lfx-nightly 0.2.0.dev26__py3-none-any.whl → 0.2.1.dev7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (85) hide show
  1. lfx/_assets/component_index.json +1 -1
  2. lfx/base/agents/agent.py +9 -4
  3. lfx/base/agents/altk_base_agent.py +16 -3
  4. lfx/base/agents/altk_tool_wrappers.py +1 -1
  5. lfx/base/agents/utils.py +4 -0
  6. lfx/base/composio/composio_base.py +78 -41
  7. lfx/base/data/base_file.py +14 -4
  8. lfx/base/data/cloud_storage_utils.py +156 -0
  9. lfx/base/data/docling_utils.py +191 -65
  10. lfx/base/data/storage_utils.py +109 -0
  11. lfx/base/datastax/astradb_base.py +75 -64
  12. lfx/base/mcp/util.py +2 -2
  13. lfx/base/models/__init__.py +11 -1
  14. lfx/base/models/anthropic_constants.py +21 -12
  15. lfx/base/models/google_generative_ai_constants.py +33 -9
  16. lfx/base/models/model_metadata.py +6 -0
  17. lfx/base/models/ollama_constants.py +196 -30
  18. lfx/base/models/openai_constants.py +37 -10
  19. lfx/base/models/unified_models.py +1123 -0
  20. lfx/base/models/watsonx_constants.py +36 -0
  21. lfx/base/tools/component_tool.py +2 -9
  22. lfx/cli/commands.py +6 -1
  23. lfx/cli/run.py +65 -409
  24. lfx/cli/script_loader.py +13 -3
  25. lfx/components/__init__.py +0 -3
  26. lfx/components/composio/github_composio.py +1 -1
  27. lfx/components/cuga/cuga_agent.py +39 -27
  28. lfx/components/data_source/api_request.py +4 -2
  29. lfx/components/docling/__init__.py +45 -11
  30. lfx/components/docling/chunk_docling_document.py +3 -1
  31. lfx/components/docling/docling_inline.py +39 -49
  32. lfx/components/docling/export_docling_document.py +3 -1
  33. lfx/components/elastic/opensearch_multimodal.py +215 -57
  34. lfx/components/files_and_knowledge/file.py +439 -39
  35. lfx/components/files_and_knowledge/ingestion.py +8 -0
  36. lfx/components/files_and_knowledge/retrieval.py +10 -0
  37. lfx/components/files_and_knowledge/save_file.py +123 -53
  38. lfx/components/ibm/watsonx.py +7 -1
  39. lfx/components/input_output/chat_output.py +7 -1
  40. lfx/components/langchain_utilities/tool_calling.py +14 -6
  41. lfx/components/llm_operations/batch_run.py +80 -25
  42. lfx/components/llm_operations/lambda_filter.py +33 -6
  43. lfx/components/llm_operations/llm_conditional_router.py +39 -7
  44. lfx/components/llm_operations/structured_output.py +38 -12
  45. lfx/components/models/__init__.py +16 -74
  46. lfx/components/models_and_agents/agent.py +51 -201
  47. lfx/components/models_and_agents/embedding_model.py +185 -339
  48. lfx/components/models_and_agents/language_model.py +54 -318
  49. lfx/components/models_and_agents/mcp_component.py +58 -9
  50. lfx/components/ollama/ollama.py +9 -4
  51. lfx/components/ollama/ollama_embeddings.py +2 -1
  52. lfx/components/openai/openai_chat_model.py +1 -1
  53. lfx/components/processing/__init__.py +0 -3
  54. lfx/components/vllm/__init__.py +37 -0
  55. lfx/components/vllm/vllm.py +141 -0
  56. lfx/components/vllm/vllm_embeddings.py +110 -0
  57. lfx/custom/custom_component/custom_component.py +8 -6
  58. lfx/custom/directory_reader/directory_reader.py +5 -2
  59. lfx/graph/utils.py +64 -18
