letta-nightly 0.4.1.dev20241008104105__py3-none-any.whl → 0.4.1.dev20241010104112__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of letta-nightly might be problematic. Click here for more details.

Files changed (43) hide show
  1. letta/agent.py +18 -2
  2. letta/agent_store/db.py +23 -7
  3. letta/cli/cli.py +2 -1
  4. letta/cli/cli_config.py +1 -1098
  5. letta/client/client.py +8 -1
  6. letta/client/utils.py +7 -2
  7. letta/credentials.py +2 -2
  8. letta/embeddings.py +3 -0
  9. letta/functions/schema_generator.py +1 -1
  10. letta/interface.py +6 -2
  11. letta/llm_api/anthropic.py +3 -24
  12. letta/llm_api/azure_openai.py +47 -98
  13. letta/llm_api/azure_openai_constants.py +10 -0
  14. letta/llm_api/google_ai.py +38 -63
  15. letta/llm_api/helpers.py +64 -2
  16. letta/llm_api/llm_api_tools.py +6 -15
  17. letta/llm_api/openai.py +6 -49
  18. letta/local_llm/constants.py +3 -0
  19. letta/main.py +1 -1
  20. letta/metadata.py +2 -0
  21. letta/providers.py +165 -31
  22. letta/schemas/agent.py +14 -0
  23. letta/schemas/llm_config.py +0 -3
  24. letta/schemas/openai/chat_completion_response.py +3 -0
  25. letta/schemas/tool.py +3 -3
  26. letta/server/rest_api/routers/openai/assistants/threads.py +5 -5
  27. letta/server/rest_api/routers/openai/chat_completions/chat_completions.py +2 -2
  28. letta/server/rest_api/routers/v1/agents.py +11 -11
  29. letta/server/rest_api/routers/v1/blocks.py +2 -2
  30. letta/server/rest_api/routers/v1/jobs.py +2 -2
  31. letta/server/rest_api/routers/v1/sources.py +12 -12
  32. letta/server/rest_api/routers/v1/tools.py +6 -6
  33. letta/server/server.py +26 -7
  34. letta/settings.py +3 -112
  35. letta/streaming_interface.py +8 -4
  36. {letta_nightly-0.4.1.dev20241008104105.dist-info → letta_nightly-0.4.1.dev20241010104112.dist-info}/METADATA +1 -1
  37. {letta_nightly-0.4.1.dev20241008104105.dist-info → letta_nightly-0.4.1.dev20241010104112.dist-info}/RECORD +40 -42
  38. letta/configs/anthropic.json +0 -13
  39. letta/configs/letta_hosted.json +0 -11
  40. letta/configs/openai.json +0 -12
  41. {letta_nightly-0.4.1.dev20241008104105.dist-info → letta_nightly-0.4.1.dev20241010104112.dist-info}/LICENSE +0 -0
  42. {letta_nightly-0.4.1.dev20241008104105.dist-info → letta_nightly-0.4.1.dev20241010104112.dist-info}/WHEEL +0 -0
  43. {letta_nightly-0.4.1.dev20241008104105.dist-info → letta_nightly-0.4.1.dev20241010104112.dist-info}/entry_points.txt +0 -0
letta/client/client.py CHANGED
@@ -9,7 +9,7 @@ from letta.constants import BASE_TOOLS, DEFAULT_HUMAN, DEFAULT_PERSONA
9
9
  from letta.data_sources.connectors import DataConnector
10
10
  from letta.functions.functions import parse_source_code
11
11
  from letta.memory import get_memory_functions
12
- from letta.schemas.agent import AgentState, CreateAgent, UpdateAgentState
12
+ from letta.schemas.agent import AgentState, AgentType, CreateAgent, UpdateAgentState
13
13
  from letta.schemas.block import (
14
14
  Block,
15
15
  CreateBlock,
@@ -68,6 +68,7 @@ class AbstractClient(object):
68
68
  def create_agent(
69
69
  self,
70
70
  name: Optional[str] = None,
71
+ agent_type: Optional[AgentType] = AgentType.memgpt_agent,
71
72
  embedding_config: Optional[EmbeddingConfig] = None,
72
73
  llm_config: Optional[LLMConfig] = None,
73
74
  memory: Memory = ChatMemory(human=get_human_text(DEFAULT_HUMAN), persona=get_persona_text(DEFAULT_PERSONA)),
@@ -319,6 +320,8 @@ class RESTClient(AbstractClient):
319
320
  def create_agent(
320
321
  self,
321
322
  name: Optional[str] = None,
323
+ # agent config
324
+ agent_type: Optional[AgentType] = AgentType.memgpt_agent,
322
325
  # model configs
323
326
  embedding_config: EmbeddingConfig = None,
324
327
  llm_config: LLMConfig = None,
@@ -381,6 +384,7 @@ class RESTClient(AbstractClient):
381
384
  memory=memory,
382
385
  tools=tool_names,
383
386
  system=system,
387
+ agent_type=agent_type,
384
388
  llm_config=llm_config if llm_config else self._default_llm_config,
385
389
  embedding_config=embedding_config if embedding_config else self._default_embedding_config,
386
390
  )
@@ -1462,6 +1466,8 @@ class LocalClient(AbstractClient):
1462
1466
  def create_agent(
1463
1467
  self,
1464
1468
  name: Optional[str] = None,
1469
+ # agent config
1470
+ agent_type: Optional[AgentType] = AgentType.memgpt_agent,
1465
1471
  # model configs
1466
1472
  embedding_config: EmbeddingConfig = None,
1467
1473
  llm_config: LLMConfig = None,
@@ -1524,6 +1530,7 @@ class LocalClient(AbstractClient):
1524
1530
  memory=memory,
1525
1531
  tools=tool_names,
1526
1532
  system=system,
1533
+ agent_type=agent_type,
1527
1534
  llm_config=llm_config if llm_config else self._default_llm_config,
1528
1535
  embedding_config=embedding_config if embedding_config else self._default_embedding_config,
1529
1536
  ),
letta/client/utils.py CHANGED
@@ -2,6 +2,11 @@ from datetime import datetime
2
2
 
