lidb 1.2.0__py3-none-any.whl → 2.0.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
lidb/__init__.py CHANGED
@@ -22,9 +22,10 @@ from .database import (
22
22
 
23
23
  from .table import Table, TableMode
24
24
  from .dataset import Dataset, DataLoader
25
+ from .decorator import dataset
25
26
  from .qdf import from_polars, Expr
26
27
  from .svc import DataService, D
27
28
 
28
29
  from .parse import parse_hive_partition_structure
29
30
 
30
- __version__ = "1.2.0"
31
+ __version__ = "2.0.6"
lidb/dataset.py CHANGED
@@ -5,21 +5,25 @@
5
5
 
6
6
  from __future__ import annotations
7
7
 
8
+ import shutil
8
9
  from collections import defaultdict
9
10
  from enum import Enum
10
11
  from functools import partial
11
12
  from typing import Callable, Literal
12
13
 
13
14
  import logair
15
+ import pandas as pd
14
16
  import polars as pl
15
17
  import polars.selectors as cs
16
18
  import xcals
17
19
  import ygo
20
+ from varname import varname
18
21
 
19
22
  from .database import put, tb_path, scan, DB_PATH
20
23
  from .parse import parse_hive_partition_structure
21
- from .qdf import QDF, from_polars
24
+ import inspect
22
25
 
26
+ DEFAULT_DS_PATH = DB_PATH / "datasets"
23
27
 
24
28
  class InstrumentType(Enum):
25
29
  STOCK = "Stock" # 股票
@@ -30,7 +34,7 @@ class InstrumentType(Enum):
30
34
  def complete_data(fn, date, save_path, partitions):
31
35
  logger = logair.get_logger(__name__)
32
36
  try:
33
- data = fn(date=date)
37
+ data = fn()
34
38
  if data is None:
35
39
  # 保存数据的逻辑在fn中实现了
36
40
  return
@@ -44,59 +48,107 @@ def complete_data(fn, date, save_path, partitions):
44
48
  cols = data.columns
45
49
  if "date" not in cols:
46
50
  data = data.with_columns(pl.lit(date).alias("date")).select("date", *cols)
47
-
51
+ else:
52
+ data = data.cast({"date": pl.Utf8})
53
+ data = data.filter(date=date)
54
+ if "time" in data.columns:
55
+ if data["time"].n_unique() < 2:
56
+ data = data.drop("time")
48
57
  put(data, save_path, partitions=partitions)
49
58
  except Exception as e:
50
- logger.error(f"{save_path}: Error when complete data for {date}")
51
- logger.warning(e)
59
+ logger.error(f"{save_path}: Error when complete data for {date}\n", exc_info=e)
52
60
 
53
61
 
54
62
  class Dataset:
55
63
 
56
64
  def __init__(self,
57
- fn: Callable[..., pl.DataFrame],
58
- tb: str,
65
+ *depends: Dataset,
66
+ fn: Callable[..., pl.DataFrame | pl.LazyFrame],
67
+ tb: str = "",
59
68
  update_time: str = "",
69
+ window: str = "1d",
60
70
  partitions: list[str] = None,
61
- by_asset: bool = True,
62
- by_time: bool = False):
71
+ is_hft: bool = False,
72
+ data_name: str = "",
73
+ frame: int = 1):
63
74
  """
64
75
 
65
76
  Parameters
66
77
  ----------
78
+ depends: Dataset
79
+ 底层依赖数据集
67
80
  fn: str
68
- 数据集计算函数
81
+ 数据集计算函数。如果要用到底层依赖数据集,则必须显示定义形参 `depend`
69
82
  tb: str
70
- 数据集保存表格
83
+ 数据集保存表格, 如果没有指定,默认 {lidb.DB_PATH}/datasets/<module>
71
84
  update_time: str
72
85
  更新时间: 默认没有-实时更新,也就是可以取到当天值
86
+ 更新时间只允许三种情况:
87
+ - 1. 盘前时间点:比如 08:00:00, 09:00:00, 09:15:00 ...
88
+ - 2. 盘中时间点:归为实时更新,使用空值 ""
89
+ - 3. 盘后时间点:比如 15:00:00, 16:30:00, 20:00:00 ...
73
90
  partitions: list[str]
74
- 分区
75
- by_asset: bool
76
- 是否按照标的进行分区,默认 True
77
- by_time: bool
78
- 是否按照标的进行分区,默认 False
91
+ 分区: 如果指定为 None, 则自动从 fn 参数推断,如果不需要分区,应该将其设定为空列表: []
92
+ is_hft: bool
93
+ 是否是高频数据,如果是,则会按照asset进行分区存储,默认 False
94
+ hft定义为:时间步长 < 1min
95
+ window: str
96
+ 配合depends使用,在取depends时,会回看window周期,最小单位为`d`。不足 `d` 的会往上取整为`1d`
97
+ data_name: str
98
+ 数据名,默认为空,会自动推断,如果指定了,则使用指定名
99
+ frame: int
100
+ 用于自动推断 数据名
79
101
  """
102
+ self._depends = list(depends)
103
+ self._name = ""
80
104
  self.fn = fn
81
105
  self.fn_params_sig = ygo.fn_signature_params(fn)
82
- self._by_asset = by_asset
83
- self._by_time = by_time
84
- self._append_partitions = ["asset", "date"] if by_asset else ["date", ]
85
- if by_time:
86
- self._append_partitions.append("time")
106
+ self._is_depend = "depend" in self.fn_params_sig and len(self._depends) > 0
107
+ self._is_hft = is_hft
108
+ self._frame = frame
109
+ self.data_name = data_name
110
+ if not self.data_name:
111
+ try:
112
+ self.data_name = varname(frame, strict=False)
113
+ except Exception as e:
114
+ pass
115
+ if self.data_name:
116
+ self.data_name = self.data_name.replace('ds_', '')
117
+ fn_params = ygo.fn_params(self.fn)
118
+ self.fn_params = {k: v for (k, v) in fn_params}
119
+ # 更新底层依赖数据集的同名参数
120
+ self._update_depends()
121
+
122
+ if pd.Timedelta(window).days < 1:
123
+ window = "1d"
124
+ window_td = pd.Timedelta(window)
125
+ self._window = window
126
+ self._days = window_td.days
127
+ if window_td.seconds > 0:
128
+ self._days += 1
129
+ # 检测是否高频数据:如果是高频数据,则按照标的进行分区,高频的定义为时间差 < 60s
130
+ self._append_partitions = ["asset", "date"] if is_hft else ["date", ]
87
131
  if partitions is not None:
88
132
  partitions = [k for k in partitions if k not in self._append_partitions]
89
133
  partitions = [*partitions, *self._append_partitions]
90
134
  else:
91
- partitions = self._append_partitions
135
+ # partitions = self._append_partitions
136
+ partitions = [k for k in self.fn_params_sig if k not in self._append_partitions and k != "depend"]
137
+ partitions = [*partitions, *self._append_partitions]
92
138
  self.partitions = partitions
93
139
  self._type_asset = "asset" in self.fn_params_sig
140
+ if "09:30:00" < update_time < "15:00:00":
141
+ update_time = ""
94
142
  self.update_time = update_time
143
+ # 根据底层依赖调整update_time
144
+ if update_time and self._depends:
145
+ dep_ut = [ds.update_time for ds in self._depends]
146
+ dep_ut.append(update_time)
147
+ self.update_time = max(dep_ut)
148
+ mod = inspect.getmodule(fn)
149
+ self.tb = tb if tb else DEFAULT_DS_PATH / mod.__name__ /f"{self.data_name}"
150
+ self.save_path = tb_path(self.tb)
95
151
 