  60. lfx/inputs/__init__.py +2 -0
  61. lfx/inputs/input_mixin.py +54 -0
  62. lfx/inputs/inputs.py +115 -0
  63. lfx/interface/initialize/loading.py +42 -12
  64. lfx/io/__init__.py +2 -0
  65. lfx/run/__init__.py +5 -0
  66. lfx/run/base.py +494 -0
  67. lfx/schema/data.py +1 -1
  68. lfx/schema/image.py +28 -19
  69. lfx/schema/message.py +19 -3
  70. lfx/services/interfaces.py +5 -0
  71. lfx/services/manager.py +5 -4
  72. lfx/services/mcp_composer/service.py +45 -13
  73. lfx/services/settings/auth.py +18 -11
  74. lfx/services/settings/base.py +12 -24
  75. lfx/services/settings/constants.py +2 -0
  76. lfx/services/storage/local.py +37 -0
  77. lfx/services/storage/service.py +19 -0
  78. lfx/utils/constants.py +1 -0
  79. lfx/utils/image.py +29 -11
  80. lfx/utils/validate_cloud.py +14 -3
  81. {lfx_nightly-0.2.0.dev26.dist-info → lfx_nightly-0.2.1.dev7.dist-info}/METADATA +5 -2
  82. {lfx_nightly-0.2.0.dev26.dist-info → lfx_nightly-0.2.1.dev7.dist-info}/RECORD +84 -78
  83. lfx/components/processing/dataframe_to_toolset.py +0 -259
  84. {lfx_nightly-0.2.0.dev26.dist-info → lfx_nightly-0.2.1.dev7.dist-info}/WHEEL +0 -0
  85. {lfx_nightly-0.2.0.dev26.dist-info → lfx_nightly-0.2.1.dev7.dist-info}/entry_points.txt +0 -0
@@ -1,17 +1,13 @@
1
1
  from typing import Any
2
2
 
3
- import requests
4
- from ibm_watsonx_ai.metanames import EmbedTextParamsMetaNames
5
- from langchain_openai import OpenAIEmbeddings
6
-
7
- from lfx.base.embeddings.embeddings_class import EmbeddingsWithModels
8
3
  from lfx.base.embeddings.model import LCEmbeddingsModel
9
- from lfx.base.models.model_utils import get_ollama_models, is_valid_ollama_url
10
- from lfx.base.models.openai_constants import OPENAI_EMBEDDING_MODEL_NAMES
11
- from lfx.base.models.watsonx_constants import (
12
- IBM_WATSONX_URLS,
13
- WATSONX_EMBEDDING_MODEL_NAMES,
4
+ from lfx.base.models.unified_models import (
5
+ get_api_key_for_provider,
6
+ get_embedding_classes,
7
+ get_embedding_model_options,
8
+ update_model_options_in_build_config,
14
9
  )
10
+ from lfx.base.models.watsonx_constants import IBM_WATSONX_URLS
15
11
  from lfx.field_typing import Embeddings
16
12
  from lfx.io import (
17
13
  BoolInput,
@@ -20,19 +16,9 @@ from lfx.io import (
20
16
  FloatInput,
21
17
  IntInput,
22
18
  MessageTextInput,
19
+ ModelInput,
23
20
  SecretStrInput,
24
21
  )
25
- from lfx.log.logger import logger
26
- from lfx.schema.dotdict import dotdict
27
- from lfx.utils.util import transform_localhost_url
28
-
29
- # Ollama API constants
30
- HTTP_STATUS_OK = 200
31
- JSON_MODELS_KEY = "models"
32
- JSON_NAME_KEY = "name"
33
- JSON_CAPABILITIES_KEY = "capabilities"
34
- DESIRED_CAPABILITY = "embedding"
35
- DEFAULT_OLLAMA_URL = "http://localhost:11434"
36
22
 
37
23
 
38
24
  class EmbeddingModelComponent(LCEmbeddingsModel):
@@ -43,15 +29,51 @@ class EmbeddingModelComponent(LCEmbeddingsModel):
43
29
  name = "EmbeddingModel"
44
30
  category = "models"
45
31
 
32
+ def update_build_config(self, build_config: dict, field_value: str, field_name: str | None = None):
33
+ """Dynamically update build config with user-filtered model options."""
