+ iter_conf: dict[str, list[str]],):
40
+ logger = logair.get_logger(f"{__name__}.{self.__class__.__name__}.worker")
41
+ logger.info(f"Data loading worker started for {len(keys)} keys.")
42
+
43
+ def worker(key, work_id: int):
44
+ result = dict()
45
+ try:
46
+ for name, iters in iter_conf.items():
47
+ data = self._fn(key=key, iterables=iters)
48
+ result[name] = data
49
+ self.put_data(key, result)
50
+ logger.info(f"{key}(WorkerID: {work_id}) Loaded data.")
51
+ except Exception as e:
52
+ logger.warning(f"Failed to load data for {key}(WorkerID: {work_id}): {e}")
53
+
54
+ for i, k in enumerate(keys):
55
+ worker(key=k, work_id=i + 1)
56
+ self.stop_event.set()
57
+
58
+ def start(self,
59
+ fn: Callable,
60
+ keys: list[str],
61
+ iter_conf: dict[str, list[str]],
62
+ max_cache_size: int,):
63
+ """
64
+
65
+ Parameters
66
+ ----------
67
+ fn: 获取数据的函数,参数为 key 和 iterables 以及其它参数
68
+ keys
69
+ iter_conf
70
+ max_cache_size
71
+
72
+ Returns
73
+ -------
74
+
75
+ """
76
+ logger = logair.get_logger(f"{__name__}.{self.__class__.__name__}")
77
+ self._fn = fn
78
+ self._max_cache_size = max_cache_size
79
+ # 先确保之前的服务已经完全停止
80
+ if self.is_running:
81
+ logger.warning("DataService is already running")
82
+ self.stop()
83
+ # return
84
+ # 重新初始化缓存和 stop_event
85
+ self._cache = queue.Queue(maxsize=self._max_cache_size)
86
+ self._cache_dict.clear()
87
+ self.stop_event.clear()
88
+
89
+ logger.info(f"Starting DataService({self._max_cache_size}) for {len(keys)} key...")
90
+ # 启动后台数据加载线程
91
+ self._data_thread = threading.Thread(
92
+ target=self._data_loading_worder,
93
+ args=(keys,
94
+ iter_conf,),
95
+ daemon=True, # 设置为守护线程,主程序退出时自动结束
96
+ )
97
+ self.is_running = True
98
+ self._data_thread.start()
99
+ logger.info("DataService started successfully.")
100
+
101
+ def stop(self):
102
+ """停止数据服务"""
103
+ logger = logair.get_logger(f"{__name__}.{self.__class__.__name__}")
104
+ if not self.is_running:
105
+ logger.warning("Data service is not running")
106
+ return
107
+ logger.info("Stopping data service...")
108
+ self.stop_event.set()
109
+ if self._data_thread and self._data_thread.is_alive():
110
+ self._data_thread.join(timeout=10)
111
+ self.is_running = False
112
+ logger.info("Data service stopped")
113
+
114
+ def do(self, consumer: callable, wait_secs: float = 3):
115
+ """
116
+ 消费数据
117
+ Parameters
118
+ ----------
119
+ consumer:
120
+ wait_secs
121
+
122
+ Returns
123
+ -------
124
+
125
+ """
126
+ while self.is_running:
127
+ key, data, is_empty = self.get_data()
128
+ if is_empty:
129
+ if self.stop_event.is_set():
130
+ self.stop()
131
+ break
132
+ else:
133
+ time.sleep(wait_secs)
134
+ continue
135
+ consumer(dict(key=key, data=data))
136
+
137
+
138
+ D = DataService()
lidb/table.py ADDED
@@ -0,0 +1,138 @@
1
+ # Copyright (c) ZhangYundi.
2
+ # Licensed under the MIT License.
