letta-nightly 0.1.7.dev20240924104148__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of letta-nightly might be problematic. Click here for more details.
- letta/__init__.py +24 -0
- letta/__main__.py +3 -0
- letta/agent.py +1427 -0
- letta/agent_store/chroma.py +295 -0
- letta/agent_store/db.py +546 -0
- letta/agent_store/lancedb.py +177 -0
- letta/agent_store/milvus.py +198 -0
- letta/agent_store/qdrant.py +201 -0
- letta/agent_store/storage.py +188 -0
- letta/benchmark/benchmark.py +96 -0
- letta/benchmark/constants.py +14 -0
- letta/cli/cli.py +689 -0
- letta/cli/cli_config.py +1282 -0
- letta/cli/cli_load.py +166 -0
- letta/client/__init__.py +0 -0
- letta/client/admin.py +171 -0
- letta/client/client.py +2360 -0
- letta/client/streaming.py +90 -0
- letta/client/utils.py +61 -0
- letta/config.py +484 -0
- letta/configs/anthropic.json +13 -0
- letta/configs/letta_hosted.json +11 -0
- letta/configs/openai.json +12 -0
- letta/constants.py +134 -0
- letta/credentials.py +140 -0
- letta/data_sources/connectors.py +247 -0
- letta/embeddings.py +218 -0
- letta/errors.py +26 -0
- letta/functions/__init__.py +0 -0
- letta/functions/function_sets/base.py +174 -0
- letta/functions/function_sets/extras.py +132 -0
- letta/functions/functions.py +105 -0
- letta/functions/schema_generator.py +205 -0
- letta/humans/__init__.py +0 -0
- letta/humans/examples/basic.txt +1 -0
- letta/humans/examples/cs_phd.txt +9 -0
- letta/interface.py +314 -0
- letta/llm_api/__init__.py +0 -0
- letta/llm_api/anthropic.py +383 -0
- letta/llm_api/azure_openai.py +155 -0
- letta/llm_api/cohere.py +396 -0
- letta/llm_api/google_ai.py +468 -0
- letta/llm_api/llm_api_tools.py +485 -0
- letta/llm_api/openai.py +470 -0
- letta/local_llm/README.md +3 -0
- letta/local_llm/__init__.py +0 -0
- letta/local_llm/chat_completion_proxy.py +279 -0
- letta/local_llm/constants.py +31 -0
- letta/local_llm/function_parser.py +68 -0
- letta/local_llm/grammars/__init__.py +0 -0
- letta/local_llm/grammars/gbnf_grammar_generator.py +1324 -0
- letta/local_llm/grammars/json.gbnf +26 -0
- letta/local_llm/grammars/json_func_calls_with_inner_thoughts.gbnf +32 -0
- letta/local_llm/groq/api.py +97 -0
- letta/local_llm/json_parser.py +202 -0
- letta/local_llm/koboldcpp/api.py +62 -0
- letta/local_llm/koboldcpp/settings.py +23 -0
- letta/local_llm/llamacpp/api.py +58 -0
- letta/local_llm/llamacpp/settings.py +22 -0
- letta/local_llm/llm_chat_completion_wrappers/__init__.py +0 -0
- letta/local_llm/llm_chat_completion_wrappers/airoboros.py +452 -0
- letta/local_llm/llm_chat_completion_wrappers/chatml.py +470 -0
- letta/local_llm/llm_chat_completion_wrappers/configurable_wrapper.py +387 -0
- letta/local_llm/llm_chat_completion_wrappers/dolphin.py +246 -0
- letta/local_llm/llm_chat_completion_wrappers/llama3.py +345 -0
- letta/local_llm/llm_chat_completion_wrappers/simple_summary_wrapper.py +156 -0
- letta/local_llm/llm_chat_completion_wrappers/wrapper_base.py +11 -0
- letta/local_llm/llm_chat_completion_wrappers/zephyr.py +345 -0
- letta/local_llm/lmstudio/api.py +100 -0
- letta/local_llm/lmstudio/settings.py +29 -0
- letta/local_llm/ollama/api.py +88 -0
- letta/local_llm/ollama/settings.py +32 -0
- letta/local_llm/settings/__init__.py +0 -0
- letta/local_llm/settings/deterministic_mirostat.py +45 -0
- letta/local_llm/settings/settings.py +72 -0
- letta/local_llm/settings/simple.py +28 -0
- letta/local_llm/utils.py +265 -0
- letta/local_llm/vllm/api.py +63 -0
- letta/local_llm/webui/api.py +60 -0
- letta/local_llm/webui/legacy_api.py +58 -0
- letta/local_llm/webui/legacy_settings.py +23 -0