34
+ # Update model options
35
+ build_config = update_model_options_in_build_config(
36
+ component=self,
37
+ build_config=build_config,
38
+ cache_key_prefix="embedding_model_options",
39
+ get_options_func=get_embedding_model_options,
40
+ field_name=field_name,
41
+ field_value=field_value,
42
+ )
43
+
44
+ # Show/hide provider-specific fields based on selected model
45
+ if field_name == "model" and isinstance(field_value, list) and len(field_value) > 0:
46
+ selected_model = field_value[0]
47
+ provider = selected_model.get("provider", "")
48
+
49
+ # Show/hide watsonx fields
50
+ is_watsonx = provider == "IBM WatsonX"
51
+ build_config["base_url_ibm_watsonx"]["show"] = is_watsonx
52
+ build_config["project_id"]["show"] = is_watsonx
53
+ build_config["truncate_input_tokens"]["show"] = is_watsonx
54
+ build_config["input_text"]["show"] = is_watsonx
55
+ if is_watsonx:
56
+ build_config["base_url_ibm_watsonx"]["required"] = True
57
+ build_config["project_id"]["required"] = True
58
+
59
+ return build_config
60
+
46
61
  inputs = [
47
- DropdownInput(
48
- name="provider",
49
- display_name="Model Provider",
50
- options=["OpenAI", "Ollama", "IBM watsonx.ai"],
51
- value="OpenAI",
52
- info="Select the embedding model provider",
62
+ ModelInput(
63
+ name="model",
64
+ display_name="Embedding Model",
65
+ info="Select your model provider",
53
66
  real_time_refresh=True,
54
- options_metadata=[{"icon": "OpenAI"}, {"icon": "Ollama"}, {"icon": "WatsonxAI"}],
67
+ required=True,
68
+ model_type="embedding",
69
+ input_types=["Embeddings"], # Override default to accept Embeddings instead of LanguageModel
70
+ ),
71
+ SecretStrInput(
72
+ name="api_key",
73
+ display_name="API Key",
74
+ info="Model Provider API key",
75
+ real_time_refresh=True,
76
+ advanced=True,
55
77
  ),
56
78
  MessageTextInput(
57
79
  name="api_base",
@@ -59,15 +81,7 @@ class EmbeddingModelComponent(LCEmbeddingsModel):
59
81
  info="Base URL for the API. Leave empty for default.",
60
82
  advanced=True,
61
83
  ),
62
- MessageTextInput(
63
- name="ollama_base_url",
64
- display_name="Ollama API URL",
65
- info=f"Endpoint of the Ollama API (Ollama only). Defaults to {DEFAULT_OLLAMA_URL}",
66
- value=DEFAULT_OLLAMA_URL,
67
- show=False,
68
- real_time_refresh=True,
69
- load_from_db=True,
70
- ),
84
+ # Watson-specific inputs
71
85
  DropdownInput(
72
86
  name="base_url_ibm_watsonx",
73
87
  display_name="watsonx API Endpoint",
@@ -77,24 +91,6 @@ class EmbeddingModelComponent(LCEmbeddingsModel):
77
91
  show=False,
78
92
  real_time_refresh=True,
79
93
  ),
80
- DropdownInput(
81
- name="model",
82
- display_name="Model Name",
83
- options=OPENAI_EMBEDDING_MODEL_NAMES,
84
- value=OPENAI_EMBEDDING_MODEL_NAMES[0],
85
- info="Select the embedding model to use",
86
- real_time_refresh=True,
87
- refresh_button=True,
88
- ),
89
- SecretStrInput(
90
- name="api_key",
91
- display_name="OpenAI API Key",
92
- info="Model Provider API key",
93
- required=True,
94
- show=True,
95
- real_time_refresh=True,
96
- ),
97
- # Watson-specific inputs
98
94
  MessageTextInput(
99
95
  name="project_id",
100
96
  display_name="Project ID",
@@ -108,10 +104,28 @@ class EmbeddingModelComponent(LCEmbeddingsModel):
108
104
  "Only supported by certain models.",
109
105
  advanced=True,
110
106
  ),
111