3
3
  from IPython.display import HTML, display
4
4
 
5
+ from letta.local_llm.constants import (
6
+ ASSISTANT_MESSAGE_CLI_SYMBOL,
7
+ INNER_THOUGHTS_CLI_SYMBOL,
8
+ )
9
+
5
10
 
6
11
  def pprint(messages):
7
12
  """Utility function for pretty-printing the output of client.send_message in notebooks"""
@@ -47,13 +52,13 @@ def pprint(messages):
47
52
  html_content += f"<p><strong>🛠️ [{date_formatted}] Function Return ({return_status}):</strong></p>"
48
53
  html_content += f"<p class='function-return'>{return_string}</p>"
49
54
  elif "internal_monologue" in message:
50
- html_content += f"<p><strong>💭 [{date_formatted}] Internal Monologue:</strong></p>"
55
+ html_content += f"<p><strong>{INNER_THOUGHTS_CLI_SYMBOL} [{date_formatted}] Internal Monologue:</strong></p>"
51
56
  html_content += f"<p class='internal-monologue'>{message['internal_monologue']}</p>"
52
57
  elif "function_call" in message:
53
58
  html_content += f"<p><strong>🛠️ [[{date_formatted}] Function Call:</strong></p>"
54
59
  html_content += f"<p class='function-call'>{message['function_call']}</p>"
55
60
  elif "assistant_message" in message:
56
- html_content += f"<p><strong>🤖 [{date_formatted}] Assistant Message:</strong></p>"
61
+ html_content += f"<p><strong>{ASSISTANT_MESSAGE_CLI_SYMBOL} [{date_formatted}] Assistant Message:</strong></p>"
57
62
  html_content += f"<p class='assistant-message'>{message['assistant_message']}</p>"
58
63
  html_content += "<br>"
59
64
  html_content += "</div>"
letta/credentials.py CHANGED
@@ -76,7 +76,7 @@ class LettaCredentials:
76
76
  "azure_embedding_deployment": get_field(config, "azure", "embedding_deployment"),
77
77
  # gemini
78
78
  "google_ai_key": get_field(config, "google_ai", "key"),
79
- "google_ai_service_endpoint": get_field(config, "google_ai", "service_endpoint"),
79
+ # "google_ai_service_endpoint": get_field(config, "google_ai", "service_endpoint"),
80
80
  # anthropic
81
81
  "anthropic_key": get_field(config, "anthropic", "key"),
82
82
  # cohere
@@ -117,7 +117,7 @@ class LettaCredentials:
117
117
 
118
118
  # gemini
119
119
  set_field(config, "google_ai", "key", self.google_ai_key)
120
- set_field(config, "google_ai", "service_endpoint", self.google_ai_service_endpoint)
120
+ # set_field(config, "google_ai", "service_endpoint", self.google_ai_service_endpoint)
121
121
 