96
- self.tb = tb
97
- self.save_path = tb_path(tb)
98
- fn_params = ygo.fn_params(self.fn)
99
- self.fn_params = {k: v for (k, v) in fn_params}
100
152
  self.constraints = dict()
101
153
  for k in self.partitions[:-len(self._append_partitions)]:
102
154
  if k in self.fn_params:
@@ -106,20 +158,35 @@ class Dataset:
106
158
  self.constraints[k] = v
107
159
  self.save_path = self.save_path / f"{k}={v}"
108
160
 
161
+ def _update_depends(self):
162
+ new_deps = list()
163
+ for dep in self._depends:
164
+ new_dep = dep(**self.fn_params)
165
+ new_deps.append(new_dep)
166
+ self._depends = new_deps
167
+
109
168
  def is_empty(self, path) -> bool:
110
169
  return not any(path.rglob("*.parquet"))
111
170
 
112
171
  def __call__(self, *fn_args, **fn_kwargs):
113
- # self.fn =
114
- fn = partial(self.fn, *fn_args, **fn_kwargs)
115
- ds = Dataset(fn=fn,
172
+ """赋值时也会同步更新底层依赖数据集的同名参数"""
173
+
174
+ fn = ygo.delay(self.fn)(*fn_args, **fn_kwargs)
175
+ ds = Dataset(*self._depends,
176
+ fn=fn,
116
177
  tb=self.tb,
117
178
  partitions=self.partitions,
118
- by_asset=self._by_asset,
119
- by_time=self._by_time,
120
- update_time=self.update_time)
179
+ update_time=self.update_time,
180
+ is_hft=self._is_hft,
181
+ window=self._window,
182
+ frame=self._frame+1)
183
+ ds.data_name = self.data_name
121
184
  return ds
122
185
 
186
+ def alias(self, new_name: str):
187
+ self._name = new_name
188
+ return self
189
+
123
190
  def get_value(self, date, eager: bool = True, **constraints):
124
191
  """
125
192
  取值: 不保证未来数据
@@ -135,6 +202,7 @@ class Dataset:
135
202
  -------
136
203
 
137
204
  """
205
+ logger = logair.get_logger(f"{__name__}.{self.__class__.__name__}")
138
206
  _constraints = {k: v for k, v in constraints.items() if k in self.partitions}
139
207
  _limits = {k: v for k, v in constraints.items() if k not in self.partitions}
140
208
  search_path = self.save_path
@@ -144,9 +212,22 @@ class Dataset:
144
212
  search_path = search_path / f"{k}={v}"
145
213
  search_path = search_path / f"date={date}"
146
214
 
215
+ # 处理空文件
216
+ for file_path in search_path.rglob("*.parquet"):
217
+ if file_path.stat().st_size == 0:
218
+ # 删除
219
+ logger.warning(f"{file_path}: Deleting empty file.")
220
+ file_path.unlink()
221
+
147
222
  if not self.is_empty(search_path):
148
223
  lf = scan(search_path).cast({"date": pl.Utf8})
149
- schema = lf.collect_schema()
224
+ try:
225
+ schema = lf.collect_schema()
226
+ except:
227
+ logger.warning(f"{search_path}: Failed to collect schema.")
228
+ # 删除该文件夹
229
+ shutil.rmtree(search_path)
230
+ return self.get_value(date=date, eager=eager, **constraints)
150
231
  _limits = {k: v for k, v in constraints.items() if schema.get(k) is not None}
151
232
  lf = lf.filter(date=date, **_limits)
152
233
  if not eager:
@@ -156,7 +237,10 @@ class Dataset:
156
237
  return data
157
238
  fn = self.fn
158
239
  save_path = self.save_path
159
-
240
+ if self._is_depend:
241
+ fn = partial(fn, depend=self._get_depends(date,))
242
+ else:
243
+ fn = partial(fn, date=date)
160
244
  if self._type_asset:
161
245
  if "asset" in _constraints:
162
246
  fn = ygo.delay(self.fn)(asset=_constraints["asset"])
@@ -169,7 +253,6 @@ class Dataset:
169
253
  params[k] = v
170
254
  save_path = save_path / f"{k}={v}"
171
255
  fn = ygo.delay(self.fn)(**params)
172
- logger = logair.get_logger(__name__)
173
256
 
174
257
  today = xcals.today()
175
258
  now = xcals.now()
@@ -198,7 +281,7 @@ class Dataset:
198
281
  def get_history(self,
199
282
  dateList: list[str],
200
283
  n_jobs: int = 5,
201
- backend: Literal["threading", "multiprocessing", "loky"] = "loky",
284
+ backend: Literal["threading", "multiprocessing", "loky"] = "threading",
202
285
  eager: bool = True,
203
286
  rep_asset: str = "000001", # 默认 000001
204
287
  **constraints):
@@ -227,6 +310,14 @@ class Dataset:
227
310
  missing_dates = set(dateList).difference(set(exist_dates))
228
311
  missing_dates = sorted(list(missing_dates))
229
312
  if missing_dates:
313
+ # 先逐个补齐 depends
314
+ _end_date = max(missing_dates)
315
+ _beg_date = min(missing_dates)
316
+ if self._days > 1:
317
+ _beg_date = xcals.shift_tradeday(_beg_date, -(self._days-1))
318
+ _depend_dates = xcals.get_tradingdays(_beg_date, _end_date)
319
+ for depend in self._depends:
320
+ depend.get_history(_depend_dates, eager=False)
230
321
  fn = self.fn
231
322
  save_path = self.save_path
232
323
 
@@ -250,12 +341,17 @@ class Dataset:
250
341
  except:
251
342
  pass
252
343
  for date in missing_dates:
253
- go.submit(complete_data, job_name=f"Completing {info_path}")(
254
- fn=fn,
255
- date=date,
256
- save_path=save_path,
257
- partitions=self._append_partitions,
258
- )
344
+ if self._is_depend:
345
+ fn = partial(fn, depend=self._get_depends(date))
346
+ else:
347
+ fn = partial(fn, date=date)
348
+ go.submit(complete_data,
349
+ job_name=f"Completing",
350
+ postfix=info_path,
351
+ leave=False)(fn=fn,
352
+ date=date,
353
+ save_path=save_path,
354
+ partitions=self._append_partitions, )
259
355
  go.do()
260
356
  data = scan(search_path, ).cast({"date": pl.Utf8}).filter(pl.col("date").is_in(dateList), **constraints)
261
357
  data = data.sort("date")
@@ -263,6 +359,26 @@ class Dataset:
263
359
  return data.collect()
264
360
  return data
265
361
 
