lfx-nightly 0.1.12.dev26__py3-none-any.whl → 0.1.12.dev28__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,43 +1,133 @@
1
+ """Unified Web Search Component.
2
+
3
+ This component consolidates Web Search, News Search, and RSS Reader into a single
4
+ component with tabs for different search modes.
5
+ """
6
+
1
7
  import re
2
- from urllib.parse import parse_qs, unquote, urlparse
8
+ from typing import Any
9
+ from urllib.parse import parse_qs, quote_plus, unquote, urlparse
3
10
 
4
11
  import pandas as pd
5
12
  import requests
6
13
  from bs4 import BeautifulSoup
7
14
 
8
15
  from lfx.custom import Component
9
- from lfx.io import IntInput, MessageTextInput, Output
16
+ from lfx.io import IntInput, MessageTextInput, Output, TabInput
10
17
  from lfx.schema import DataFrame
11
18
  from lfx.utils.request_utils import get_user_agent
12
19
 
13
20
 
14
21
  class WebSearchComponent(Component):
15
22
  display_name = "Web Search"
16
- description = "Performs a basic DuckDuckGo search (HTML scraping). May be subject to rate limits."
23
+ description = "Search the web, news, or RSS feeds."
17
24
  documentation: str = "https://docs.langflow.org/components-data#web-search"
18
25
  icon = "search"
19
- name = "WebSearchNoAPI"
26
+ name = "UnifiedWebSearch"
20
27
 
21
28
  inputs = [
29
+ TabInput(
30
+ name="search_mode",
31
+ display_name="Search Mode",
32
+ options=["Web", "News", "RSS"],
33
+ info="Choose search mode: Web (DuckDuckGo), News (Google News), or RSS (Feed Reader)",
34
+ value="Web",
35
+ real_time_refresh=True,
36
+ tool_mode=True,
37
+ ),
22
38
  MessageTextInput(
23
39
  name="query",
24
40
  display_name="Search Query",
25
- info="Keywords to search for.",
41
+ info="Search keywords for news articles.",
26
42
  tool_mode=True,
27
43
  required=True,
28
44
  ),
45
+ MessageTextInput(
46
+ name="hl",
47
+ display_name="Language (hl)",
48
+ info="Language code, e.g. en-US, fr, de. Default: en-US.",
49
+ tool_mode=False,
50
+ input_types=[],
51
+ required=False,
52
+ advanced=True,
53
+ ),
54
+ MessageTextInput(
55
+ name="gl",
56
+ display_name="Country (gl)",
57
+ info="Country code, e.g. US, FR, DE. Default: US.",
58
+ tool_mode=False,
59
+ input_types=[],
60
+ required=False,
61
+ advanced=True,
62
+ ),
63
+ MessageTextInput(
64
+ name="ceid",
65
+ display_name="Country:Language (ceid)",
66
+ info="e.g. US:en, FR:fr. Default: US:en.",
67
+ tool_mode=False,
68
+ value="US:en",
69
+ input_types=[],
70
+ required=False,
71
+ advanced=True,
72
+ ),
73
+ MessageTextInput(
74
+ name="topic",
75
+ display_name="Topic",
76
+ info="One of: WORLD, NATION, BUSINESS, TECHNOLOGY, ENTERTAINMENT, SCIENCE, SPORTS, HEALTH.",
77
+ tool_mode=False,
78
+ input_types=[],
79
+ required=False,
80
+ advanced=True,
81
+ ),
82
+ MessageTextInput(
83
+ name="location",
84
+ display_name="Location (Geo)",
85
+ info="City, state, or country for location-based news. Leave blank for keyword search.",
86
+ tool_mode=False,
87
+ input_types=[],
88
+ required=False,
89
+ advanced=True,
90
+ ),
29
91
  IntInput(
30
92
  name="timeout",
31
93
  display_name="Timeout",
32
- info="Timeout for the web search request.",
94
+ info="Timeout for the request in seconds.",
33
95
  value=5,
96
+ required=False,
34
97
  advanced=True,
35
98
  ),
36
99
  ]
37
100
 