- letta/local_llm/webui/settings.py +24 -0
- letta/log.py +76 -0
- letta/main.py +437 -0
- letta/memory.py +440 -0
- letta/metadata.py +884 -0
- letta/openai_backcompat/__init__.py +0 -0
- letta/openai_backcompat/openai_object.py +437 -0
- letta/persistence_manager.py +148 -0
- letta/personas/__init__.py +0 -0
- letta/personas/examples/anna_pa.txt +13 -0
- letta/personas/examples/google_search_persona.txt +15 -0
- letta/personas/examples/memgpt_doc.txt +6 -0
- letta/personas/examples/memgpt_starter.txt +4 -0
- letta/personas/examples/sam.txt +14 -0
- letta/personas/examples/sam_pov.txt +14 -0
- letta/personas/examples/sam_simple_pov_gpt35.txt +13 -0
- letta/personas/examples/sqldb/test.db +0 -0
- letta/prompts/__init__.py +0 -0
- letta/prompts/gpt_summarize.py +14 -0
- letta/prompts/gpt_system.py +26 -0
- letta/prompts/system/memgpt_base.txt +49 -0
- letta/prompts/system/memgpt_chat.txt +58 -0
- letta/prompts/system/memgpt_chat_compressed.txt +13 -0
- letta/prompts/system/memgpt_chat_fstring.txt +51 -0
- letta/prompts/system/memgpt_doc.txt +50 -0
- letta/prompts/system/memgpt_gpt35_extralong.txt +53 -0
- letta/prompts/system/memgpt_intuitive_knowledge.txt +31 -0
- letta/prompts/system/memgpt_modified_chat.txt +23 -0
- letta/pytest.ini +0 -0
- letta/schemas/agent.py +117 -0
- letta/schemas/api_key.py +21 -0
- letta/schemas/block.py +135 -0
- letta/schemas/document.py +21 -0
- letta/schemas/embedding_config.py +54 -0
- letta/schemas/enums.py +35 -0
- letta/schemas/job.py +38 -0
- letta/schemas/letta_base.py +80 -0
- letta/schemas/letta_message.py +175 -0
- letta/schemas/letta_request.py +23 -0
- letta/schemas/letta_response.py +28 -0
- letta/schemas/llm_config.py +54 -0
- letta/schemas/memory.py +224 -0
- letta/schemas/message.py +727 -0
- letta/schemas/openai/chat_completion_request.py +123 -0
- letta/schemas/openai/chat_completion_response.py +136 -0
- letta/schemas/openai/chat_completions.py +123 -0
- letta/schemas/openai/embedding_response.py +11 -0
- letta/schemas/openai/openai.py +157 -0
- letta/schemas/organization.py +20 -0
- letta/schemas/passage.py +80 -0
- letta/schemas/source.py +62 -0
- letta/schemas/tool.py +143 -0
- letta/schemas/usage.py +18 -0
- letta/schemas/user.py +33 -0
- letta/server/__init__.py +0 -0
- letta/server/constants.py +6 -0
- letta/server/rest_api/__init__.py +0 -0
- letta/server/rest_api/admin/__init__.py +0 -0
- letta/server/rest_api/admin/agents.py +21 -0
- letta/server/rest_api/admin/tools.py +83 -0
- letta/server/rest_api/admin/users.py +98 -0
- letta/server/rest_api/app.py +193 -0
- letta/server/rest_api/auth/__init__.py +0 -0
- letta/server/rest_api/auth/index.py +43 -0
- letta/server/rest_api/auth_token.py +22 -0
- letta/server/rest_api/interface.py +726 -0
- letta/server/rest_api/routers/__init__.py +0 -0
- letta/server/rest_api/routers/openai/__init__.py +0 -0
- letta/server/rest_api/routers/openai/assistants/__init__.py +0 -0
- letta/server/rest_api/routers/openai/assistants/assistants.py +115 -0
- letta/server/rest_api/routers/openai/assistants/schemas.py +121 -0
- letta/server/rest_api/routers/openai/assistants/threads.py +336 -0
- letta/server/rest_api/routers/openai/chat_completions/__init__.py +0 -0
- letta/server/rest_api/routers/openai/chat_completions/chat_completions.py +131 -0
- letta/server/rest_api/routers/v1/__init__.py +15 -0
- letta/server/rest_api/routers/v1/agents.py +543 -0
- letta/server/rest_api/routers/v1/blocks.py +73 -0
- letta/server/rest_api/routers/v1/jobs.py +46 -0
- letta/server/rest_api/routers/v1/llms.py +28 -0