- IntInput(name="chunk_size", display_name="Chunk Size", advanced=True, value=1000),
112
- FloatInput(name="request_timeout", display_name="Request Timeout", advanced=True),
113
- IntInput(name="max_retries", display_name="Max Retries", advanced=True, value=3),
114
- BoolInput(name="show_progress_bar", display_name="Show Progress Bar", advanced=True),
107
+ IntInput(
108
+ name="chunk_size",
109
+ display_name="Chunk Size",
110
+ advanced=True,
111
+ value=1000,
112
+ ),
113
+ FloatInput(
114
+ name="request_timeout",
115
+ display_name="Request Timeout",
116
+ advanced=True,
117
+ ),
118
+ IntInput(
119
+ name="max_retries",
120
+ display_name="Max Retries",
121
+ advanced=True,
122
+ value=3,
123
+ ),
124
+ BoolInput(
125
+ name="show_progress_bar",
126
+ display_name="Show Progress Bar",
127
+ advanced=True,
128
+ ),
115
129
  DictInput(
116
130
  name="model_kwargs",
117
131
  display_name="Model Kwargs",
@@ -134,290 +148,122 @@ class EmbeddingModelComponent(LCEmbeddingsModel):
134
148
  ),
135
149
  ]
136
150
 
137
- @staticmethod
138
- def fetch_ibm_models(base_url: str) -> list[str]:
139
- """Fetch available models from the watsonx.ai API."""
151
+ def build_embeddings(self) -> Embeddings:
152
+ """Build and return an embeddings instance based on the selected model."""
153
+ # If an Embeddings object is directly connected, return it
140
154
  try:
141
- endpoint = f"{base_url}/ml/v1/foundation_model_specs"
142
- params = {
143
- "version": "2024-09-16",
144
- "filters": "function_embedding,!lifecycle_withdrawn:and",
145
- }
146
- response = requests.get(endpoint, params=params, timeout=10)
147
- response.raise_for_status()
148
- data = response.json()
149
- models = [model["model_id"] for model in data.get("resources", [])]
150
- return sorted(models)
151
- except Exception: # noqa: BLE001
152
- logger.exception("Error fetching models")
153
- return WATSONX_EMBEDDING_MODEL_NAMES
154
-
155
- async def build_embeddings(self) -> Embeddings:
156
- provider = self.provider
157
- model = self.model
158
- api_key = self.api_key
159
- api_base = self.api_base
160
- base_url_ibm_watsonx = self.base_url_ibm_watsonx
161
- ollama_base_url = self.ollama_base_url
162
- dimensions = self.dimensions
163
- chunk_size = self.chunk_size
164
- request_timeout = self.request_timeout
165
- max_retries = self.max_retries
166
- show_progress_bar = self.show_progress_bar
167
- model_kwargs = self.model_kwargs or {}
168
-
169
- if provider == "OpenAI":
170
- if not api_key:
171
- msg = "OpenAI API key is required when using OpenAI provider"
172
- raise ValueError(msg)
173
-
174
- # Create the primary embedding instance
175
- embeddings_instance = OpenAIEmbeddings(
176
- model=model,
177
- dimensions=dimensions or None,
178
- base_url=api_base or None,
179
- api_key=api_key,
180
- chunk_size=chunk_size,
181
- max_retries=max_retries,
182
- timeout=request_timeout or None,
183
- show_progress_bar=show_progress_bar,
184
- model_kwargs=model_kwargs,
185
- )
186
-
187
- # Create dedicated instances for each available model
188
- available_models_dict = {}
189
- for model_name in OPENAI_EMBEDDING_MODEL_NAMES:
190
- available_models_dict[model_name] = OpenAIEmbeddings(
191
- model=model_name,
192
- dimensions=dimensions or None, # Use same dimensions config for all
193
- base_url=api_base or None,
194
- api_key=api_key,
195