122
122
  # anthropic
123
123
  set_field(config, "anthropic", "key", self.anthropic_key)
letta/embeddings.py CHANGED
@@ -91,6 +91,9 @@ class EmbeddingEndpoint:
91
91
  raise ValueError(
92
92
  f"Embeddings endpoint was provided an invalid URL (set to: '{base_url}'). Make sure embedding_endpoint is set correctly in your Letta config."
93
93
  )
94
+ # TODO: find a neater solution - re-mapping for letta endpoint
95
+ if model == "letta-free":
96
+ model = "BAAI/bge-large-en-v1.5"
94
97
  self.model_name = model
95
98
  self._user = user
96
99
  self._base_url = base_url
@@ -130,7 +130,7 @@ def generate_schema(function, name: Optional[str] = None, description: Optional[
130
130
  if function.__name__ not in ["send_message", "pause_heartbeats"]:
131
131
  schema["parameters"]["properties"]["request_heartbeat"] = {
132
132
  "type": "boolean",
133
- "description": "Request an immediate heartbeat after function execution. Set to 'true' if you want to send a follow-up message or run a follow-up function.",
133
+ "description": "Request an immediate heartbeat after function execution. Set to `True` if you want to send a follow-up message or run a follow-up function.",
134
134
  }
135
135
  schema["parameters"]["required"].append("request_heartbeat")
136
136
 
letta/interface.py CHANGED
@@ -5,6 +5,10 @@ from typing import List, Optional
5
5
  from colorama import Fore, Style, init
6
6
 
7
7
  from letta.constants import CLI_WARNING_PREFIX
8
+ from letta.local_llm.constants import (
9
+ ASSISTANT_MESSAGE_CLI_SYMBOL,
10
+ INNER_THOUGHTS_CLI_SYMBOL,
11
+ )
8
12
  from letta.schemas.message import Message
9
13
  from letta.utils import json_loads, printd
10
14
 
@@ -79,14 +83,14 @@ class CLIInterface(AgentInterface):
79
83
  @staticmethod
80
84
  def internal_monologue(msg: str, msg_obj: Optional[Message] = None):
81
85
  # ANSI escape code for italic is '\x1B[3m'
82
- fstr = f"\x1B[3m{Fore.LIGHTBLACK_EX}💭 {{msg}}{Style.RESET_ALL}"
86
+ fstr = f"\x1B[3m{Fore.LIGHTBLACK_EX}{INNER_THOUGHTS_CLI_SYMBOL} {{msg}}{Style.RESET_ALL}"
83
87
  if STRIP_UI:
84
88
  fstr = "{msg}"
85
89
  print(fstr.format(msg=msg))
86
90
 
87
91
  @staticmethod
88
92
  def assistant_message(msg: str, msg_obj: Optional[Message] = None):
89
- fstr = f"{Fore.YELLOW}{Style.BRIGHT}🤖 {Fore.YELLOW}{{msg}}{Style.RESET_ALL}"
93
+ fstr = f"{Fore.YELLOW}{Style.BRIGHT}{ASSISTANT_MESSAGE_CLI_SYMBOL} {Fore.YELLOW}{{msg}}{Style.RESET_ALL}"
90
94
  if STRIP_UI:
91
95
  fstr = "{msg}"
92
96
  print(fstr.format(msg=msg))
@@ -2,8 +2,7 @@ import json
2
2
  import re
3
3
  from typing import List, Optional, Union
4
4
 
5
- import requests
6
-
5
+ from letta.llm_api.helpers import make_post_request
7
6
  from letta.schemas.message import Message
8
7
  from letta.schemas.openai.chat_completion_request import ChatCompletionRequest, Tool
9
8
  from letta.schemas.openai.chat_completion_response import (
@@ -295,7 +294,6 @@ def anthropic_chat_completions_request(
295
294
  inner_thoughts_xml_tag: Optional[str] = "thinking",
296
295
  ) -> ChatCompletionResponse:
297
296
  """https://docs.anthropic.com/claude/docs/tool-use"""
298
- from letta.utils import printd
299
297
 
300
298
  url = smart_urljoin(url, "messages")
301
299
  headers = {
@@ -360,24 +358,5 @@ def anthropic_chat_completions_request(
360
358
  data.pop("user", None)
361
359
  data.pop("tool_choice", None)
362
360
 