- letta/server/rest_api/routers/v1/organizations.py +61 -0
- letta/server/rest_api/routers/v1/sources.py +199 -0
- letta/server/rest_api/routers/v1/tools.py +103 -0
- letta/server/rest_api/routers/v1/users.py +109 -0
- letta/server/rest_api/static_files.py +74 -0
- letta/server/rest_api/utils.py +69 -0
- letta/server/server.py +1995 -0
- letta/server/startup.sh +8 -0
- letta/server/static_files/assets/index-0cbf7ad5.js +274 -0
- letta/server/static_files/assets/index-156816da.css +1 -0
- letta/server/static_files/assets/index-486e3228.js +274 -0
- letta/server/static_files/favicon.ico +0 -0
- letta/server/static_files/index.html +39 -0
- letta/server/static_files/memgpt_logo_transparent.png +0 -0
- letta/server/utils.py +46 -0
- letta/server/ws_api/__init__.py +0 -0
- letta/server/ws_api/example_client.py +104 -0
- letta/server/ws_api/interface.py +108 -0
- letta/server/ws_api/protocol.py +100 -0
- letta/server/ws_api/server.py +145 -0
- letta/settings.py +165 -0
- letta/streaming_interface.py +396 -0
- letta/system.py +207 -0
- letta/utils.py +1065 -0
- letta_nightly-0.1.7.dev20240924104148.dist-info/LICENSE +190 -0
- letta_nightly-0.1.7.dev20240924104148.dist-info/METADATA +98 -0
- letta_nightly-0.1.7.dev20240924104148.dist-info/RECORD +189 -0
- letta_nightly-0.1.7.dev20240924104148.dist-info/WHEEL +4 -0
- letta_nightly-0.1.7.dev20240924104148.dist-info/entry_points.txt +3 -0
letta/cli/cli_config.py
ADDED
|
@@ -0,0 +1,1282 @@
|
|
|
1
|
+
import ast
|
|
2
|
+
import builtins
|
|
3
|
+
import os
|
|
4
|
+
from enum import Enum
|
|
5
|
+
from typing import Annotated, List, Optional
|
|
6
|
+
|
|
7
|
+
import questionary
|
|
8
|
+
import typer
|
|
9
|
+
from prettytable.colortable import ColorTable, Themes
|
|
10
|
+
from tqdm import tqdm
|
|
11
|
+
|
|
12
|
+
from letta import utils
|
|
13
|
+
from letta.config import LettaConfig
|
|
14
|
+
from letta.constants import LETTA_DIR, LLM_MAX_TOKENS
|
|
15
|
+
from letta.credentials import SUPPORTED_AUTH_TYPES, LettaCredentials
|
|
16
|
+
from letta.llm_api.anthropic import (
|
|
17
|
+
anthropic_get_model_list,
|
|
18
|
+
antropic_get_model_context_window,
|
|
19
|
+
)
|
|
20
|
+
from letta.llm_api.azure_openai import azure_openai_get_model_list
|
|
21
|
+
from letta.llm_api.cohere import (
|
|
22
|
+
COHERE_VALID_MODEL_LIST,
|
|
23
|
+
cohere_get_model_context_window,
|
|
24
|
+
cohere_get_model_list,
|
|
25
|
+
)
|
|
26
|
+
from letta.llm_api.google_ai import (
|
|
27
|
+
google_ai_get_model_context_window,
|
|
28
|
+
google_ai_get_model_list,
|
|
29
|
+
)
|
|
30
|
+
from letta.llm_api.llm_api_tools import LLM_API_PROVIDER_OPTIONS
|
|
31
|
+
from letta.llm_api.openai import openai_get_model_list
|
|
32
|
+
from letta.local_llm.constants import (
|
|
33
|
+
DEFAULT_ENDPOINTS,
|
|
34
|
+
DEFAULT_OLLAMA_MODEL,
|
|
35
|
+
DEFAULT_WRAPPER_NAME,
|
|
36
|
+
)
|
|
37
|
+
from letta.local_llm.utils import get_available_wrappers
|
|
38
|
+
from letta.schemas.embedding_config import EmbeddingConfig
|
|
39
|
+
from letta.schemas.llm_config import LLMConfig
|
|
40
|
+
from letta.server.utils import shorten_key_middle
|
|
41
|
+
|
|
42
|
+
app = typer.Typer()
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
def get_azure_credentials():
|
|
46
|
+
creds = dict(
|
|
47
|
+
azure_key=os.getenv("AZURE_OPENAI_KEY"),
|
|
48
|
+
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
|
49
|
+
azure_version=os.getenv("AZURE_OPENAI_VERSION"),
|
|
50
|
+
azure_deployment=os.getenv("AZURE_OPENAI_DEPLOYMENT"),
|
|
51
|
+
azure_embedding_deployment=os.getenv("AZURE_OPENAI_EMBEDDING_DEPLOYMENT"),
|
|
52
|
+
)
|
|
53
|