362
+ def _get_depends(self, date: str) -> pl.LazyFrame | None:
363
+ # 获取依赖数据集数据
364
+ if not self._depends:
365
+ return None
366
+ end_date = date
367
+ beg_date = date
368
+ if self._days > 1:
369
+ beg_date = xcals.shift_tradeday(beg_date, -(self._days-1))
370
+ params = {
371
+ "ds_conf": dict(depend=self._depends),
372
+ "beg_date": beg_date,
373
+ "end_date": end_date,
374
+ "times": [self.update_time, ],
375
+ "show_progress": False,
376
+ "eager": False,
377
+ "process_time": False, # 不处理时间
378
+ }
379
+ res = load_ds(**params)
380
+ return res["depend"]
381
+
266
382
 
267
383
  def loader(data_name: str,
268
384
  ds: Dataset,
@@ -270,35 +386,80 @@ def loader(data_name: str,
270
386
  prev_date_list: list[str],
271
387
  prev_date_mapping: dict[str, str],
272
388
  time: str,
389
+ process_time: bool,
273
390
  **constraints) -> pl.LazyFrame:
274
- if time < ds.update_time:
275
- if len(prev_date_list) > 1:
276
- lf = ds.get_history(prev_date_list, eager=False, **constraints)
391
+ """
392
+ Parameters
393
+ ----------
394
+ data_name
395
+ ds
396
+ date_list
397
+ prev_date_list
398
+ prev_date_mapping
399
+ time
400
+ process_time: bool
401
+ 是否处理源数据的时间: 根据实参 time. 用于应对不同场景
402
+ 场景1:依赖因子不处理,底层数据是什么就返回什么
403
+ 场景2:zoo.load 用来加载测试日内不同时间点的数据,就应该处理
404
+ constraints
405
+
406
+ Returns
407
+ -------
408
+
409
+ """
410
+ if time:
411
+ if time < ds.update_time:
412
+ if len(prev_date_list) > 1:
413
+ lf = ds.get_history(prev_date_list, eager=False, **constraints)
414
+ else:
415
+ lf = ds.get_value(prev_date_list[0], eager=False, **constraints)
277
416
  else:
278
- lf = ds.get_value(prev_date_list[0], eager=False, **constraints)
417
+ if len(date_list) > 1:
418
+ lf = ds.get_history(date_list, eager=False, **constraints)
419
+ else:
420
+ lf = ds.get_value(date_list[0], eager=False, **constraints)
279
421
  else:
280
- if len(date_list) > 1:
281
- lf = ds.get_history(date_list, eager=False, **constraints)
422
+ if ds.update_time > "09:30:00":
423
+ # 盘后因子:取上一天的值
424
+ if len(prev_date_list) > 1:
425
+ lf = ds.get_history(prev_date_list, eager=False, **constraints)
426
+ else:
427
+ lf = ds.get_value(prev_date_list[0], eager=False, **constraints)
282
428
  else:
283
- lf = ds.get_value(date_list[0], eager=False, **constraints)
429
+ if len(date_list) > 1:
430
+ lf = ds.get_history(date_list, eager=False, **constraints)
431
+ else:
432
+ lf = ds.get_value(date_list[0], eager=False, **constraints)
433
+
284
434
  schema = lf.collect_schema()
285
435
  include_time = schema.get("time") is not None
286
- if include_time:
287
- lf = lf.filter(time=time)
288
- else:
289
- lf = lf.with_columns(time=pl.lit(time))
436
+ if process_time and time:
437
+ if include_time:
438
+ lf = lf.filter(time=time)
439
+ else:
440
+ lf = lf.with_columns(time=pl.lit(time))
290
441
  if time < ds.update_time:
291
442
  lf = lf.with_columns(date=pl.col("date").replace(prev_date_mapping))
443
+ keep = {"date", "time", "asset"}
444
+ if ds._name:
445
+ columns = lf.collect_schema().names()
446
+ rename_cols = set(columns).difference(keep)
447
+ if len(rename_cols) > 1:
448
+ lf = lf.rename({k: f"{ds._name}.{k}" for k in rename_cols})
449
+ else:
450
+ lf = lf.rename({k: ds._name for k in rename_cols})
292
451
  return data_name, lf
293
452
 