3
+ # Created on 2025/11/10 13:43
4
+ # Description: 只有一张表单,没有分区的dataset特例, 所有数据都在一张表中
5
+
6
+ from __future__ import annotations
7
+
8
+ import sys
9
+ from collections.abc import Callable
10
+ from enum import Enum
11
+
12
+ import xcals
13
+ from functools import partial
14
+ import polars as pl
15
+ from datetime import datetime
16
+ import logair
17
+ import uuid
18
+ from .database import tb_path, scan
19
+
20
+ import ygo
21
+
22
+
23
+ class TableMode(Enum):
24
+
25
+ F = "full" # 全量更新
26
+ I = "increment" # 增量更新
27
+
28
+ class Table:
29
+
30
+ def __init__(self,
31
+ fn: Callable[..., pl.DataFrame],
32
+ tb: str,
33
+ update_time: str,
34
+ mode: TableMode = TableMode.F):
35
+ self.fn = fn
36
+ self.tb = tb
37
+ self.update_time = update_time
38
+ self._data_dir = tb_path(self.tb)
39
+ self.logger = logair.get_logger(__name__)
40
+ self.verbose = False
41
+ self.mode = mode
42
+
43
+ def __call__(self, *args, **kwargs):
44
+ fn = partial(self.fn, *args, **kwargs)
45
+ table = Table(fn,
46
+ tb=self.tb,
47
+ update_time=self.update_time,
48
+ mode=self.mode)
49
+ return table
50
+
51
+ def _log(self, msg: str, lvl: str = "info"):
52
+ """统一日志输出方法"""
53
+ if self.verbose:
54
+ getattr(self.logger, lvl)(f"{self.tb}: {msg}")
55
+
56
+ def _do_job(self):
57
+ """获取数据并且保存数据"""
58
+ data = ygo.delay(self.fn)(this=self)()
59
+ if data is None:
60
+ self.logger.error(f"{self.tb}: No data.")
61
+ return
62
+ if data.is_empty():
63
+ self.logger.warning(f"{self.tb}: No data.")
64
+ return
65
+ if self.mode == TableMode.I:
66
+ time_uuid = uuid.uuid1()
67
+ data_file = self._data_dir / f"{time_uuid}.parquet"
68
+ data.write_parquet(data_file)
69
+ elif self.mode == TableMode.F:
70
+ data_file = self._data_dir / "0.parquet"
71
+ data.write_parquet(data_file)
72
+ else:
73
+ self.logger.error(f"Invalid table mode: {self.mode}")
74
+
75
+
76
+ def update(self, verbose: bool = False):
77
+ """更新最新数据: 全量更新, 覆盖旧数据"""
78
+ self.verbose = verbose
79
+ if self._need_update(date=xcals.today()):
80
+ self._log("Updating.", "info")
81
+ self._do_job()
82
+
83
+ def _need_update(self, date: str) -> bool:
84
+ """是否需要更新"""
85
+ existed = self._data_dir.exists()
86
+ if not existed:
87
+ self._data_dir.mkdir(parents=True, exist_ok=True)
88
+ return True
89
+ else:
90
+ modified_time = self.modified_time
91
+ if modified_time is not None:
92
+ modified_datetime = modified_time.strftime("%Y-%m-%d %H:%M:%S")
93
+ modified_d, modified_t = modified_datetime.split(" ")
94
+ if self._updated(date, data_date=modified_d, data_time=modified_t):
95
+ return False
96
+ return True
97
+
98
+ def get_value(self, date: str, eager: bool = True) -> pl.DataFrame | pl.LazyFrame:
99
+ """获取数据"""
100
+ # self.update(verbose=True)
101
+ if not date:
102
+ date = xcals.today()
103
+ self.verbose = True
104
+ if self._need_update(date):
105
+ self._log("Update first plz.", "warning")
106
+ sys.exit()
107
+
108
+ df = scan(self._data_dir)
109
+ if eager:
110
+ return df.collect()
111
+ return df
112
+
113
+ def _updated(self, date: str, data_date: str, data_time: str) -> bool:
114
+ """判断是否已经更新数据"""