363
- printd(f"Sending request to {url}")
364
- try:
365
- response = requests.post(url, headers=headers, json=data)
366
- printd(f"response = {response}")
367
- response.raise_for_status() # Raises HTTPError for 4XX/5XX status
368
- response = response.json() # convert to dict from string
369
- printd(f"response.json = {response}")
370
- response = convert_anthropic_response_to_chatcompletion(response_json=response, inner_thoughts_xml_tag=inner_thoughts_xml_tag)
371
- return response
372
- except requests.exceptions.HTTPError as http_err:
373
- # Handle HTTP errors (e.g., response 4XX, 5XX)
374
- printd(f"Got HTTPError, exception={http_err}, payload={data}")
375
- raise http_err
376
- except requests.exceptions.RequestException as req_err:
377
- # Handle other requests-related errors (e.g., connection error)
378
- printd(f"Got RequestException, exception={req_err}")
379
- raise req_err
380
- except Exception as e:
381
- # Handle other potential errors
382
- printd(f"Got unknown Exception, exception={e}")
383
- raise e
361
+ response_json = make_post_request(url, headers, data)
362
+ return convert_anthropic_response_to_chatcompletion(response_json=response_json, inner_thoughts_xml_tag=inner_thoughts_xml_tag)
@@ -1,83 +1,69 @@
1
- from typing import Union
2
-
3
1
  import requests
4
2
 
3
+ from letta.llm_api.helpers import make_post_request
5
4
  from letta.schemas.llm_config import LLMConfig
6
5
  from letta.schemas.openai.chat_completion_response import ChatCompletionResponse
7
6
  from letta.schemas.openai.chat_completions import ChatCompletionRequest
8
7
  from letta.schemas.openai.embedding_response import EmbeddingResponse
9
8
  from letta.settings import ModelSettings
10
- from letta.utils import smart_urljoin
11
9
 
12
- MODEL_TO_AZURE_ENGINE = {
13
- "gpt-4-1106-preview": "gpt-4",
14
- "gpt-4": "gpt-4",
15
- "gpt-4-32k": "gpt-4-32k",
16
- "gpt-3.5": "gpt-35-turbo",
17
- "gpt-3.5-turbo": "gpt-35-turbo",
18
- "gpt-3.5-turbo-16k": "gpt-35-turbo-16k",
19
- "gpt-4o-mini": "gpt-4o-mini",
20
- }
10
+
11
+ def get_azure_chat_completions_endpoint(base_url: str, model: str, api_version: str):
12
+ return f"{base_url}/openai/deployments/{model}/chat/completions?api-version={api_version}"
21
13
 
22
14
 
23
- def get_azure_endpoint(llm_config: LLMConfig, model_settings: ModelSettings):
24
- assert llm_config.api_version, "Missing model version! This field must be provided in the LLM config for Azure."
25
- assert llm_config.model in MODEL_TO_AZURE_ENGINE, f"{llm_config.model} not in supported models: {list(MODEL_TO_AZURE_ENGINE.keys())}"
15
+ def get_azure_embeddings_endpoint(base_url: str, model: str, api_version: str):
16
+ return f"{base_url}/openai/deployments/{model}/embeddings?api-version={api_version}"
26
17
 
27
- model = MODEL_TO_AZURE_ENGINE[llm_config.model]
28
- return f"{model_settings.azure_base_url}/openai/deployments/{model}/chat/completions?api-version={llm_config.api_version}"
29
18
 
19
+ def get_azure_model_list_endpoint(base_url: str, api_version: str):
20
+ return f"{base_url}/openai/models?api-version={api_version}"
30
21
 
31
- def azure_openai_get_model_list(url: str, api_key: Union[str, None], api_version: str) -> dict:
22
+
23
+ def azure_openai_get_model_list(base_url: str, api_key: str, api_version: str) -> list:
32
24
  """https://learn.microsoft.com/en-us/rest/api/azureopenai/models/list?view=rest-azureopenai-2023-05-15&tabs=HTTP"""
33
- from letta.utils import printd
34
25
 
35
26
  # https://xxx.openai.azure.com/openai/models?api-version=xxx
36
- url = smart_urljoin(url, "openai")
37
- url = smart_urljoin(url, f"models?api-version={api_version}")
38
-
39
27
  headers = {"Content-Type": "application/json"}
40
28
  if api_key is not None:
41
29
  headers["api-key"] = f"{api_key}"
42
30
 