294
453
 
295
454
  def load_ds(ds_conf: dict[str, list[Dataset]],
296
455
  beg_date: str,
297
456
  end_date: str,
298
- time: str,
457
+ times: list[str],
299
458
  n_jobs: int = 7,
300
459
  backend: Literal["threading", "multiprocessing", "loky"] = "threading",
460
+ show_progress: bool = True,
301
461
  eager: bool = False,
462
+ process_time: bool = True,
302
463
  **constraints) -> dict[str, pl.DataFrame | pl.LazyFrame]:
303
464
  """
304
465
  加载数据集
@@ -310,15 +471,20 @@ def load_ds(ds_conf: dict[str, list[Dataset]],
310
471
  开始日期
311
472
  end_date: str
312
473
  结束日期
313
- time: str
474
+ times: list[str]
314
475
  取值时间
315
476
  n_jobs: int
316
477
  并发数量
317
478
  backend: str
479
+ show_progress: bool
318
480
  eager: bool
319
481
  是否返回 DataFrame
320
482
  - True: 返回DataFrame
321
483
  - False: 返回LazyFrame
484
+ process_time: bool
485
+ 是否处理源数据的时间: 根据实参 time. 用于应对不同场景
486
+ 场景1:依赖因子不处理,底层数据是什么就返回什么
487
+ 场景2:zoo.load 用来加载测试日内不同时间点的数据,就应该处理
322
488
  constraints
323
489
  限制条件,比如 asset='000001'
324
490
  Returns
@@ -332,31 +498,79 @@ def load_ds(ds_conf: dict[str, list[Dataset]],
332
498
  raise ValueError("beg_date must be less than end_date")
333
499
  date_list = xcals.get_tradingdays(beg_date, end_date)
334
500
  beg_date, end_date = date_list[0], date_list[-1]
335
- prev_date_list = xcals.get_tradingdays(xcals.shift_tradeday(beg_date, -1), xcals.shift_tradeday(end_date, -1))
501
+ prev_date_list = xcals.get_tradingdays(xcals.shift_tradeday(beg_date, -1),
502
+ xcals.shift_tradeday(end_date, -1))
336
503
  prev_date_mapping = {prev_date: date_list[i] for i, prev_date in enumerate(prev_date_list)}
337
504
  results = defaultdict(list)
338
- with ygo.pool(n_jobs=n_jobs, backend=backend) as go:
505
+ index = ("date", "time", "asset")
506
+ _index = ("date", "asset")
507
+ with ygo.pool(n_jobs=n_jobs,
508
+ backend=backend,
509
+ show_progress=show_progress) as go:
339
510
  for data_name, ds_list in ds_conf.items():
340
511
  for ds in ds_list:
341
- go.submit(loader,
342
- job_name="Loading",
343
- postfix=data_name)(data_name=data_name,
344
- ds=ds,
345
- date_list=date_list,
346
- prev_date_list=prev_date_list,
347
- prev_date_mapping=prev_date_mapping,
348
- time=time,
349
- **constraints)
512
+ _data_name = f"{data_name}:{ds.tb}"
513
+ for time in times:
514
+ go.submit(loader,
515
+ job_name="Loading",
516
+ postfix=data_name, )(data_name=_data_name,
517
+ ds=ds,
518
+ date_list=date_list,
519
+ prev_date_list=prev_date_list,
520
+ prev_date_mapping=prev_date_mapping,
521
+ time=time,
522
+ process_time=process_time,
523
+ **constraints)
350
524
  for name, lf in go.do():
351
525
  results[name].append(lf)
352
- index = ("date", "time", "asset")
353
- LFs = {
526
+ # _LFs = {
527
+ # name: (pl.concat(lfList, )
528
+ # .select(*index,
529
+ # cs.exclude(index))
530
+ # )
531
+ # for name, lfList in results.items()}
532
+ _LFs_with_time = {}
533
+ _LFs_without_time = {}
534
+ for name, lfList in results.items():
535
+ lf = pl.concat(lfList)
536
+ # print(lf)
537
+ if "time" not in lf.collect_schema().names():
538
+ _LFs_without_time[name] = lf
539
+ else:
540
+ _LFs_with_time[name] = lf
541
+ LFs_with_time = defaultdict(list)
542
+ LFs_without_time = defaultdict(list)
543
+ for name, lf in _LFs_with_time.items():
544
+ dn, _ = name.split(":")
545
+ LFs_with_time[dn].append(lf)
546
+ for name, lf in _LFs_without_time.items():
547
+ dn, _ = name.split(":")
548
+ LFs_without_time[dn].append(lf)
549
+ LFs_with_time = {
354
550
  name: (pl.concat(lfList, how="align")
355
551
  .sort(index)
356
552
  .select(*index,
357
553
  cs.exclude(index))
358
554
  )
359
- for name, lfList in results.items()}
555
+ for name, lfList in LFs_with_time.items()}
556
+ LFs_without_time = {
557
+ name: (pl.concat(lfList, how="align")
558
+ .sort(_index)
559
+ .select(*_index,
560
+ cs.exclude(_index))
561
+ )
562
+ for name, lfList in LFs_without_time.items()}
563
+ dns = list(LFs_with_time.keys()) if LFs_with_time else list(LFs_without_time.keys())
564
+ LFs = dict()
565
+ for dn in dns:
566
+ _lf_with_time = LFs_with_time.get(dn)
567
+ _lf_without_time = LFs_without_time.get(dn)
568
+ if _lf_with_time is not None:
569
+ LFs[dn] = _lf_with_time
570
+ if _lf_without_time is not None:
571
+ LFs[dn] = LFs[dn].join(_lf_without_time, on=["date", "asset"], how="left")
572
+ else:
573
+ LFs[dn] = _lf_without_time
360
574
  if not eager:
361
575
  return LFs
362
576
  return {
@@ -364,21 +578,20 @@ def load_ds(ds_conf: dict[str, list[Dataset]],
364
578
  for name, lf in LFs.items()
365
579
  }
366
580
 
367
-
368
581
  class DataLoader:
369
582
 
370
583
  def __init__(self, name: str):
371
584
  self._name = name
372
- self._lf: pl.LazyFrame = None
373
- self._df: pl.DataFrame = None
374
585
  self._index: tuple[str] = ("date", "time", "asset")
375
- self._db: QDF = None
376
- self._one: pl.DataFrame = None
586
+ self._df: pl.LazyFrame | pl.DataFrame = None
587
+ # self._db: QDF = None
377
588
 
378
589
  def get(self,
379
590
  ds_list: list[Dataset],
380
591
  beg_date: str,
381
592
  end_date: str,
593
+ times: list[str],
594
+ eager: bool = False,
382
595
  n_jobs: int = 11,
383
596
  backend: Literal["threading", "multiprocessing", "loky"] = "threading",
384
597
  **constraints):
@@ -389,6 +602,9 @@ class DataLoader:
389
602
  ds_list: list[Dataset]
390
603
  beg_date: str
391
604
  end_date: str
605
+ times: list[str]
606
+ 加载的时间列表
607
+ eager: bool
392
608
  n_jobs: int
393
609
  backend: str
394
610
  constraints
@@ -402,41 +618,25 @@ class DataLoader:
402
618
  end_date=end_date,
403
619
  n_jobs=n_jobs,
404
620
  backend=backend,
405
- eager=False,
621
+ times=times,
622
+ eager=eager,
623
+ process_time=True,
406
624
  **constraints)
407
- self._lf = lf.get(self._name)
408
- self._df = None
409
- self._db = from_polars(self._lf, self._index, align=True)
410
- dateList = xcals.get_tradingdays(beg_date, end_date)
411
- _data_name = f"{self._name}(one_day)"
412
- self._one = load_ds(ds_conf={_data_name: ds_list},
413
- beg_date=dateList[0],
414
- end_date=dateList[0],
415
- n_jobs=n_jobs,
416
- backend=backend,
417
- eager=False,
418
- **constraints).get(_data_name).collect()
625
+ self._df = lf[self._name]
419
626
 
420
627
  @property
421
628
  def name(self) -> str:
422
629
  return self._name
423
630
 
424
631
  @property
425
- def one_day(self) -> pl.DataFrame:
426
- return self._one
427
-
428
- @property
429
- def schema(self) -> pl.Schema:
430
- return self._one.schema
431
-
432
- @property
433
- def columns(self) -> list[str]:
434
- return self._one.columns
435
-
436
- def collect(self) -> pl.DataFrame:
437
- if self._df is None:
438
- self._df = self._lf.collect()
632
+ def data(self) -> pl.DataFrame | None:
633
+ """返回全量数据"""
634
+ if isinstance(self._df, pl.LazyFrame):
635
+ self._df = self._df.collect()
439
636
  return self._df
440
637
 