115
+ recent_tradeday = xcals.get_recent_tradeday(date)
116
+ prev_tradeday = xcals.shift_tradeday(recent_tradeday, -1)
117
+ now = xcals.now()
118
+ latest_update_date = recent_tradeday if now >= self.update_time else prev_tradeday
119
+ return f"{data_date} {data_time}" >= f"{latest_update_date} {self.update_time}"
120
+
121
+ @property
122
+ def latest_file(self):
123
+ if not self._data_dir.exists():
124
+ return
125
+ parquet_files = list(self._data_dir.glob("*.parquet"))
126
+ if not parquet_files:
127
+ return
128
+ latest_file = max(parquet_files, key=lambda x: x.stat().st_mtime)
129
+ return latest_file
130
+
131
+ @property
132
+ def modified_time(self):
133
+ """获取文件修改时间"""
134
+ latest_file = self.latest_file
135
+ if latest_file is None:
136
+ return
137
+ mtime = self.latest_file.stat().st_mtime
138
+ return datetime.fromtimestamp(mtime)
@@ -0,0 +1,282 @@
1
+ Metadata-Version: 2.4
2
+ Name: lidb
3
+ Version: 2.0.20
4
+ Summary: Light database for quantor
5
+ Requires-Python: >=3.12
6
+ Description-Content-Type: text/markdown
7
+ Requires-Dist: dynaconf>=3.2.11
8
+ Requires-Dist: polars>=1.31.0
9
+ Requires-Dist: sqlparse>=0.5.3
10
+ Requires-Dist: logair>=1.0.8
11
+ Requires-Dist: clickhouse-df>=0.1.5
12
+ Requires-Dist: connectorx>=0.4.3
13
+ Requires-Dist: pymysql>=1.1.2
14
+ Requires-Dist: xcals>=0.1.5
15
+ Requires-Dist: ygo>=1.2.11
16
+ Requires-Dist: lark>=1.3.1
17
+ Requires-Dist: numpy>=2.3.1
18
+ Requires-Dist: tqdm>=4.67.1
19
+ Requires-Dist: varname>=0.15.1
20
+
21
+ ## lidb
22
+
23
+ ### 项目简介
24
+ lidb 是一个基于 Polars 的数据管理和分析库,专为金融量化研究设计。它提供了高效的数据存储、查询和表达式计算功能,支持多种时间序列和横截面数据分析操作。
25
+
26
+ ### 功能特性
27
+ - **多数据源支持**: 本地 Parquet 存储、MySQL、ClickHouse 等数据库连接
28
+ - **高效数据存储**: 基于 Parquet 格式的分区存储机制
29
+ - **SQL 查询接口**: 支持标准 SQL 语法进行数据查询
30
+ - **表达式计算引擎**: 提供丰富的 UDF 函数库,包括时间序列、横截面、维度等分析函数
31
+ - **数据集管理**: 自动化数据补全、历史数据加载和 PIT(Point-in-Time)数据处理
32
+ - **数据服务**: 异步加载数据,用于数据密集型任务的数据加载(如大量标的的高频数据)
33
+
34
+ ### 安装
35
+ ```bash
36
+ pip install -U lidb
37
+ ```
38
+
39
+ ### 快速开始
40
+
41
+ #### 基础数据操作
42
+ ```python
43
+ import lidb
44
+ import polars as pl
45
+
46
+ df = pl.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
47
+
48
+ # 写入数据
49
+ lidb.put(df, "my_table")
50
+
51
+ # sql 查询
52
+ res = lidb.sql("select * from my_table;")
53
+ ```
54
+
55
+ #### 数据集使用
56
+ ```python
57
+ import lidb
58
+ from lidb import Dataset, dataset
59
+ import polars as pl
60
+
61
+ # 定义一个tick级别的高频数据集: 高频成交量
62
+ def hft_vol(date: str, num: int) -> pl.DataFrame | pl.LazyFrame | None:
63
+ # 假设上游tick行情表在clickhouse
64
+ quote_query = f"select * from quote where date = '{date}'"
65
+ quote = lidb.read_ck(quote_query, db_conf="databases.ck")
66
+ # 特征计算: 比如过去20根tick的成交量总和, 使用表达式引擎计算
67
+ return lidb.from_polars(quote).sql(f"itd_sum(volume, {num}) as vol_s20")
68
+
69
+ ds_hft_vol = Dataset(fn=hft_vol,
70
+ tb="path/to/hft_vol",
71
+ partitions=["num"], # 默认值 None, 会自动识别 num
72
+ update_time="", # 实时更新
73
+ is_hft=True, # 根据asset_id进行分区
74
+ )(num=20)
75
+
76
+ # 获取历史数据
77
+ history_data = ds_hft_vol.get_history(["2023-01-01", "2023-01-02", ...])