43
- printd(f"Sending request to {url}")
31
+ url = get_azure_model_list_endpoint(base_url, api_version)
44
32
  try:
45
33
  response = requests.get(url, headers=headers)
46
- response.raise_for_status() # Raises HTTPError for 4XX/5XX status
47
- response = response.json() # convert to dict from string
48
- printd(f"response = {response}")
49
- return response
50
- except requests.exceptions.HTTPError as http_err:
51
- # Handle HTTP errors (e.g., response 4XX, 5XX)
52
- try:
53
- response = response.json()
54
- except:
55
- pass
56
- printd(f"Got HTTPError, exception={http_err}, response={response}")
57
- raise http_err
58
- except requests.exceptions.RequestException as req_err:
59
- # Handle other requests-related errors (e.g., connection error)
60
- try:
61
- response = response.json()
62
- except:
63
- pass
64
- printd(f"Got RequestException, exception={req_err}, response={response}")
65
- raise req_err
66
- except Exception as e:
67
- # Handle other potential errors
68
- try:
69
- response = response.json()
70
- except:
71
- pass
72
- printd(f"Got unknown Exception, exception={e}, response={response}")
73
- raise e
34
+ response.raise_for_status()
35
+ except requests.RequestException as e:
36
+ raise RuntimeError(f"Failed to retrieve model list: {e}")
37
+
38
+ return response.json().get("data", [])
39
+
40
+
41
+ def azure_openai_get_chat_completion_model_list(base_url: str, api_key: str, api_version: str) -> list:
42
+ model_list = azure_openai_get_model_list(base_url, api_key, api_version)
43
+ # Extract models that support text generation
44
+ model_options = [m for m in model_list if m.get("capabilities").get("chat_completion") == True]
45
+ return model_options
46
+
47
+
48
+ def azure_openai_get_embeddings_model_list(base_url: str, api_key: str, api_version: str, require_embedding_in_name: bool = True) -> list:
49
+ def valid_embedding_model(m: dict):
50
+ valid_name = True
51
+ if require_embedding_in_name:
52
+ valid_name = "embedding" in m["id"]
53
+
54
+ return m.get("capabilities").get("embeddings") == True and valid_name
55
+
56
+ model_list = azure_openai_get_model_list(base_url, api_key, api_version)
57
+ # Extract models that support embeddings
58
+
59
+ model_options = [m for m in model_list if valid_embedding_model(m)]
60
+ return model_options
74
61
 
75
62
 
76
63
  def azure_openai_chat_completions_request(
77
64
  model_settings: ModelSettings, llm_config: LLMConfig, api_key: str, chat_completion_request: ChatCompletionRequest
78
65
  ) -> ChatCompletionResponse:
79
66
  """https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions"""
80
- from letta.utils import printd
81
67
 
82
68
  assert api_key is not None, "Missing required field when calling Azure OpenAI"
83
69
 
@@ -93,59 +79,22 @@ def azure_openai_chat_completions_request(
93
79
  data.pop("tools")
94
80
  data.pop("tool_choice", None) # extra safe, should exist always (default="auto")
95
81
 
96
- model_endpoint = get_azure_endpoint(llm_config, model_settings)
97
- printd(f"Sending request to {model_endpoint}")
98
- try:
99
- response = requests.post(model_endpoint, headers=headers, json=data)
100
- response.raise_for_status() # Raises HTTPError for 4XX/5XX status
101
- response = response.json() # convert to dict from string
102
- printd(f"response.json = {response}")
103
- # NOTE: azure openai does not include "content" in the response when it is None, so we need to add it
104
- if "content" not in response["choices"][0].get("message"):
105
- response["choices"][0]["message"]["content"] = None
106
- response = ChatCompletionResponse(**response) # convert to 'dot-dict' style which is the openai python client default
107
- return response
108
- except requests.exceptions.HTTPError as http_err:
109
- # Handle HTTP errors (e.g., response 4XX, 5XX)
110
- printd(f"Got HTTPError, exception={http_err}, payload={data}")
111
- raise http_err
112
- except requests.exceptions.RequestException as req_err:
113
- # Handle other requests-related errors (e.g., connection error)
114
- printd(f"Got RequestException, exception={req_err}")
115
- raise req_err
116
- except Exception as e:
117
- # Handle other potential errors
118
- printd(f"Got unknown Exception, exception={e}")
119
- raise e
82
+ url = get_azure_chat_completions_endpoint(model_settings.azure_base_url, llm_config.model, model_settings.api_version)
83
+ response_json = make_post_request(url, headers, data)
84
+ # NOTE: azure openai does not include "content" in the response when it is None, so we need to add it
85
+ if "content" not in response_json["choices"][0].get("message"):
86
+ response_json["choices"][0]["message"]["content"] = None
87
+ response = ChatCompletionResponse(**response_json) # convert to 'dot-dict' style which is the openai python client default
88
+ return response
120
89
 
121
90
 
122
91
  def azure_openai_embeddings_request(
123
92
  resource_name: str, deployment_id: str, api_version: str, api_key: str, data: dict
124
93
  ) -> EmbeddingResponse:
125
94
  """https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#embeddings"""
126
- from letta.utils import printd
127
95
 