441
- def sql(self, *exprs: str) -> pl.DataFrame:
442
- return self._db.sql(*exprs)
638
+ def add_data(self, df: pl.DataFrame | pl.LazyFrame):
639
+ """添加dataframe, index 保持为原有的 _df.index"""
640
+ if isinstance(df, pl.LazyFrame):
641
+ df = df.collect()
642
+ self._df = pl.concat([self._df, df], how="align").sort(self._index)
lidb/decorator.py ADDED
@@ -0,0 +1,50 @@
1
+ # Copyright (c) ZhangYundi.
2
+ # Licensed under the MIT License.
3
+ # Created on 2025/12/31 10:58
4
+ # Description:
5
+
6
+ from .dataset import Dataset
7
+ from typing import Callable, TypeVar, cast
8
+
9
+ F = TypeVar('F', bound=Callable)
10
+
11
+ def dataset(*depends: Dataset,
12
+ tb: str = "",
13
+ update_time: str = "",
14
+ window: str = "1d",
15
+ partitions: list[str] = None,
16
+ is_hft: bool = False) -> Callable[[F], Dataset]:
17
+ """
18
+ 装饰器:将函数转换为Dataset对象
19
+
20
+ Parameters
21
+ ----------
22
+ depends: Dataset
23
+ 底层依赖数据集
24
+ tb: str
25
+ 数据集保存表格, 如果没有指定,默认 {DEFAULT_DS_PATH}/
26
+ update_time: str
27
+ 更新时间: 默认没有-实时更新,也就是可以取到当天值
28
+ window: str
29
+ 配合depends使用,在取depends时,会回看window周期,最小单位为`d`。不足 `d` 的会往上取整为`1d`
30
+ partitions: list[str]
31
+ 分区: 如果指定为 None, 则自动从 fn 参数推断,如果不需要分区,应该将其设定为空列表: []
32
+ is_hft: bool
33
+ 是否是高频数据,如果是,则会按照asset进行分区存储,默认 False
34
+ hft定义为:时间步长 < 1min
35
+ """
36
+ def decorator(fn: F):
37
+ # 创建Dataset实例
38
+ ds = Dataset(
39
+ *depends,
40
+ fn=fn,
41
+ tb=tb,
42
+ update_time=update_time,
43
+ window=window,
44
+ partitions=partitions,
45
+ is_hft=is_hft,
46
+ data_name=fn.__name__,
47
+ frame=1
48
+ )
49
+ return ds
50
+ return decorator
lidb/init.py CHANGED
@@ -6,6 +6,7 @@
6
6
  from pathlib import Path
7
7
  from dynaconf import Dynaconf
8
8
  import logair
9
+ import os
9
10
 
10
11
 
11
12
  USERHOME = Path("~").expanduser() # 用户家目录
@@ -22,8 +23,7 @@ if not CONFIG_PATH.exists():
22
23
  except Exception as e:
23
24
  logger.error(f"Failed to create settings file: {e}")
24
25
  with open(CONFIG_PATH, "w") as f:
25
- template_content = f'[global]\npath="{DB_PATH}"\n'
26
- with open(CONFIG_PATH, "w") as f:
26
+ template_content = f'[GLOBAL]\npath="{DB_PATH}"\n\n[POLARS]\nmax_threads=32\n'
27
27
  f.write(template_content)
28
28
  logger.info(f"Settings file created: {CONFIG_PATH}")
29
29
 
@@ -38,5 +38,8 @@ def get_settings():
38
38
  _settiings = get_settings()
39
39
  if _settiings is not None:
40
40
  setting_db_path = _settiings.get(f"global.path", "")
41
+ # 配置 polars
42
+ setting_polars_threads = _settiings.get("polars.max_threads", 32)
43
+ os.environ["POLARS_MAX_THREADS"] = str(setting_polars_threads)
41
44
  if setting_db_path:
42
45
  DB_PATH = Path(setting_db_path)
lidb/parse.py CHANGED
@@ -86,6 +86,10 @@ def parse_hive_partition_structure(root_path: Path | str, file_pattern: str = "*
86
86
  partition_combinations = set()
87
87
 
88
88
  for file_path in root_path.rglob(file_pattern):
89
+ if file_path.stat().st_size == 0:
90
+ # 删除
91
+ file_path.unlink()
92
+ continue
89
93
  relative_path = file_path.relative_to(root_path)
90
94
 
91
95
  # 收集分区信息
lidb/qdf/qdf.py CHANGED
@@ -118,7 +118,7 @@ class QDF:
118
118
  except Exception as error:
119
119
  raise CompileError(message=f"{e.fn_name}({', '.join([str(arg) for arg in args])})\n{error}") from error
120
120
 
121
- def sql(self, *exprs: str, show_progress: bool = False) -> pl.DataFrame:
121
+ def sql(self, *exprs: str, show_progress: bool = False, leave: bool = False) -> pl.DataFrame:
122
122
  """
123
123
  表达式查询
124
124
  Parameters
@@ -127,6 +127,8 @@ class QDF:
127
127
  表达式,比如 "ts_mean(close, 5) as close_ma5"
128
128
  show_progress: bool
129
129
  是否展示进度条
130
+ leave: bool
131
+ 是否保留进度条
130
132
  Returns
131
133
  -------
132
134
  polars.DataFrame
@@ -146,7 +148,7 @@ class QDF:
146
148
  pbar = None
147
149
  lvl_num = len(lvls)
148
150
  if show_progress:
149
- pbar = tqdm(total=lvl_num, desc=f"{len(exprs)}")
151
+ pbar = tqdm(total=lvl_num, desc=f"{len(exprs)}", leave=leave)
150
152
  for i, batch_exprs in enumerate(lvls):
151
153
  if show_progress:
152
154
  pbar.set_postfix_str(f"level-{i + 1}:{len(batch_exprs)}")
lidb/table.py CHANGED
@@ -5,6 +5,7 @@
5
5
 
6
6
  from __future__ import annotations
7
7
 
8
+ import sys
8
9
  from collections.abc import Callable
9
10
  from enum import Enum
10
11
 
@@ -24,8 +25,6 @@ class TableMode(Enum):
24
25
  F = "full" # 全量更新
25
26
  I = "increment" # 增量更新
26
27
 
27
-
28
-
29
28
  class Table:
30
29
 
31
30
  def __init__(self,
@@ -58,10 +57,10 @@ class Table:
58
57
  """获取数据并且保存数据"""
59
58
  data = ygo.delay(self.fn)(this=self)()
60
59
  if data is None:
61
- self.logger.error("No data.")
60
+ self.logger.error(f"{self.tb}: No data.")
62
61
  return
63
62
  if data.is_empty():
64
- self.logger.warning("No data.")
63
+ self.logger.warning(f"{self.tb}: No data.")
65
64
  return
66
65
  if self.mode == TableMode.I:
67
66
  time_uuid = uuid.uuid1()
@@ -77,33 +76,43 @@ class Table:
77
76
  def update(self, verbose: bool = False):
78
77
  """更新最新数据: 全量更新, 覆盖旧数据"""
79
78
  self.verbose = verbose
79
+ if self._need_update(date=xcals.today()):
80
+ self._log("Updating.", "info")
81
+ self._do_job()
82
+
83
+ def _need_update(self, date: str) -> bool:
84
+ """是否需要更新"""
80
85
  existed = self._data_dir.exists()
81
86
  if not existed:
82
87
  self._data_dir.mkdir(parents=True, exist_ok=True)
83
- self._log("Creating new data.", "info")
84
- self._do_job()
88
+ return True
85
89
  else:
86
90
  modified_time = self.modified_time
87
91
  if modified_time is not None:
88
92
  modified_datetime = modified_time.strftime("%Y-%m-%d %H:%M:%S")
89
93
  modified_d, modified_t = modified_datetime.split(" ")
90
- if self._updated(data_date=modified_d, data_time=modified_t):
91
- return
92
- self._log("Updating.", "info")
93
- self._do_job()
94
- self._log("Updated.", "info")
94
+ if self._updated(date, data_date=modified_d, data_time=modified_t):
95
+ return False
96
+ return True
95
97
 