78
+
79
+ # 更加便捷的创建数据集方式:通过dataset装饰器
80
+ @dataset()
81
+ def hft_vol(date: str, num: int) -> pl.DataFrame | pl.LazyFrame | None:
82
+ # 假设上游tick行情表在clickhouse
83
+ quote_query = f"select * from quote where date = '{date}'"
84
+ quote = lidb.read_ck(quote_query, db_conf="databases.ck")
85
+ # 特征计算: 比如过去20根tick的成交量总和, 使用表达式引擎计算
86
+ return lidb.from_polars(quote).sql(f"itd_sum(volume, {num}) as vol_s20")
87
+
88
+ hft_vol.get_value("2025-05-15")
89
+ ```
90
+
91
+ #### `Table`
92
+ 除了 `Dataset` 类用于管理复杂的、可分区的历史数据集之外,lidb 还提供了一个更轻量级的 `Table` 类。
93
+ 它适用于那些不需要复杂分区逻辑,且通常以单一文件形式存储的表格数据。`Table` 类同样支持基于更新时间的自动化数据管理和加载。
94
+ ##### 特性
95
+ - **简化数据管理**: 专为单表数据设计,无需复杂的分区结构。
96
+ - **灵活更新策略**:
97
+ - **全量更新(`TableMode.F`)**: 每次更新时覆盖旧数据,仅保留最新的数据文件(0.parquet)。
98
+ - **增量更新(`TableMode.I`)**: 每次更新时生成一个新的带时间戳的文件(<uuid>.parquet),保留历史版本。
99
+ - **自动更新检查**: 根据设定的 `update_time` 和文件修改时间,自动判断是否需要更新数据。
100
+
101
+ ##### 使用示例
102
+ ```python
103
+ from lidb import Table, TableMode
104
+ import polars as pl
105
+
106
+ # 1. 定义一个数据获取函数
107
+ def fetch_latest_stock_list() -> pl.DataFrame:
108
+ # 模拟从某个API或数据库获取最新的股票列表
109
+ import time
110
+ time.sleep(1) # 模拟网络延迟
111
+ return pl.DataFrame({
112
+ "symbol": ["AAPL", "GOOGL", "MSFT"],
113
+ "name": ["Apple Inc.", "Alphabet Inc.", "Microsoft Corp."],
114
+ "sector": ["Technology", "Communication Services", "Technology"]
115
+ })
116
+
117
+ # 2. 创建 Table 实例
118
+ # 假设此表每天上午9点更新
119
+ stock_list_table = Table(
120
+ fn=fetch_latest_stock_list,
121
+ tb="stock_list",
122
+ update_time="09:00:00",
123
+ mode=TableMode.F # 使用全量更新模式
124
+ )
125
+
126
+ # 3. 更新数据 (可选,get_value 会自动检查并提示更新)
127
+ # stock_list_table.update(verbose=True)
128
+
129
+ # 4. 获取数据
130
+ # 如果数据过期,get_value 会打印警告并退出,提示先调用 update()
131
+ df = stock_list_table.get_value(date="2023-10-27")
132
+ print(df)
133
+ ```
134
+
135
+
136
+ #### 表达式计算
137
+ ```python
138
+ import lidb
139
+
140
+ date = "2025-05-15"
141
+ quote_query = f"select * from quote where date = '{date}'"
142
+ quote = lidb.read_ck(quote_query, db_conf="databases.ck")
143
+
144
+ qdf = lidb.from_polars(quote)
145
+
146
+ # 使用 QDF 进行表达式计算
147
+ res = qdf.sql(
148
+ "ts_mean(close, 5) as c_m5",
149
+ "cs_rank(volume) as vol_rank",
150
+ )
151
+ ```
152
+
153
+ #### 数据服务
154
+ lidb 提供了一个名为 `D` 的全局 `DataService` 实例。
155
+ 用于在后台线程中预加载数据并缓存,从而提升数据密集型任务的性能。
156
+ 这对于需要提前准备大量数据的应用非常有用,例如回测系统或实时数据处理流水线。
157
+ ##### 启动数据服务
158
+ 你可以通过调用 `D.start()` 方法来启动数据服务,指定一个数据加载函数、需要加载的键列表以及迭代配置。
159
+ ```python
160
+ from lidb import D
161
+ import polars as pl
162
+
163
+ # 定义一个模拟的数据加载函数