- chunk_size=chunk_size,
196
- max_retries=max_retries,
197
- timeout=request_timeout or None,
198
- show_progress_bar=show_progress_bar,
199
- model_kwargs=model_kwargs,
200
- )
201
-
202
- return EmbeddingsWithModels(
203
- embeddings=embeddings_instance,
204
- available_models=available_models_dict,
205
- )
206
-
207
- if provider == "Ollama":
208
- try:
209
- from langchain_ollama import OllamaEmbeddings
210
- except ImportError:
211
- try:
212
- from langchain_community.embeddings import OllamaEmbeddings
213
- except ImportError:
214
- msg = "Please install langchain-ollama: pip install langchain-ollama"
215
- raise ImportError(msg) from None
216
-
217
- transformed_base_url = transform_localhost_url(ollama_base_url)
218
-
219
- # Check if URL contains /v1 suffix (OpenAI-compatible mode)
220
- if transformed_base_url and transformed_base_url.rstrip("/").endswith("/v1"):
221
- # Strip /v1 suffix and log warning
222
- transformed_base_url = transformed_base_url.rstrip("/").removesuffix("/v1")
223
- logger.warning(
224
- "Detected '/v1' suffix in base URL. The Ollama component uses the native Ollama API, "
225
- "not the OpenAI-compatible API. The '/v1' suffix has been automatically removed. "
226
- "If you want to use the OpenAI-compatible API, please use the OpenAI component instead. "
227
- "Learn more at https://docs.ollama.com/openai#openai-compatibility"
228
- )
229
-
230
- final_base_url = transformed_base_url or "http://localhost:11434"
231
-
232
- # Create the primary embedding instance
233
- embeddings_instance = OllamaEmbeddings(
234
- model=model,
235
- base_url=final_base_url,
236
- **model_kwargs,
237
- )
238
-
239
- # Fetch available Ollama models
240
- available_model_names = await get_ollama_models(
241
- base_url_value=self.ollama_base_url,
242
- desired_capability=DESIRED_CAPABILITY,
243
- json_models_key=JSON_MODELS_KEY,
244
- json_name_key=JSON_NAME_KEY,
245
- json_capabilities_key=JSON_CAPABILITIES_KEY,
246
- )
247
-
248
- # Create dedicated instances for each available model
249
- available_models_dict = {}
250
- for model_name in available_model_names:
251
- available_models_dict[model_name] = OllamaEmbeddings(
252
- model=model_name,
253
- base_url=final_base_url,
254
- **model_kwargs,
255
- )
256
-
257
- return EmbeddingsWithModels(
258
- embeddings=embeddings_instance,
259
- available_models=available_models_dict,
155
+ from langchain_core.embeddings import Embeddings as BaseEmbeddings
156
+
157
+ if isinstance(self.model, BaseEmbeddings):
158
+ return self.model
159
+ except ImportError:
160
+ pass
161
+
162
+ # Safely extract model configuration
163
+ if not self.model or not isinstance(self.model, list):
164
+ msg = "Model must be a non-empty list"
165
+ raise ValueError(msg)
166
+
167
+ model = self.model[0]
168
+ model_name = model.get("name")
169
+ provider = model.get("provider")
170
+ metadata = model.get("metadata", {})
171
+
172
+ # Get API key from user input or global variables
173
+ api_key = get_api_key_for_provider(self.user_id, provider, self.api_key)
174
+
175
+ # Validate required fields (Ollama doesn't require API key)
176
+ if not api_key and provider != "Ollama":
177
+ msg = (
178
+ f"{provider} API key is required. "
179
+ f"Please provide it in the component or configure it globally as "
180
+ f"{provider.upper().replace(' ', '_')}_API_KEY."