96
- def get_value(self, eager: bool = True) -> pl.DataFrame | pl.LazyFrame:
98
+ def get_value(self, date: str, eager: bool = True) -> pl.DataFrame | pl.LazyFrame:
97
99
  """获取数据"""
98
- self.update(verbose=True)
100
+ # self.update(verbose=True)
101
+ if not date:
102
+ date = xcals.today()
103
+ self.verbose = True
104
+ if self._need_update(date):
105
+ self._log("Update first plz.", "warning")
106
+ sys.exit()
107
+
99
108
  df = scan(self._data_dir)
100
109
  if eager:
101
110
  return df.collect()
102
111
  return df
103
112
 
104
- def _updated(self, data_date: str, data_time: str) -> bool:
105
- """判断是否需要更新数据"""
106
- recent_tradeday = xcals.get_recent_tradeday()
113
+ def _updated(self, date: str, data_date: str, data_time: str) -> bool:
114
+ """判断是否已经更新数据"""
115
+ recent_tradeday = xcals.get_recent_tradeday(date)
107
116
  prev_tradeday = xcals.shift_tradeday(recent_tradeday, -1)
108
117
  now = xcals.now()
109
118
  latest_update_date = recent_tradeday if now >= self.update_time else prev_tradeday
@@ -0,0 +1,282 @@
1
+ Metadata-Version: 2.4
2
+ Name: lidb
3
+ Version: 2.0.6
4
+ Summary: Light database for quantor
5
+ Requires-Python: >=3.12
6
+ Description-Content-Type: text/markdown
7
+ Requires-Dist: dynaconf>=3.2.11
8
+ Requires-Dist: polars>=1.31.0
9
+ Requires-Dist: sqlparse>=0.5.3
10
+ Requires-Dist: logair>=1.0.8
11
+ Requires-Dist: clickhouse-df>=0.1.5
12
+ Requires-Dist: connectorx>=0.4.3
13
+ Requires-Dist: pymysql>=1.1.2
14
+ Requires-Dist: xcals>=0.0.4
15
+ Requires-Dist: ygo>=1.2.9
16
+ Requires-Dist: lark>=1.3.1
17
+ Requires-Dist: numpy>=2.3.1
18
+ Requires-Dist: tqdm>=4.67.1
19
+ Requires-Dist: varname>=0.15.1
20
+
21
+ ## lidb
22
+
23
+ ### 项目简介
24
+ lidb 是一个基于 Polars 的数据管理和分析库,专为金融量化研究设计。它提供了高效的数据存储、查询和表达式计算功能,支持多种时间序列和横截面数据分析操作。
25
+
26
+ ### 功能特性
27
+ - **多数据源支持**: 本地 Parquet 存储、MySQL、ClickHouse 等数据库连接
28
+ - **高效数据存储**: 基于 Parquet 格式的分区存储机制
29
+ - **SQL 查询接口**: 支持标准 SQL 语法进行数据查询
30
+ - **表达式计算引擎**: 提供丰富的 UDF 函数库,包括时间序列、横截面、维度等分析函数
31
+ - **数据集管理**: 自动化数据补全、历史数据加载和 PIT(Point-in-Time)数据处理
32
+ - **数据服务**: 异步加载数据,用于数据密集型任务的数据加载(如大量标的的高频数据)
33
+
34
+ ### 安装
35
+ ```bash
36
+ pip install -U lidb
37
+ ```
38
+
39
+ ### 快速开始
40
+
41
+ #### 基础数据操作
42
+ ```python
43
+ import lidb
44
+ import polars as pl
45
+
46
+ df = pl.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
47
+
48
+ # 写入数据
49
+ lidb.put(df, "my_table")
50
+
51
+ # sql 查询
52
+ res = lidb.sql("select * from my_table;")
53
+ ```
54
+
55
+ #### 数据集使用
56
+ ```python
57
+ import lidb
58
+ from lidb import Dataset, dataset
59
+ import polars as pl
60
+
61
+ # 定义一个tick级别的高频数据集: 高频成交量
62
+ def hft_vol(date: str, num: int) -> pl.DataFrame | pl.LazyFrame | None:
63
+ # 假设上游tick行情表在clickhouse
64
+ quote_query = f"select * from quote where date = '{date}'"
65
+ quote = lidb.read_ck(quote_query, db_conf="databases.ck")
66
+ # 特征计算: 比如过去20根tick的成交量总和, 使用表达式引擎计算
67
+ return lidb.from_polars(quote).sql(f"itd_sum(volume, {num}) as vol_s20")
68
+
69
+ ds_hft_vol = Dataset(fn=hft_vol,
70
+ tb="path/to/hft_vol",
71
+ partitions=["num"], # 默认值 None, 会自动识别 num
72
+ update_time="", # 实时更新
73
+ is_hft=True, # 根据asset_id进行分区
74
+ )(num=20)
75
+
76
+ # 获取历史数据
77
+ history_data = ds_hft_vol.get_history(["2023-01-01", "2023-01-02", ...])
78
+
79
+ # 更加便捷的创建数据集方式:通过dataset装饰器
80
+ @dataset()
81
+ def hft_vol(date: str, num: int) -> pl.DataFrame | pl.LazyFrame | None:
82
+ # 假设上游tick行情表在clickhouse
83
+ quote_query = f"select * from quote where date = '{date}'"
84
+ quote = lidb.read_ck(quote_query, db_conf="databases.ck")
85
+ # 特征计算: 比如过去20根tick的成交量总和, 使用表达式引擎计算
86
+ return lidb.from_polars(quote).sql(f"itd_sum(volume, {num}) as vol_s20")
87
+
88
+ hft_vol.get_value("2025-05-15")
89
+ ```
90
+
91
+ #### `Table`
92
+ 除了 `Dataset` 类用于管理复杂的、可分区的历史数据集之外,lidb 还提供了一个更轻量级的 `Table` 类。
93
+ 它适用于那些不需要复杂分区逻辑,且通常以单一文件形式存储的表格数据。`Table` 类同样支持基于更新时间的自动化数据管理和加载。
94
+ ##### 特性
95
+ - **简化数据管理**: 专为单表数据设计,无需复杂的分区结构。
96
+ - **灵活更新策略**:
97
+ - **全量更新(`TableMode.F`)**: 每次更新时覆盖旧数据,仅保留最新的数据文件(0.parquet)。
98
+ - **增量更新(`TableMode.I`)**: 每次更新时生成一个新的带时间戳的文件(<uuid>.parquet),保留历史版本。