128
96
  url = f"https://{resource_name}.openai.azure.com/openai/deployments/{deployment_id}/embeddings?api-version={api_version}"
129
97
  headers = {"Content-Type": "application/json", "api-key": f"{api_key}"}
130
98
 
131
- printd(f"Sending request to {url}")
132
- try:
133
- response = requests.post(url, headers=headers, json=data)
134
- printd(f"response = {response}")
135
- response.raise_for_status() # Raises HTTPError for 4XX/5XX status
136
- response = response.json() # convert to dict from string
137
- printd(f"response.json = {response}")
138
- response = EmbeddingResponse(**response) # convert to 'dot-dict' style which is the openai python client default
139
- return response
140
- except requests.exceptions.HTTPError as http_err:
141
- # Handle HTTP errors (e.g., response 4XX, 5XX)
142
- printd(f"Got HTTPError, exception={http_err}, payload={data}")
143
- raise http_err
144
- except requests.exceptions.RequestException as req_err:
145
- # Handle other requests-related errors (e.g., connection error)
146
- printd(f"Got RequestException, exception={req_err}")
147
- raise req_err
148
- except Exception as e:
149
- # Handle other potential errors
150
- printd(f"Got unknown Exception, exception={e}")
151
- raise e
99
+ response_json = make_post_request(url, headers, data)
100
+ return EmbeddingResponse(**response_json)
@@ -0,0 +1,10 @@
1
+ AZURE_MODEL_TO_CONTEXT_LENGTH = {
2
+ "babbage-002": 16384,
3
+ "davinci-002": 16384,
4
+ "gpt-35-turbo-0613": 4096,
5
+ "gpt-35-turbo-1106": 16385,
6
+ "gpt-35-turbo-0125": 16385,
7
+ "gpt-4-0613": 8192,
8
+ "gpt-4o-mini-2024-07-18": 128000,
9
+ "gpt-4o-2024-08-06": 128000,
10
+ }
@@ -1,9 +1,10 @@
1
1
  import uuid
2
- from typing import List, Optional
2
+ from typing import List, Optional, Tuple
3
3
 
4
4
  import requests
5
5
 
6
6
  from letta.constants import NON_USER_MSG_PREFIX
7
+ from letta.llm_api.helpers import make_post_request
7
8
  from letta.local_llm.json_parser import clean_json_string_extra_backslash
8
9
  from letta.local_llm.utils import count_tokens
9
10
  from letta.schemas.openai.chat_completion_request import Tool
@@ -15,27 +16,41 @@ from letta.schemas.openai.chat_completion_response import (
15
16
  ToolCall,
16
17
  UsageStatistics,
17
18
  )
18
- from letta.utils import get_tool_call_id, get_utc_time
19
+ from letta.utils import get_tool_call_id, get_utc_time, json_dumps
19
20
 
20
- # from letta.data_types import ToolCall
21
21
 
22
+ def get_gemini_endpoint_and_headers(
23
+ base_url: str, model: Optional[str], api_key: str, key_in_header: bool = True, generate_content: bool = False
24
+ ) -> Tuple[str, dict]:
25
+ """
26
+ Dynamically generate the model endpoint and headers.
27
+ """
28
+ url = f"{base_url}/v1beta/models"
22
29
 
23
- SUPPORTED_MODELS = [
24
- "gemini-pro",
25
- ]
26
-
30
+ # Add the model
31
+ if model is not None:
32
+ url += f"/{model}"
27
33
 
28
- def google_ai_get_model_details(service_endpoint: str, api_key: str, model: str, key_in_header: bool = True) -> List[dict]:
29
- from letta.utils import printd
34
+ # Add extension for generating content if we're hitting the LM
35
+ if generate_content:
36
+ url += ":generateContent"
30
37
 
38
+ # Decide if api key should be in header or not
31
39
  # Two ways to pass the key: https://ai.google.dev/tutorials/setup
32
40
  if key_in_header:
33
- url = f"https://{service_endpoint}.googleapis.com/v1beta/models/{model}"
34
41
  headers = {"Content-Type": "application/json", "x-goog-api-key": api_key}
35
42
  else:
36
- url = f"https://{service_endpoint}.googleapis.com/v1beta/models/{model}?key={api_key}"
43
+ url += f"?key={api_key}"
37
44
  headers = {"Content-Type": "application/json"}
38
45
 