164
+ def mock_data_loader(key: str, iterables: list[str]) -> pl.DataFrame:
165
+ # 模拟耗时操作
166
+ import time
167
+ time.sleep(1)
168
+
169
+ # 返回简单的 DataFrame 示例
170
+ return pl.DataFrame({
171
+ "key": [key],
172
+ "value": [sum(len(s) for s in iterables)]
173
+ })
174
+
175
+ # 启动数据服务
176
+ D.start(
177
+ fn=mock_data_loader,
178
+ keys=["2023-01-01", "2023-01-02", "2023-01-03"],
179
+ iter_conf={"data_source_a": ["a", "b"], "data_source_b": ["x", "y"]},
180
+ max_cache_size=3
181
+ )
182
+ ```
183
+ ##### 消费数据
184
+ 一旦数据服务启动,你就可以通过 `D.do()` 来消费已加载的数据。
185
+ 这个方法接受一个消费者函数作为参数,每当有新数据可用时就会被调用。
186
+ ```python
187
+ def data_consumer(data_package: dict):
188
+ print(f"Consumed data for key: {data_package['key']}")
189
+ for name, df in data_package['data'].items():
190
+ print(f" Data from {name}:")
191
+ print(df)
192
+
193
+ # 开始消费数据
194
+ D.do(consumer=data_consumer, wait_secs=1)
195
+ ```
196
+ ##### 停止数据服务
197
+ 当你需要停止数据服务时,你可以调用 `D.stop()` 方法。
198
+ ##### 完整示例
199
+ 以下是一个完整的示例,演示了如何使用 D 进行异步数据加载与消费:
200
+ ```python
201
+ import lidb
202
+ from lidb import D
203
+ import polars as pl
204
+ import time
205
+
206
+ def fetch_market_data(key: str, iterables: list[str]) -> pl.DataFrame:
207
+ # 模拟网络请求或复杂计算
208
+ time.sleep(0.5)
209
+ return pl.DataFrame({
210
+ "date": [key],
211
+ "symbol_count": [len(iterables)],
212
+ "total_volume": [sum(ord(c) for s in iterables for c in s)] # Dummy volume
213
+ })
214
+
215
+ # 启动服务
216
+ D.start(
217
+ fn=fetch_market_data,
218
+ keys=["2023-01-01", "2023-01-02", "2023-01-03"],
219
+ iter_conf={"symbols": ["AAPL", "GOOGL", "MSFT"]},
220
+ max_cache_size=2
221
+ )
222
+
223
+ # 消费者函数
224
+ def handle_data(data_package: dict):
225
+ print(f"\nReceived data for {data_package['key']}:")
226
+ print(data_package['data']['market_data'])
227
+
228
+ # 启动消费过程
229
+ try:
230
+ D.do(consumer=handle_data, wait_secs=1)
231
+ except KeyboardInterrupt:
232
+ print("\nShutting down data service...")
233
+ finally:
234
+ D.stop()
235
+ ```
236
+
237
+ ### 核心模块
238
+
239
+ #### 数据库操作(`database.py`)
240
+ - `put`: 将 `polars.DataFrame` 写入指定表
241
+ - `sql`: 执行 `SQL` 查询
242
+ - `has`: 检查表是否存在
243
+ - `read_mysql`,`write_mysql`: mysql 数据读写
244
+ - `read_ck`: clickhouse 数据读取
245
+
246
+ #### 数据服务(`svc/data.py`)
247
+ - `DataService`: 数据服务管理
248
+ - `D`: `DataService` 全局实例
249
+
250
+ #### 数据集管理(`dataset.py`)
251
+ - `Dataset`: 数据集定义和管理
252
+ - `DataLoader`: 数据加载器
253
+
254
+ #### 表达式计算(`qdf/`)
255
+ - `QDF`: 表达式数据库
256
+ - `Expr`: 表达式解析器
257
+ - `UDF 函数库`:
258
+ - `base_udf`: 基础运算函数
259
+ - `ts_udf`: 时间序列函数