38
- outputs = [Output(name="results", display_name="Search Results", method="perform_search")]
101
+ outputs = [Output(name="results", display_name="Results", method="perform_search")]
102
+
103
+ def __init__(self, **kwargs):
104
+ super().__init__(**kwargs)
105
+
106
+ def update_build_config(self, build_config: dict, field_value: Any, field_name: str | None = None) -> dict:
107
+ """Update input visibility based on search mode."""
108
+ if field_name == "search_mode":
109
+ # Show/hide inputs based on search mode
110
+ is_news = field_value == "News"
111
+ is_rss = field_value == "RSS"
112
+
113
+ # Update query field info based on mode
114
+ if is_rss:
115
+ build_config["query"]["info"] = "RSS feed URL to parse"
116
+ build_config["query"]["display_name"] = "RSS Feed URL"
117
+ elif is_news:
118
+ build_config["query"]["info"] = "Search keywords for news articles."
119
+ build_config["query"]["display_name"] = "Search Query"
120
+ else: # Web
121
+ build_config["query"]["info"] = "Keywords to search for"
122
+ build_config["query"]["display_name"] = "Search Query"
123
+
124
+ # Keep news-specific fields as advanced (matching original News Search component)
125
+ # They remain advanced=True in all modes, just like in the original component
126
+
127
+ return build_config
39
128
 
40
129
  def validate_url(self, string: str) -> bool:
130
+ """Validate URL format."""
41
131
  url_regex = re.compile(
42
132
  r"^(https?:\/\/)?" r"(www\.)?" r"([a-zA-Z0-9.-]+)" r"(\.[a-zA-Z]{2,})?" r"(:\d+)?" r"(\/[^\s]*)?$",
43
133
  re.IGNORECASE,
@@ -45,6 +135,7 @@ class WebSearchComponent(Component):
45
135
  return bool(url_regex.match(string))
46
136
 
47
137
  def ensure_url(self, url: str) -> str:
138
+ """Ensure URL has proper protocol."""
48
139
  if not url.startswith(("http://", "https://")):
49
140
  url = "https://" + url
50
141
  if not self.validate_url(url):
@@ -54,14 +145,19 @@ class WebSearchComponent(Component):
54
145
 
55
146
  def _sanitize_query(self, query: str) -> str:
56
147
  """Sanitize search query."""
57
- # Remove potentially dangerous characters
58
148
  return re.sub(r'[<>"\']', "", query.strip())
59
149
 
60
- def perform_search(self) -> DataFrame:
150
+ def clean_html(self, html_string: str) -> str:
151
+ """Remove HTML tags from text."""
152
+ return BeautifulSoup(html_string, "html.parser").get_text(separator=" ", strip=True)
153
+
154
+ def perform_web_search(self) -> DataFrame:
155
+ """Perform DuckDuckGo web search."""
61
156
  query = self._sanitize_query(self.query)
62
157
  if not query:
63
158
  msg = "Empty search query"
64
159
  raise ValueError(msg)
160
+
65
161
  headers = {"User-Agent": get_user_agent()}
66
162
  params = {"q": query, "kl": "us-en"}
67
163
  url = "https://html.duckduckgo.com/html/"
@@ -78,6 +174,7 @@ class WebSearchComponent(Component):
78
174
  return DataFrame(
79
175
  pd.DataFrame([{"title": "Error", "link": "", "snippet": "No results found", "content": ""}])
80
176
  )
177
+
81
178
  soup = BeautifulSoup(response.text, "html.parser")
82
179
  results = []
83
180
 
@@ -108,5 +205,122 @@ class WebSearchComponent(Component):
108
205
  }
109
206
  )
110
207
 