46
+ return url, headers
47
+
48
+
49
+ def google_ai_get_model_details(base_url: str, api_key: str, model: str, key_in_header: bool = True) -> List[dict]:
50
+ from letta.utils import printd
51
+
52
+ url, headers = get_gemini_endpoint_and_headers(base_url, model, api_key, key_in_header)
53
+
39
54
  try:
40
55
  response = requests.get(url, headers=headers)
41
56
  printd(f"response = {response}")
@@ -66,25 +81,17 @@ def google_ai_get_model_details(service_endpoint: str, api_key: str, model: str,
66
81
  raise e
67
82
 
68
83
 
69
- def google_ai_get_model_context_window(service_endpoint: str, api_key: str, model: str, key_in_header: bool = True) -> int:
70
- model_details = google_ai_get_model_details(
71
- service_endpoint=service_endpoint, api_key=api_key, model=model, key_in_header=key_in_header
72
- )
84
+ def google_ai_get_model_context_window(base_url: str, api_key: str, model: str, key_in_header: bool = True) -> int:
85
+ model_details = google_ai_get_model_details(base_url=base_url, api_key=api_key, model=model, key_in_header=key_in_header)
73
86
  # TODO should this be:
74
87
  # return model_details["inputTokenLimit"] + model_details["outputTokenLimit"]
75
88
  return int(model_details["inputTokenLimit"])
76
89
 
77
90
 
78
- def google_ai_get_model_list(service_endpoint: str, api_key: str, key_in_header: bool = True) -> List[dict]:
91
+ def google_ai_get_model_list(base_url: str, api_key: str, key_in_header: bool = True) -> List[dict]:
79
92
  from letta.utils import printd
80
93
 
81
- # Two ways to pass the key: https://ai.google.dev/tutorials/setup
82
- if key_in_header:
83
- url = f"https://{service_endpoint}.googleapis.com/v1beta/models"
84
- headers = {"Content-Type": "application/json", "x-goog-api-key": api_key}
85
- else:
86
- url = f"https://{service_endpoint}.googleapis.com/v1beta/models?key={api_key}"
87
- headers = {"Content-Type": "application/json"}
94
+ url, headers = get_gemini_endpoint_and_headers(base_url, None, api_key, key_in_header)
88
95
 
89
96
  try:
90
97
  response = requests.get(url, headers=headers)
@@ -396,7 +403,7 @@ def convert_google_ai_response_to_chatcompletion(
396
403
 
397
404
  # TODO convert 'data' type to pydantic
398
405
  def google_ai_chat_completions_request(
399
- service_endpoint: str,
406
+ base_url: str,
400
407
  model: str,
401
408
  api_key: str,
402
409
  data: dict,
@@ -414,55 +421,23 @@ def google_ai_chat_completions_request(
414
421
  This service has the following service endpoint and all URIs below are relative to this service endpoint:
415
422
  https://xxx.googleapis.com
416
423
  """
417
- from letta.utils import printd
418
424
 
419
- assert service_endpoint is not None, "Missing service_endpoint when calling Google AI"
420
425
  assert api_key is not None, "Missing api_key when calling Google AI"
421
- assert model in SUPPORTED_MODELS, f"Model '{model}' not in supported models: {', '.join(SUPPORTED_MODELS)}"
422
426
 
423
- # Two ways to pass the key: https://ai.google.dev/tutorials/setup
424
- if key_in_header:
425
- url = f"https://{service_endpoint}.googleapis.com/v1beta/models/{model}:generateContent"
426
- headers = {"Content-Type": "application/json", "x-goog-api-key": api_key}
427
- else:
428
- url = f"https://{service_endpoint}.googleapis.com/v1beta/models/{model}:generateContent?key={api_key}"
429
- headers = {"Content-Type": "application/json"}
427
+ url, headers = get_gemini_endpoint_and_headers(base_url, model, api_key, key_in_header, generate_content=True)
430
428
 
431
429
  # data["contents"][-1]["role"] = "model"
432
430
  if add_postfunc_model_messages:
433
431
  data["contents"] = add_dummy_model_messages(data["contents"])
434
432
 