260
+ - `cs_udf`: 横截面函数
261
+ - `d_udf`: 日期维度函数
262
+ - `itd_udf`: 日内函数
263
+
264
+ #### 配置管理(`init.py`)
265
+ - 自动创建配置文件
266
+ - 支持自定义数据存储路径
267
+ - `polars` 线程配置
268
+ #### 配置说明
269
+ 首次运行会在 `~/.config/lidb/settings.toml` 创建配置文件:
270
+ ```toml
271
+ [GLOBAL]
272
+ path = "~/lidb" # 数据存储路径
273
+
274
+ [POLARS]
275
+ max_threads = 32 # Polars 最大线程数
276
+ ```
277
+
278
+ ### 许可证
279
+ 本项目采用 MIT 许可证, 请在项目根目录下查看
280
+
281
+ ### 联系方式
282
+ Zhangyundi - yundi.xxii@outlook.com
@@ -0,0 +1,25 @@
1
+ lidb/__init__.py,sha256=Rv9iqZOFC74jE3WVEAu8GrVe7R8Ho-U0KZwfgFMyDvM,537
2
+ lidb/database.py,sha256=DnPXRXvUO6g0kuMo3LPl6eKo_HbD3JNW1qzoaJ14Sgo,7533
3
+ lidb/dataset.py,sha256=eRR2GhwHLuFU4tHueUyHX0nGN4-ssc4jwwiYDDQnUg8,27036
4
+ lidb/decorator.py,sha256=bFnUPcJED6F95nBxHq1a8j5pM2JF9rjFtNvxIQUs9_I,1605
5
+ lidb/init.py,sha256=N_PiBGZO3hKUhQQYzly3GKHgSf4eJVO7xyxjX-chUpQ,1327
6
+ lidb/parse.py,sha256=6awnc14OK7XBkkSrAJFOCZOQ0JUHmm6yDI9F3kkLwcQ,3494
7
+ lidb/table.py,sha256=NeqOU0EJU3DA0yz-1T2GVLpKASu1_1fdOLK3yxf7DtA,4494
8
+ lidb/qdf/__init__.py,sha256=gYiSxijoPQZmbgATQX4GsutjolPpN82Kea0eQz6zGyg,1037
9
+ lidb/qdf/errors.py,sha256=lJhhjDRdQOOKUFGlLQ9ELK4AexXBwYQSYus_V-kc5K8,1180
10
+ lidb/qdf/expr.py,sha256=kBzXwjL_PVsJUL9FIHJ2W_G_OVRqFR-kS2mUHTt9thM,10412
11
+ lidb/qdf/lazy.py,sha256=I08IvSkSC84qJkgtZ7nwvG_4UH07jaHBKRp7qQnwqbs,6937
12
+ lidb/qdf/lazy2.py,sha256=ADKQaxmo-BlndhLY-idWCFypZF1icxKNHNMWEfmWy-Q,6294
13
+ lidb/qdf/qdf.py,sha256=UWG9G1GI0YdG4dMz5uTV731ETEcZelHqnb0QUGrmHPM,6324
14
+ lidb/qdf/udf/__init__.py,sha256=yIySmkWjtJ-Lj_PMP5O4EnXGDjMAPQL40NmFCekKXBw,313
15
+ lidb/qdf/udf/base_udf.py,sha256=ZjRF2UIrZFgznbm1gxFpdf4V92oO84IaakLeeSNF44U,3444
16
+ lidb/qdf/udf/cs_udf.py,sha256=qlBZd2c1enIdGp_DrNyQWzH3cth4ZpLBIE1hGZuJXbA,3528
17
+ lidb/qdf/udf/d_udf.py,sha256=SYfuI_HzKoxKP6iPwm94HRqerzl-JeZzAtzHZpdKdZw,5614
18
+ lidb/qdf/udf/itd_udf.py,sha256=O_OOdSTEaeCoqjtlKnpvNF-_10QoamJL_tw2xEZCYVw,6747
19
+ lidb/qdf/udf/ts_udf.py,sha256=Ag6-ffhmIugkA-st2QY-GP4hclQZcRG8SB-bVa7k5cc,5674
20
+ lidb/svc/__init__.py,sha256=9vQo7gCm5LRgWSiq_UU2hlbwvXi0FlGYt2UDVZixx_U,141
21
+ lidb/svc/data.py,sha256=tLOI_YylnsVejyqv9l-KgPetkPO0QzybOf1PEeFSZNI,4380
22
+ lidb-2.0.20.dist-info/METADATA,sha256=7MpnYUzYu6_iosbpnMAQfZhnWBy4RPrA4877n-JGHiY,9089
23
+ lidb-2.0.20.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
24
+ lidb-2.0.20.dist-info/top_level.txt,sha256=NgXJNwt6ld6oLXtW1vOPaEh-VO5R0JEX_KmGIJR4ueE,5
25
+ lidb-2.0.20.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.9.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1 @@
1
+ lidb