111
- df_results = pd.DataFrame(results)
112
- return DataFrame(df_results)
208
+ return DataFrame(pd.DataFrame(results))
209
+
210
+ def perform_news_search(self) -> DataFrame:
211
+ """Perform Google News search."""
212
+ query = getattr(self, "query", "")
213
+ hl = getattr(self, "hl", "en-US") or "en-US"
214
+ gl = getattr(self, "gl", "US") or "US"
215
+ topic = getattr(self, "topic", None)
216
+ location = getattr(self, "location", None)
217
+
218
+ ceid = f"{gl}:{hl.split('-')[0]}"
219
+
220
+ # Build RSS URL based on parameters
221
+ if topic:
222
+ # Topic-based feed
223
+ base_url = f"https://news.google.com/rss/headlines/section/topic/{quote_plus(topic.upper())}"
224
+ params = f"?hl={hl}&gl={gl}&ceid={ceid}"
225
+ rss_url = base_url + params
226
+ elif location:
227
+ # Location-based feed
228
+ base_url = f"https://news.google.com/rss/headlines/section/geo/{quote_plus(location)}"
229
+ params = f"?hl={hl}&gl={gl}&ceid={ceid}"
230
+ rss_url = base_url + params
231
+ elif query:
232
+ # Keyword search feed
233
+ base_url = "https://news.google.com/rss/search?q="
234
+ query_encoded = quote_plus(query)
235
+ params = f"&hl={hl}&gl={gl}&ceid={ceid}"
236
+ rss_url = f"{base_url}{query_encoded}{params}"
237
+ else:
238
+ self.status = "No search query, topic, or location provided."
239
+ return DataFrame(
240
+ pd.DataFrame(
241
+ [{"title": "Error", "link": "", "published": "", "summary": "No search parameters provided"}]
242
+ )
243
+ )
244
+
245
+ try:
246
+ response = requests.get(rss_url, timeout=self.timeout)
247
+ response.raise_for_status()
248
+ soup = BeautifulSoup(response.content, "xml")
249
+ items = soup.find_all("item")
250
+ except requests.RequestException as e:
251
+ self.status = f"Failed to fetch news: {e}"
252
+ return DataFrame(pd.DataFrame([{"title": "Error", "link": "", "published": "", "summary": str(e)}]))
253
+
254
+ if not items:
255
+ self.status = "No news articles found."
256
+ return DataFrame(pd.DataFrame([{"title": "No articles found", "link": "", "published": "", "summary": ""}]))
257
+
258
+ articles = []
259
+ for item in items:
260
+ try:
261
+ title = self.clean_html(item.title.text if item.title else "")
262
+ link = item.link.text if item.link else ""
263
+ published = item.pubDate.text if item.pubDate else ""
264
+ summary = self.clean_html(item.description.text if item.description else "")
265
+ articles.append({"title": title, "link": link, "published": published, "summary": summary})
266
+ except (AttributeError, ValueError, TypeError) as e:
267
+ self.log(f"Error parsing article: {e!s}")
268
+ continue
269
+
270
+ return DataFrame(pd.DataFrame(articles))
271
+
272
+ def perform_rss_read(self) -> DataFrame:
273
+ """Read RSS feed."""
274
+ rss_url = getattr(self, "query", "")
275
+ if not rss_url:
276
+ return DataFrame(
277
+ pd.DataFrame([{"title": "Error", "link": "", "published": "", "summary": "No RSS URL provided"}])
278
+ )
279
+
280
+ try:
281
+ response = requests.get(rss_url, timeout=self.timeout)
282
+ response.raise_for_status()
283
+ if not response.content.strip():
284
+ msg = "Empty response received"
285
+ raise ValueError(msg)
286
+
287
+ # Validate XML
288
+ try:
289
+ BeautifulSoup(response.content, "xml")
290
+ except Exception as e:
291
+ msg = f"Invalid XML response: {e}"
292
+ raise ValueError(msg) from e
293
+
294
+ soup = BeautifulSoup(response.content, "xml")
295
+ items = soup.find_all("item")
296
+ except (requests.RequestException, ValueError) as e:
297
+ self.status = f"Failed to fetch RSS: {e}"
298
+ return DataFrame(pd.DataFrame([{"title": "Error", "link": "", "published": "", "summary": str(e)}]))
299
+
300
+ articles = [
301
+ {
302
+ "title": item.title.text if item.title else "",
303
+ "link": item.link.text if item.link else "",
304
+ "published": item.pubDate.text if item.pubDate else "",
305
+ "summary": item.description.text if item.description else "",
306
+ }
307
+ for item in items
308
+ ]
309
+
310
+ # Ensure DataFrame has correct columns even if empty
311
+ df_articles = pd.DataFrame(articles, columns=["title", "link", "published", "summary"])
312
+ self.log(f"Fetched {len(df_articles)} articles.")
313
+ return DataFrame(df_articles)
314
+
315
+ def perform_search(self) -> DataFrame:
316
+ """Main search method that routes to appropriate search function based on mode."""
317
+ search_mode = getattr(self, "search_mode", "Web")
318
+
319
+ if search_mode == "Web":
320
+ return self.perform_web_search()
321
+ if search_mode == "News":
322
+ return self.perform_news_search()
323
+ if search_mode == "RSS":
324
+ return self.perform_rss_read()
325
+ # Fallback to web search
326
+ return self.perform_web_search()
@@ -12,6 +12,7 @@ from lfx.base.data import BaseFileComponent
12
12
  from lfx.inputs import IntInput, NestedDictInput, StrInput
13
13
  from lfx.inputs.inputs import FloatInput
14
14
  from lfx.schema import Data
15
+ from lfx.utils.util import transform_localhost_url
15
16
 