260
181
  )
261
-
262
- if provider == "IBM watsonx.ai":
263
- try:
264
- from langchain_ibm import WatsonxEmbeddings
265
- except ImportError:
266
- msg = "Please install langchain-ibm: pip install langchain-ibm"
267
- raise ImportError(msg) from None
268
-
269
- if not api_key:
270
- msg = "IBM watsonx.ai API key is required when using IBM watsonx.ai provider"
271
- raise ValueError(msg)
272
-
273
- project_id = self.project_id
274
-
275
- if not project_id:
276
- msg = "Project ID is required for IBM watsonx.ai provider"
277
- raise ValueError(msg)
278
-
279
- from ibm_watsonx_ai import APIClient, Credentials
280
-
281
- final_url = base_url_ibm_watsonx or "https://us-south.ml.cloud.ibm.com"
282
-
283
- credentials = Credentials(
284
- api_key=self.api_key,
285
- url=final_url,
286
- )
287
-
288
- api_client = APIClient(credentials)
289
-
290
- params = {
291
- EmbedTextParamsMetaNames.TRUNCATE_INPUT_TOKENS: self.truncate_input_tokens,
292
- EmbedTextParamsMetaNames.RETURN_OPTIONS: {"input_text": self.input_text},
293
- }
294
-
295
- # Create the primary embedding instance
296
- embeddings_instance = WatsonxEmbeddings(
297
- model_id=model,
298
- params=params,
299
- watsonx_client=api_client,
300
- project_id=project_id,
182
+ raise ValueError(msg)
183
+
184
+ if not model_name:
185
+ msg = "Model name is required"
186
+ raise ValueError(msg)
187
+
188
+ # Get embedding class
189
+ embedding_class_name = metadata.get("embedding_class")
190
+ if not embedding_class_name:
191
+ msg = f"No embedding class defined in metadata for {model_name}"
192
+ raise ValueError(msg)
193
+
194
+ embedding_class = get_embedding_classes().get(embedding_class_name)
195
+ if not embedding_class:
196
+ msg = f"Unknown embedding class: {embedding_class_name}"
197
+ raise ValueError(msg)
198
+
199
+ # Build kwargs using parameter mapping
200
+ kwargs = self._build_kwargs(model, metadata)
201
+
202
+ return embedding_class(**kwargs)
203
+
204
+ def _build_kwargs(self, model: dict[str, Any], metadata: dict[str, Any]) -> dict[str, Any]:
205
+ """Build kwargs dictionary using parameter mapping."""
206
+ param_mapping = metadata.get("param_mapping", {})
207
+ if not param_mapping:
208
+ msg = "Parameter mapping not found in metadata"
209
+ raise ValueError(msg)
210
+
211
+ kwargs = {}
212
+
213
+ # Required parameters - handle both "model" and "model_id" (for watsonx)
214
+ if "model" in param_mapping:
215
+ kwargs[param_mapping["model"]] = model.get("name")
216
+ elif "model_id" in param_mapping:
217
+ kwargs[param_mapping["model_id"]] = model.get("name")
218
+ if "api_key" in param_mapping:
219
+ kwargs[param_mapping["api_key"]] = get_api_key_for_provider(
220
+ self.user_id,
221
+ model.get("provider"),
222
+ self.api_key,
301
223
  )
302
224
 
303
- # Fetch available IBM watsonx.ai models
304
- available_model_names = self.fetch_ibm_models(final_url)
305
-
306
- # Create dedicated instances for each available model
307
- available_models_dict = {}
308
- for model_name in available_model_names:
309
- available_models_dict[model_name] = WatsonxEmbeddings(
310
- model_id=model_name,
311
- params=params,
312
- watsonx_client=api_client,
313
- project_id=project_id,
225
+ # Optional parameters with their values
226
+ provider = model.get("provider")
227
+ optional_params = {
228
+ "api_base": self.api_base if self.api_base else None,
229
+ "dimensions": int(self.dimensions) if self.dimensions else None,