435
- printd(f"Sending request to {url}")
433
+ response_json = make_post_request(url, headers, data)
436
434
  try:
437
- response = requests.post(url, headers=headers, json=data)
438
- printd(f"response = {response}")
439
- response.raise_for_status() # Raises HTTPError for 4XX/5XX status
440
- response = response.json() # convert to dict from string
441
- printd(f"response.json = {response}")
442
-
443
- # Convert Google AI response to ChatCompletion style
444
435
  return convert_google_ai_response_to_chatcompletion(
445
- response_json=response,
446
- model=model,
436
+ response_json=response_json,
437
+ model=data.get("model"),
447
438
  input_messages=data["contents"],
448
439
  pull_inner_thoughts_from_args=inner_thoughts_in_kwargs,
449
440
  )
450
-
451
- except requests.exceptions.HTTPError as http_err:
452
- # Handle HTTP errors (e.g., response 4XX, 5XX)
453
- printd(f"Got HTTPError, exception={http_err}, payload={data}")
454
- # Print the HTTP status code
455
- print(f"HTTP Error: {http_err.response.status_code}")
456
- # Print the response content (error message from server)
457
- print(f"Message: {http_err.response.text}")
458
- raise http_err
459
-
460
- except requests.exceptions.RequestException as req_err:
461
- # Handle other requests-related errors (e.g., connection error)
462
- printd(f"Got RequestException, exception={req_err}")
463
- raise req_err
464
-
465
- except Exception as e:
466
- # Handle other potential errors
467
- printd(f"Got unknown Exception, exception={e}")
468
- raise e
441
+ except Exception as conversion_error:
442
+ print(f"Error during response conversion: {conversion_error}")
443
+ raise conversion_error
letta/llm_api/helpers.py CHANGED
@@ -1,14 +1,76 @@
1
1
  import copy
2
2
  import json
3
3
  import warnings
4
- from typing import List, Union
4
+ from typing import Any, List, Union
5
5
 
6
6
  import requests
7
7
 
8
8
  from letta.constants import OPENAI_CONTEXT_WINDOW_ERROR_SUBSTRING
9
9
  from letta.schemas.enums import OptionState
10
10
  from letta.schemas.openai.chat_completion_response import ChatCompletionResponse, Choice
11
- from letta.utils import json_dumps
11
+ from letta.utils import json_dumps, printd
12
+
13
+
14
+ def make_post_request(url: str, headers: dict[str, str], data: dict[str, Any]) -> dict[str, Any]:
15
+ printd(f"Sending request to {url}")
16
+ try:
17
+ # Make the POST request
18
+ response = requests.post(url, headers=headers, json=data)
19
+ printd(f"Response status code: {response.status_code}")
20
+
21
+ # Raise for 4XX/5XX HTTP errors
22
+ response.raise_for_status()
23
+
24
+ # Check if the response content type indicates JSON and attempt to parse it
25
+ content_type = response.headers.get("Content-Type", "")
26
+ if "application/json" in content_type.lower():
27
+ try:
28
+ response_data = response.json() # Attempt to parse the response as JSON
29
+ printd(f"Response JSON: {response_data}")
30
+ except ValueError as json_err:
31
+ # Handle the case where the content type says JSON but the body is invalid
32
+ error_message = f"Failed to parse JSON despite Content-Type being {content_type}: {json_err}"
33
+ printd(error_message)
34
+ raise ValueError(error_message) from json_err
35
+ else:
36
+ error_message = f"Unexpected content type returned: {response.headers.get('Content-Type')}"
37
+ printd(error_message)
38
+ raise ValueError(error_message)
39
+
40
+ # Process the response using the callback function
41
+ return response_data
42
+
43
+ except requests.exceptions.HTTPError as http_err:
44
+ # HTTP errors (4XX, 5XX)
45
+ error_message = f"HTTP error occurred: {http_err}"
46
+ if http_err.response is not None:
47
+ error_message += f" | Status code: {http_err.response.status_code}, Message: {http_err.response.text}"
48
+ printd(error_message)
49
+ raise requests.exceptions.HTTPError(error_message) from http_err
50
+
51
+ except requests.exceptions.Timeout as timeout_err:
52
+ # Handle timeout errors
53
+ error_message = f"Request timed out: {timeout_err}"
54
+ printd(error_message)
55
+ raise requests.exceptions.Timeout(error_message) from timeout_err
56
+
57
+ except requests.exceptions.RequestException as req_err:
58
+ # Non-HTTP errors (e.g., connection, SSL errors)
59
+ error_message = f"Request failed: {req_err}"
60
+ printd(error_message)
61
+ raise requests.exceptions.RequestException(error_message) from req_err
62
+
63
+ except ValueError as val_err:
64
+ # Handle content-type or non-JSON response issues
65
+ error_message = f"ValueError: {val_err}"
66
+ printd(error_message)
67
+ raise ValueError(error_message) from val_err
68
+
69
+ except Exception as e:
70
+ # Catch any other unknown exceptions
71
+ error_message = f"An unexpected error occurred: {e}"
72
+ printd(error_message)
73
+ raise Exception(error_message) from e
12
74
 
13
75
 
14
76
  # TODO update to use better types