99
+ - **自动更新检查**: 根据设定的 `update_time` 和文件修改时间,自动判断是否需要更新数据。
100
+
101
+ ##### 使用示例
102
+ ```python
103
+ from lidb import Table, TableMode
104
+ import polars as pl
105
+
106
+ # 1. 定义一个数据获取函数
107
+ def fetch_latest_stock_list() -> pl.DataFrame:
108
+ # 模拟从某个API或数据库获取最新的股票列表
109
+ import time
110
+ time.sleep(1) # 模拟网络延迟
111
+ return pl.DataFrame({
112
+ "symbol": ["AAPL", "GOOGL", "MSFT"],
113
+ "name": ["Apple Inc.", "Alphabet Inc.", "Microsoft Corp."],
114
+ "sector": ["Technology", "Communication Services", "Technology"]
115
+ })
116
+
117
+ # 2. 创建 Table 实例
118
+ # 假设此表每天上午9点更新
119
+ stock_list_table = Table(
120
+ fn=fetch_latest_stock_list,
121
+ tb="stock_list",
122
+ update_time="09:00:00",
123
+ mode=TableMode.F # 使用全量更新模式
124
+ )
125
+
126
+ # 3. 更新数据 (可选,get_value 会自动检查并提示更新)
127
+ # stock_list_table.update(verbose=True)
128
+
129
+ # 4. 获取数据
130
+ # 如果数据过期,get_value 会打印警告并退出,提示先调用 update()
131
+ df = stock_list_table.get_value(date="2023-10-27")
132
+ print(df)
133
+ ```
134
+
135
+
136
+ #### 表达式计算
137
+ ```python
138
+ import lidb
139
+
140
+ date = "2025-05-15"
141
+ quote_query = f"select * from quote where date = '{date}'"
142
+ quote = lidb.read_ck(quote_query, db_conf="databases.ck")
143
+
144
+ qdf = lidb.from_polars(quote)
145
+
146
+ # 使用 QDF 进行表达式计算
147
+ res = qdf.sql(
148
+ "ts_mean(close, 5) as c_m5",
149
+ "cs_rank(volume) as vol_rank",
150
+ )
151
+ ```
152
+
153
+ #### 数据服务
154
+ lidb 提供了一个名为 `D` 的全局 `DataService` 实例。
155
+ 用于在后台线程中预加载数据并缓存,从而提升数据密集型任务的性能。
156
+ 这对于需要提前准备大量数据的应用非常有用,例如回测系统或实时数据处理流水线。
157
+ ##### 启动数据服务
158
+ 你可以通过调用 `D.start()` 方法来启动数据服务,指定一个数据加载函数、需要加载的键列表以及迭代配置。
159
+ ```python
160
+ from lidb import D
161
+ import polars as pl
162
+
163
+ # 定义一个模拟的数据加载函数
164
+ def mock_data_loader(key: str, iterables: list[str]) -> pl.DataFrame:
165
+ # 模拟耗时操作
166
+ import time
167
+ time.sleep(1)
168
+
169
+ # 返回简单的 DataFrame 示例
170
+ return pl.DataFrame({
171
+ "key": [key],
172
+ "value": [sum(len(s) for s in iterables)]
173
+ })
174
+
175
+ # 启动数据服务
176
+ D.start(
177
+ fn=mock_data_loader,
178
+ keys=["2023-01-01", "2023-01-02", "2023-01-03"],
179
+ iter_conf={"data_source_a": ["a", "b"], "data_source_b": ["x", "y"]},
180
+ max_cache_size=3
181
+ )
182
+ ```
183
+ ##### 消费数据
184
+ 一旦数据服务启动,你就可以通过 `D.do()` 来消费已加载的数据。
185
+ 这个方法接受一个消费者函数作为参数,每当有新数据可用时就会被调用。
186
+ ```python
187
+ def data_consumer(data_package: dict):
188
+ print(f"Consumed data for key: {data_package['key']}")
189
+ for name, df in data_package['data'].items():
190
+ print(f" Data from {name}:")
191
+ print(df)
192
+
193
+ # 开始消费数据
194
+ D.do(consumer=data_consumer, wait_secs=1)
195
+ ```
196
+ ##### 停止数据服务
197
+ 当你需要停止数据服务时,你可以调用 `D.stop()` 方法。
198
+ ##### 完整示例
199
+ 以下是一个完整的示例,演示了如何使用 D 进行异步数据加载与消费:
200
+ ```python
201
+ import lidb
202
+ from lidb import D
203
+ import polars as pl
204
+ import time
205
+
206
+ def fetch_market_data(key: str, iterables: list[str]) -> pl.DataFrame:
207
+ # 模拟网络请求或复杂计算
208
+ time.sleep(0.5)
209
+ return pl.DataFrame({
210
+ "date": [key],
211
+ "symbol_count": [len(iterables)],
212
+ "total_volume": [sum(ord(c) for s in iterables for c in s)] # Dummy volume
213
+ })
214
+
215
+ # 启动服务
216
+ D.start(
217
+ fn=fetch_market_data,
218
+ keys=["2023-01-01", "2023-01-02", "2023-01-03"],
219
+ iter_conf={"symbols": ["AAPL", "GOOGL", "MSFT"]},
220
+ max_cache_size=2
221
+ )
222
+
223
+ # 消费者函数
224
+ def handle_data(data_package: dict):
225
+ print(f"\nReceived data for {data_package['key']}:")
226
+ print(data_package['data']['market_data'])
227
+
228
+ # 启动消费过程
229
+ try:
230
+ D.do(consumer=handle_data, wait_secs=1)
231
+ except KeyboardInterrupt:
232
+ print("\nShutting down data service...")
233
+ finally:
234
+ D.stop()
235
+ ```
236
+
237
+ ### 核心模块
238
+
239
+ #### 数据库操作(`database.py`)
240
+ - `put`: 将 `polars.DataFrame` 写入指定表
241
+ - `sql`: 执行 `SQL` 查询
242
+ - `has`: 检查表是否存在
243
+ - `read_mysql`,`write_mysql`: mysql 数据读写
244
+ - `read_ck`: clickhouse 数据读取
245
+
246
+ #### 数据服务(`svc/data.py`)
247
+ - `DataService`: 数据服务管理