16
17
 
17
18
  class DoclingRemoteComponent(BaseFileComponent):
@@ -103,7 +104,9 @@ class DoclingRemoteComponent(BaseFileComponent):
103
104
  ]
104
105
 
105
106
  def process_files(self, file_list: list[BaseFileComponent.BaseFile]) -> list[BaseFileComponent.BaseFile]:
106
- base_url = f"{self.api_url}/v1"
107
+ # Transform localhost URLs to container-accessible hosts when running in a container
108
+ transformed_url = transform_localhost_url(self.api_url)
109
+ base_url = f"{transformed_url}/v1"
107
110
 
108
111
  def _convert_document(client: httpx.Client, file_path: Path, options: dict[str, Any]) -> Data | None:
109
112
  encoded_doc = base64.b64encode(file_path.read_bytes()).decode()
@@ -75,12 +75,19 @@ class ChatInput(ChatComponent):
75
75
  ]
76
76
 
77
77
  async def message_response(self) -> Message:
78
+ # Ensure files is a list and filter out empty/None values
79
+ files = self.files if self.files else []
80
+ if files and not isinstance(files, list):
81
+ files = [files]
82
+ # Filter out None/empty values
83
+ files = [f for f in files if f is not None and f != ""]
84
+
78
85
  message = await Message.create(
79
86
  text=self.input_value,
80
87
  sender=self.sender,
81
88
  sender_name=self.sender_name,
82
89
  session_id=self.session_id,
83
- files=self.files,
90
+ files=files,
84
91
  )
85
92
  if self.session_id and isinstance(message, Message) and self.should_store_message:
86
93
  stored_message = await self.send_message(
@@ -1,8 +1,5 @@
1
1
  from typing import Any
2
2
 