230
+ "chunk_size": int(self.chunk_size) if self.chunk_size else None,
231
+ "request_timeout": float(self.request_timeout) if self.request_timeout else None,
232
+ "max_retries": int(self.max_retries) if self.max_retries else None,
233
+ "show_progress_bar": self.show_progress_bar if hasattr(self, "show_progress_bar") else None,
234
+ "model_kwargs": self.model_kwargs if self.model_kwargs else None,
235
+ }
236
+
237
+ # Watson-specific parameters
238
+ if provider in {"IBM WatsonX", "IBM watsonx.ai"}:
239
+ # Map base_url_ibm_watsonx to "url" parameter for watsonx
240
+ if "url" in param_mapping:
241
+ url_value = (
242
+ self.base_url_ibm_watsonx
243
+ if hasattr(self, "base_url_ibm_watsonx") and self.base_url_ibm_watsonx
244
+ else "https://us-south.ml.cloud.ibm.com"
314
245
  )
315
-
316
- return EmbeddingsWithModels(
317
- embeddings=embeddings_instance,
318
- available_models=available_models_dict,
319
- )
320
-
321
- msg = f"Unknown provider: {provider}"
322
- raise ValueError(msg)
323
-
324
- async def update_build_config(
325
- self, build_config: dotdict, field_value: Any, field_name: str | None = None
326
- ) -> dotdict:
327
- if field_name == "provider":
328
- if field_value == "OpenAI":
329
- build_config["model"]["options"] = OPENAI_EMBEDDING_MODEL_NAMES
330
- build_config["model"]["value"] = OPENAI_EMBEDDING_MODEL_NAMES[0]
331
- build_config["api_key"]["display_name"] = "OpenAI API Key"
332
- build_config["api_key"]["required"] = True
333
- build_config["api_key"]["show"] = True
334
- build_config["api_base"]["display_name"] = "OpenAI API Base URL"
335
- build_config["api_base"]["advanced"] = True
336
- build_config["api_base"]["show"] = True
337
- build_config["ollama_base_url"]["show"] = False
338
- build_config["project_id"]["show"] = False
339
- build_config["base_url_ibm_watsonx"]["show"] = False
340
- build_config["truncate_input_tokens"]["show"] = False
341
- build_config["input_text"]["show"] = False
342
- elif field_value == "Ollama":
343
- build_config["ollama_base_url"]["show"] = True
344
-
345
- if await is_valid_ollama_url(url=self.ollama_base_url):
346
- try:
347
- models = await get_ollama_models(
348
- base_url_value=self.ollama_base_url,
349
- desired_capability=DESIRED_CAPABILITY,
350
- json_models_key=JSON_MODELS_KEY,
351
- json_name_key=JSON_NAME_KEY,
352
- json_capabilities_key=JSON_CAPABILITIES_KEY,
353
- )
354
- build_config["model"]["options"] = models
355
- build_config["model"]["value"] = models[0] if models else ""
356
- except ValueError:
357
- build_config["model"]["options"] = []
358
- build_config["model"]["value"] = ""
246
+ kwargs[param_mapping["url"]] = url_value
247
+ # Map project_id for watsonx
248
+ if hasattr(self, "project_id") and self.project_id and "project_id" in param_mapping:
249
+ kwargs[param_mapping["project_id"]] = self.project_id
250
+
251
+ # Ollama-specific parameters
252
+ if provider == "Ollama" and "base_url" in param_mapping:
253
+ # Map api_base to "base_url" parameter for Ollama
254
+ base_url_value = self.api_base if hasattr(self, "api_base") and self.api_base else "http://localhost:11434"
255
+ kwargs[param_mapping["base_url"]] = base_url_value
256
+
257
+ # Add optional parameters if they have values and are mapped
258
+ for param_name, param_value in optional_params.items():
259
+ if param_value is not None and param_name in param_mapping:
260