248
+ - `D`: `DataService` 全局实例
249
+
250
+ #### 数据集管理(`dataset.py`)
251
+ - `Dataset`: 数据集定义和管理
252
+ - `DataLoader`: 数据加载器
253
+
254
+ #### 表达式计算(`qdf/`)
255
+ - `QDF`: 表达式数据库
256
+ - `Expr`: 表达式解析器
257
+ - `UDF 函数库`:
258
+ - `base_udf`: 基础运算函数
259
+ - `ts_udf`: 时间序列函数
260
+ - `cs_udf`: 横截面函数
261
+ - `d_udf`: 日期维度函数
262
+ - `itd_udf`: 日内函数
263
+
264
+ #### 配置管理(`init.py`)
265
+ - 自动创建配置文件
266
+ - 支持自定义数据存储路径
267
+ - `polars` 线程配置
268
+ #### 配置说明
269
+ 首次运行会在 `~/.config/lidb/settings.toml` 创建配置文件:
270
+ ```toml
271
+ [GLOBAL]
272
+ path = "~/lidb" # 数据存储路径
273
+
274
+ [POLARS]
275
+ max_threads = 32 # Polars 最大线程数
276
+ ```
277
+
278
+ ### 许可证
279
+ 本项目采用 MIT 许可证, 请在项目根目录下查看
280
+
281
+ ### 联系方式
282
+ Zhangyundi - yundi.xxii@outlook.com
@@ -1,15 +1,16 @@
1
- lidb/__init__.py,sha256=-EUd5pO1o7cBs__gvTsxquuHRBpiVn7mVGkL9miyc2k,504
1
+ lidb/__init__.py,sha256=WuGdkD4QzcCkIG3zbXupaXJV0b3o8gvaMGhs6MhVa_c,536
2
2
  lidb/database.py,sha256=DnPXRXvUO6g0kuMo3LPl6eKo_HbD3JNW1qzoaJ14Sgo,7533
3
- lidb/dataset.py,sha256=j3yFtokbNILVhjV-etAJunnbgfxYAu68Dkr2cgtCYSc,15766
4
- lidb/init.py,sha256=jLHpeL5mIM4YjdMYAndZlDilMiKXJMr_51Ke3ZSJWCM,1170
5
- lidb/parse.py,sha256=f7vfj6Nguw1WzUVEUb7fs2Oh-_2YQzB_atJhm3WGC28,3379
6
- lidb/table.py,sha256=-85U2N1ECDtZTTCJtgOM8XBKyueIgBmYRF5DocPvkh8,4167
3
+ lidb/dataset.py,sha256=rZGUmvRwaIdynWbTFF-D1fPE1NyAbhDLVxJ3J0y1MYo,24363
4
+ lidb/decorator.py,sha256=bFnUPcJED6F95nBxHq1a8j5pM2JF9rjFtNvxIQUs9_I,1605
5
+ lidb/init.py,sha256=N_PiBGZO3hKUhQQYzly3GKHgSf4eJVO7xyxjX-chUpQ,1327
6
+ lidb/parse.py,sha256=6awnc14OK7XBkkSrAJFOCZOQ0JUHmm6yDI9F3kkLwcQ,3494
7
+ lidb/table.py,sha256=NeqOU0EJU3DA0yz-1T2GVLpKASu1_1fdOLK3yxf7DtA,4494
7
8
  lidb/qdf/__init__.py,sha256=gYiSxijoPQZmbgATQX4GsutjolPpN82Kea0eQz6zGyg,1037
8
9
  lidb/qdf/errors.py,sha256=lJhhjDRdQOOKUFGlLQ9ELK4AexXBwYQSYus_V-kc5K8,1180
9
10
  lidb/qdf/expr.py,sha256=kBzXwjL_PVsJUL9FIHJ2W_G_OVRqFR-kS2mUHTt9thM,10412
10
11
  lidb/qdf/lazy.py,sha256=I08IvSkSC84qJkgtZ7nwvG_4UH07jaHBKRp7qQnwqbs,6937
11
12
  lidb/qdf/lazy2.py,sha256=ADKQaxmo-BlndhLY-idWCFypZF1icxKNHNMWEfmWy-Q,6294
12
- lidb/qdf/qdf.py,sha256=tfPnnQvh8uQZT4aOqJi6bDyDoJwLObvQrFeM2Ilz6vM,6236
13
+ lidb/qdf/qdf.py,sha256=UWG9G1GI0YdG4dMz5uTV731ETEcZelHqnb0QUGrmHPM,6324
13
14
  lidb/qdf/udf/__init__.py,sha256=yIySmkWjtJ-Lj_PMP5O4EnXGDjMAPQL40NmFCekKXBw,313
14
15
  lidb/qdf/udf/base_udf.py,sha256=ZjRF2UIrZFgznbm1gxFpdf4V92oO84IaakLeeSNF44U,3444
15
16
  lidb/qdf/udf/cs_udf.py,sha256=qlBZd2c1enIdGp_DrNyQWzH3cth4ZpLBIE1hGZuJXbA,3528
@@ -18,7 +19,7 @@ lidb/qdf/udf/itd_udf.py,sha256=O_OOdSTEaeCoqjtlKnpvNF-_10QoamJL_tw2xEZCYVw,6747
18
19
  lidb/qdf/udf/ts_udf.py,sha256=Ag6-ffhmIugkA-st2QY-GP4hclQZcRG8SB-bVa7k5cc,5674
19
20
  lidb/svc/__init__.py,sha256=9vQo7gCm5LRgWSiq_UU2hlbwvXi0FlGYt2UDVZixx_U,141
20
21
  lidb/svc/data.py,sha256=tLOI_YylnsVejyqv9l-KgPetkPO0QzybOf1PEeFSZNI,4380
21
- lidb-1.2.0.dist-info/METADATA,sha256=fj1SvELa0jivjl6dcyut8IHbE7V00h5o6mGJkZa04S0,506
22
- lidb-1.2.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
23
- lidb-1.2.0.dist-info/top_level.txt,sha256=NgXJNwt6ld6oLXtW1vOPaEh-VO5R0JEX_KmGIJR4ueE,5
24
- lidb-1.2.0.dist-info/RECORD,,
22
+ lidb-2.0.6.dist-info/METADATA,sha256=ldndXJNXi7y_k1rh5fRPbBVF4a97LqRykzW2gEk8lEM,9087
23
+ lidb-2.0.6.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
24
+ lidb-2.0.6.dist-info/top_level.txt,sha256=NgXJNwt6ld6oLXtW1vOPaEh-VO5R0JEX_KmGIJR4ueE,5
25
+ lidb-2.0.6.dist-info/RECORD,,
@@ -1,18 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: lidb
3
- Version: 1.2.0
4
- Summary: Light database for quantor
5
- Requires-Python: >=3.12
6
- Description-Content-Type: text/markdown
7
- Requires-Dist: dynaconf>=3.2.11
8
- Requires-Dist: polars>=1.31.0
9
- Requires-Dist: sqlparse>=0.5.3
10
- Requires-Dist: logair>=1.0.1
11
- Requires-Dist: clickhouse-df>=0.1.5
12
- Requires-Dist: connectorx>=0.4.3
13
- Requires-Dist: pymysql>=1.1.2
14
- Requires-Dist: xcals>=0.0.4
15
- Requires-Dist: ygo>=1.2.8
16
- Requires-Dist: lark>=1.3.1
17
- Requires-Dist: numpy>=2.3.1
18
- Requires-Dist: tqdm>=4.67.1
File without changes