3
- from requests.exceptions import ConnectionError # noqa: A004
4
- from urllib3.exceptions import MaxRetryError, NameResolutionError
5
-
6
3
  from lfx.base.models.model import LCModelComponent
7
4
  from lfx.field_typing import LanguageModel
8
5
  from lfx.field_typing.range_spec import RangeSpec
@@ -27,7 +24,7 @@ class NVIDIAModelComponent(LCModelComponent):
27
24
  except ImportError as e:
28
25
  msg = "Please install langchain-nvidia-ai-endpoints to use the NVIDIA model."
29
26
  raise ImportError(msg) from e
30
- except (ConnectionError, MaxRetryError, NameResolutionError):
27
+ except Exception: # noqa: BLE001
31
28
  logger.warning(
32
29
  "Failed to connect to NVIDIA API. Model list may be unavailable."
33
30
  " Please check your internet connection and API credentials."
@@ -15,6 +15,7 @@ if TYPE_CHECKING:
15
15
  from lfx.components.processing.data_operations import DataOperationsComponent
16
16
  from lfx.components.processing.data_to_dataframe import DataToDataFrameComponent
17
17
  from lfx.components.processing.dataframe_operations import DataFrameOperationsComponent
18
+ from lfx.components.processing.dataframe_to_toolset import DataFrameToToolsetComponent
18
19
  from lfx.components.processing.extract_key import ExtractDataKeyComponent
19
20
  from lfx.components.processing.filter_data import FilterDataComponent
20
21
  from lfx.components.processing.filter_data_values import DataFilterComponent
@@ -30,7 +31,6 @@ if TYPE_CHECKING:
30
31
  from lfx.components.processing.prompt import PromptComponent
31
32
  from lfx.components.processing.python_repl_core import PythonREPLComponent
32
33
  from lfx.components.processing.regex import RegexExtractorComponent
33
- from lfx.components.processing.save_file import SaveToFileComponent
34
34
  from lfx.components.processing.select_data import SelectDataComponent
35
35
  from lfx.components.processing.split_text import SplitTextComponent
36
36
  from lfx.components.processing.structured_output import StructuredOutputComponent
@@ -45,6 +45,7 @@ _dynamic_imports = {
45
45
  "DataOperationsComponent": "data_operations",
46
46
  "DataToDataFrameComponent": "data_to_dataframe",
47
47
  "DataFrameOperationsComponent": "dataframe_operations",
48
+ "DataFrameToToolsetComponent": "dataframe_to_toolset",
48
49
  "ExtractDataKeyComponent": "extract_key",
49
50
  "FilterDataComponent": "filter_data",
50
51
  "DataFilterComponent": "filter_data_values",
@@ -60,7 +61,6 @@ _dynamic_imports = {
60
61
  "PromptComponent": "prompt",
61
62
  "PythonREPLComponent": "python_repl_core",
62
63
  "RegexExtractorComponent": "regex",
63
- "SaveToFileComponent": "save_file",
64
64
  "SelectDataComponent": "select_data",
65
65
  "SplitTextComponent": "split_text",
66
66
  "StructuredOutputComponent": "structured_output",
@@ -74,6 +74,7 @@ __all__ = [
74
74
  "CreateDataComponent",
75
75
  "DataFilterComponent",
76
76
  "DataFrameOperationsComponent",
77
+ "DataFrameToToolsetComponent",
77
78
  "DataOperationsComponent",
78
79
  "DataToDataFrameComponent",
79
80
  "ExtractDataKeyComponent",
@@ -90,7 +91,6 @@ __all__ = [
90
91
  "PromptComponent",
91
92
  "PythonREPLComponent",
92
93
  "RegexExtractorComponent",
93
- "SaveToFileComponent",
94
94
  "SelectDataComponent",
95
95
  "SplitTextComponent",
96
96
  "StructuredOutputComponent",
@@ -0,0 +1,259 @@
1
+ """DataFrame to Toolset Component.
2
+
3
+ This component converts each row of a DataFrame into a callable tool/action within a toolset.
4
+ Each row becomes a tool where the action name comes from one column and the content/response
5
+ comes from another column.
6
+ """
7
+
8
+ from __future__ import annotations
9
+
10
+ import re
11
+ from typing import TYPE_CHECKING
12
+
13
+ from langchain.tools import StructuredTool
14
+ from pydantic import BaseModel, create_model
15
+
16
+ from lfx.base.langchain_utilities.model import LCToolComponent
17
+ from lfx.field_typing.constants import Tool
18
+ from lfx.io import HandleInput, Output, StrInput
19
+ from lfx.schema.data import Data
20
+ from lfx.schema.dataframe import DataFrame
21
+ from lfx.schema.message import Message
22
+
23
+ if TYPE_CHECKING:
24
+ from lfx.field_typing.constants import Tool
25
+
26
+
27
+ class DataFrameToToolsetComponent(LCToolComponent):
28
+ """Component that converts DataFrame rows into a toolset with multiple callable actions."""
29
+
30