+ # Special handling for request_timeout with Google provider
261
+ if param_name == "request_timeout":
262
+ if provider == "Google" and isinstance(param_value, (int, float)):
263
+ kwargs[param_mapping[param_name]] = {"timeout": param_value}
264
+ else:
265
+ kwargs[param_mapping[param_name]] = param_value
359
266
  else:
360
- build_config["model"]["options"] = []
361
- build_config["model"]["value"] = ""
362
- build_config["truncate_input_tokens"]["show"] = False
363
- build_config["input_text"]["show"] = False
364
- build_config["api_key"]["display_name"] = "API Key (Optional)"
365
- build_config["api_key"]["required"] = False
366
- build_config["api_key"]["show"] = False
367
- build_config["api_base"]["show"] = False
368
- build_config["project_id"]["show"] = False
369
- build_config["base_url_ibm_watsonx"]["show"] = False
370
-
371
- elif field_value == "IBM watsonx.ai":
372
- build_config["model"]["options"] = self.fetch_ibm_models(base_url=self.base_url_ibm_watsonx)
373
- build_config["model"]["value"] = self.fetch_ibm_models(base_url=self.base_url_ibm_watsonx)[0]
374
- build_config["api_key"]["display_name"] = "IBM watsonx.ai API Key"
375
- build_config["api_key"]["required"] = True
376
- build_config["api_key"]["show"] = True
377
- build_config["api_base"]["show"] = False
378
- build_config["ollama_base_url"]["show"] = False
379
- build_config["base_url_ibm_watsonx"]["show"] = True
380
- build_config["project_id"]["show"] = True
381
- build_config["truncate_input_tokens"]["show"] = True
382
- build_config["input_text"]["show"] = True
383
- elif field_name == "base_url_ibm_watsonx":
384
- build_config["model"]["options"] = self.fetch_ibm_models(base_url=field_value)
385
- build_config["model"]["value"] = self.fetch_ibm_models(base_url=field_value)[0]
386
- elif field_name == "ollama_base_url":
387
- # # Refresh Ollama models when base URL changes
388
- # if hasattr(self, "provider") and self.provider == "Ollama":
389
- # Use field_value if provided, otherwise fall back to instance attribute
390
- ollama_url = self.ollama_base_url
391
- if await is_valid_ollama_url(url=ollama_url):
392
- try:
393
- models = await get_ollama_models(
394
- base_url_value=ollama_url,
395
- desired_capability=DESIRED_CAPABILITY,
396
- json_models_key=JSON_MODELS_KEY,
397
- json_name_key=JSON_NAME_KEY,
398
- json_capabilities_key=JSON_CAPABILITIES_KEY,
399
- )
400
- build_config["model"]["options"] = models
401
- build_config["model"]["value"] = models[0] if models else ""
402
- except ValueError:
403
- await logger.awarning("Failed to fetch Ollama embedding models.")
404
- build_config["model"]["options"] = []
405
- build_config["model"]["value"] = ""
267
+ kwargs[param_mapping[param_name]] = param_value
406
268
 
407
- elif field_name == "model" and self.provider == "Ollama":
408
- ollama_url = self.ollama_base_url
409
- if await is_valid_ollama_url(url=ollama_url):
410
- try:
411
- models = await get_ollama_models(
412
- base_url_value=ollama_url,
413
- desired_capability=DESIRED_CAPABILITY,
414
- json_models_key=JSON_MODELS_KEY,
415
- json_name_key=JSON_NAME_KEY,
416
- json_capabilities_key=JSON_CAPABILITIES_KEY,
417
- )
418
- build_config["model"]["options"] = models
419
- except ValueError:
420
- await logger.awarning("Failed to refresh Ollama embedding models.")
421
- build_config["model"]["options"] = []
422
-
423
- return build_config
269
+ return kwargs