+ display_name = "DataFrame to Toolset"
31
+ description = "Convert each row of a DataFrame into a callable tool/action in a toolset."
32
+ icon = "wrench"
33
+ name = "DataFrameToToolset"
34
+
35
+ inputs = [
36
+ HandleInput(
37
+ name="dataframe",
38
+ display_name="DataFrame",
39
+ input_types=["DataFrame"],
40
+ info="DataFrame where each row will become a tool/action",
41
+ required=True,
42
+ ),
43
+ StrInput(
44
+ name="tool_name_column",
45
+ display_name="Tool Name Column",
46
+ info="Column with tool names",
47
+ required=True,
48
+ ),
49
+ StrInput(
50
+ name="tool_output_column",
51
+ display_name="Tool Output Column",
52
+ info="Column with tool outputs/responses",
53
+ required=True,
54
+ ),
55
+ ]
56
+
57
+ outputs = [
58
+ Output(display_name="Tools", name="tools", method="build_tools"),
59
+ Output(display_name="Message", name="message", method="get_message"),
60
+ ]
61
+
62
+ def __init__(self, **kwargs):
63
+ super().__init__(**kwargs)
64
+ self._tools_cache: list[Tool] = []
65
+ self._action_data: dict[str, dict[str, str]] = {}
66
+
67
+ def _sanitize_tool_name(self, name: str) -> str:
68
+ """Sanitize tool name to match required format '^[a-zA-Z0-9_-]+$'."""
69
+ # Replace any non-alphanumeric characters (except _ and -) with underscores
70
+ sanitized = re.sub(r"[^a-zA-Z0-9_-]", "_", str(name))
71
+ # Ensure it starts with a letter or underscore
72
+ if sanitized and not sanitized[0].isalpha() and sanitized[0] != "_":
73
+ sanitized = f"tool_{sanitized}"
74
+ return sanitized or "unnamed_tool"
75
+
76
+ def _prepare_action_data(self) -> None:
77
+ """Prepare action data from DataFrame."""
78
+ # Check if dataframe exists and is valid
79
+ if not hasattr(self, "dataframe") or self.dataframe is None:
80
+ self._action_data = {}
81
+ return
82
+
83
+ if not isinstance(self.dataframe, DataFrame):
84
+ self._action_data = {}
85
+ return
86
+
87
+ if not hasattr(self.dataframe, "columns"):
88
+ self._action_data = {}
89
+ return
90
+
91
+ # Check if column names are provided
92
+ if not self.tool_name_column or not self.tool_output_column:
93
+ self._action_data = {}
94
+ return
95
+
96
+ if self.tool_name_column not in self.dataframe.columns:
97
+ msg = (
98
+ f"Tool name column '{self.tool_name_column}' not found in DataFrame columns: "
99
+ f"{list(self.dataframe.columns)}"
100
+ )
101
+ raise ValueError(msg)
102
+
103
+ if self.tool_output_column not in self.dataframe.columns:
104
+ msg = (
105
+ f"Tool output column '{self.tool_output_column}' not found in DataFrame columns: "
106
+ f"{list(self.dataframe.columns)}"
107
+ )
108
+ raise ValueError(msg)
109
+
110
+ # Clear previous data
111
+ self._action_data = {}
112
+
113
+ # Process each row to create action mappings
114
+ for _, row in self.dataframe.iterrows():
115
+ action_name = str(row[self.tool_name_column]).strip()
116
+ content = str(row[self.tool_output_column]).strip()
117
+
118
+ if action_name and content:
119
+ sanitized_name = self._sanitize_tool_name(action_name)
120
+ self._action_data[sanitized_name] = {
121
+ "original_name": action_name,
122
+ "content": content,
123
+ "sanitized_name": sanitized_name,
124
+ }
125
+
126
+ def _create_action_function(self, action_name: str, content: str):
127
+ """Create a function for a specific action that returns the content."""
128
+
129
+ def action_function(**kwargs) -> str:
130
+ # You could extend this to use kwargs to modify the content
131
+ # For now, just return the stored content
132
+ self.log(kwargs) # TODO: Coming soon: implement arguments to modify content
133
+ return content
134
+
135
+ action_function.__name__ = f"execute_{action_name}"
136
+ action_function.__doc__ = f"Execute {action_name} action and return the associated content."
137
+ return action_function
138
+
139
+ def build_tools(self) -> list[Tool]:
140
+ """Build the toolset from DataFrame data."""
141
+ # Handle case where inputs are not ready
142
+ if not hasattr(self, "dataframe") or self.dataframe is None:
143
+ return []
144
+
145
+ self._prepare_action_data()
146
+
147
+ if not self._action_data:
148
+ return []
149
+
150
+ tools_description_preview_length = 100
151
+ tools_description_content_length = 200
152
+
153
+ tools = []
154
+
155
+ for sanitized_name, action_info in self._action_data.items():
156
+ original_name = action_info["original_name"]
157
+ content = action_info["content"]
158
+
159
+ # Create a simple schema for this tool (no parameters needed)
160
+ # But we could extend this to accept parameters if needed
161
+ tool_schema = create_model(
162
+ f"{sanitized_name}Schema",
163
+ __base__=BaseModel,
164
+ # Add parameters here if you want the tools to accept inputs
165
+ # For now, keeping it simple with no parameters
166
+ )
167
+
168
+ # Create the tool function
169
+ tool_function = self._create_action_function(sanitized_name, content)
170
+
171
+ # Create the StructuredTool
172
+ tool = StructuredTool(
173
+ name=sanitized_name,
174
+ description=(
175
+ f"Execute {original_name} action. Returns: "
176
+ f"{content[:tools_description_preview_length]}"
177
+ f"{'...' if len(content) > tools_description_preview_length else ''}"
178
+ ),
179
+ func=tool_function,
180
+ args_schema=tool_schema,
181
+ handle_tool_error=True,
182
+ tags=[sanitized_name],
183
+ metadata={
184
+ "display_name": original_name,
185
+ "display_description": f"Action: {original_name}",
186
+ "original_name": original_name,
187
+ "content_preview": content[:tools_description_content_length],
188
+ },
189
+ )
190
+
191
+ tools.append(tool)
192
+
193
+ self._tools_cache = tools
194
+ return tools
195
+
196
+ def build_tool(self) -> Tool:
197
+ """Build a single tool (for compatibility with LCToolComponent)."""
198
+ tools = self.build_tools()
199
+ if not tools:
200
+ # Return a placeholder tool when no data is available
201
+ def placeholder_function(**kwargs) -> str:
202
+ self.log(kwargs) # TODO: Coming soon: implement arguments to modify content
203
+ return "No tools available. Please connect a DataFrame with appropriate columns."
204
+
205
+ return StructuredTool(
206
+ name="placeholder_tool",
207
+ description="Placeholder tool - waiting for DataFrame input",
208
+ func=placeholder_function,
209
+ args_schema=create_model("PlaceholderSchema", __base__=BaseModel),
210
+ )
211
+
212
+ # Return the first tool, or create a composite tool
213
+ return tools[0]
214
+
215
+ def get_message(self) -> Message:
216
+ """Get a message describing the created toolset."""
217
+ # Handle case where inputs are not ready
218
+ if not hasattr(self, "dataframe") or self.dataframe is None:
219
+ return Message(text="Waiting for DataFrame input...")
220
+
221
+ self._prepare_action_data()
222
+
223
+ if not self._action_data:
224
+ return Message(text="No tools were created. Please check your DataFrame and column selections.")
225
+
226
+ tool_count = len(self._action_data)
227
+ tool_names = [info["original_name"] for info in self._action_data.values()]
228
+
229
+ message_text = f"Created toolset with {tool_count} tools:\n"
230
+ for i, name in enumerate(tool_names, 1):
231
+ message_text += f"{i}. {name}\n"
232
+
233
+ return Message(text=message_text)
234
+
235
+ def run_model(self) -> list[Data]:
236
+ """Run the model and return tool information as Data objects."""
237
+ # Handle case where inputs are not ready
238
+ if not hasattr(self, "dataframe") or self.dataframe is None:
239
+ return [Data(data={"status": "Waiting for DataFrame input"})]
240
+
241
+ tools = self.build_tools()
242
+
243
+ if not tools:
244
+ return [Data(data={"status": "No tools created. Check DataFrame and column selections."})]
245
+
246
+ results = []
247
+ for tool in tools:
248
+ tool_data = {
249
+ "tool_name": tool.name,
250
+ "display_name": tool.metadata.get("display_name", tool.name)
251
+ if hasattr(tool, "metadata")
252
+ else tool.name,
253
+ "description": tool.description,
254
+ "original_name": tool.metadata.get("original_name", "") if hasattr(tool, "metadata") else "",
255
+ "content_preview": tool.metadata.get("content_preview", "") if hasattr(tool, "metadata") else "",
256
+ }
257
+ results.append(Data(data=tool_data))
258
+
259
+ return results
@@ -14,11 +14,11 @@ if TYPE_CHECKING:
14
14
 
15
15
 
16
16
  class LambdaFilterComponent(Component):
17
- display_name = "Smart Function"
17
+ display_name = "Smart Transform"
18
18
  description = "Uses an LLM to generate a function for filtering or transforming structured data."
19
- documentation: str = "https://docs.langflow.org/components-processing#smart-function"
19
+ documentation: str = "https://docs.langflow.org/components-processing#smart-transform"
20
20
  icon = "square-function"
21
- name = "Smart Function"
21
+ name = "Smart Transform"
22
22
 
23
23
  inputs = [
24
24
  DataInput(