+
# embedding endpoint and version default to non-embedding
|
|
54
|
+
creds["azure_embedding_endpoint"] = os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT", creds["azure_endpoint"])
|
|
55
|
+
creds["azure_embedding_version"] = os.getenv("AZURE_OPENAI_EMBEDDING_VERSION", creds["azure_version"])
|
|
56
|
+
return creds
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
def get_openai_credentials() -> Optional[str]:
|
|
60
|
+
openai_key = os.getenv("OPENAI_API_KEY", None)
|
|
61
|
+
return openai_key
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
def get_google_ai_credentials() -> Optional[str]:
|
|
65
|
+
google_ai_key = os.getenv("GOOGLE_AI_API_KEY", None)
|
|
66
|
+
return google_ai_key
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
def configure_llm_endpoint(config: LettaConfig, credentials: LettaCredentials):
|
|
70
|
+
# configure model endpoint
|
|
71
|
+
model_endpoint_type, model_endpoint = None, None
|
|
72
|
+
|
|
73
|
+
# get default
|
|
74
|
+
default_model_endpoint_type = config.default_llm_config.model_endpoint_type if config.default_embedding_config else None
|
|
75
|
+
if (
|
|
76
|
+
config.default_llm_config
|
|
77
|
+
and config.default_llm_config.model_endpoint_type is not None
|
|
78
|
+
and config.default_llm_config.model_endpoint_type not in [provider for provider in LLM_API_PROVIDER_OPTIONS if provider != "local"]
|
|
79
|
+
): # local model
|
|
80
|
+
default_model_endpoint_type = "local"
|
|
81
|
+
|
|
82
|
+
provider = questionary.select(
|
|
83
|
+
"Select LLM inference provider:",
|
|
84
|
+
choices=LLM_API_PROVIDER_OPTIONS,
|
|
85
|
+
default=default_model_endpoint_type,
|
|
86
|
+
).ask()
|
|
87
|
+
if provider is None:
|
|
88
|
+
raise KeyboardInterrupt
|
|
89
|
+
|
|
90
|
+
# set: model_endpoint_type, model_endpoint
|
|
91
|
+
if provider == "openai":
|
|
92
|
+
# check for key
|
|
93
|
+
if credentials.openai_key is None:
|
|
94
|
+
# allow key to get pulled from env vars
|
|
95
|
+
openai_api_key = os.getenv("OPENAI_API_KEY", None)
|
|
96
|
+
# if we still can't find it, ask for it as input
|
|
97
|
+
if openai_api_key is None:
|
|
98
|
+
while openai_api_key is None or len(openai_api_key) == 0:
|
|
99
|
+
# Ask for API key as input
|
|
100
|
+
openai_api_key = questionary.password(
|
|
101
|
+
"Enter your OpenAI API key (starts with 'sk-', see https://platform.openai.com/api-keys):"
|
|
102
|
+
).ask()
|
|
103
|
+
if openai_api_key is None:
|
|
104
|
+
raise KeyboardInterrupt
|
|
105
|
+
credentials.openai_key = openai_api_key
|
|
106
|
+
credentials.save()
|
|
107
|
+
else:
|
|
108
|
+
# Give the user an opportunity to overwrite the key
|
|
109
|
+
openai_api_key = None
|
|
110
|
+
default_input = (
|
|
111
|
+
shorten_key_middle(credentials.openai_key) if credentials.openai_key.startswith("sk-") else credentials.openai_key
|
|
112
|
+
)
|
|
113
|
+
openai_api_key = questionary.password(
|
|
114
|
+
"Enter your OpenAI API key (starts with 'sk-', see https://platform.openai.com/api-keys):",
|
|
115
|
+
default=default_input,
|
|
116
|
+
).ask()
|
|
117
|
+
if openai_api_key is None:
|
|
118
|
+
raise KeyboardInterrupt
|
|
119
|
+
# If the user modified it, use the new one
|
|
120
|
+
if openai_api_key != default_input:
|
|
121
|
+
credentials.openai_key = openai_api_key
|
|
122
|
+
credentials.save()
|
|
123
|
+
|
|
124
|
+
model_endpoint_type = "openai"
|
|
125
|
+
model_endpoint = "https://api.openai.com/v1"
|
|
126
|
+
model_endpoint = questionary.text("Override default endpoint:", default=model_endpoint).ask()
|
|
127
|
+
if model_endpoint is None:
|
|
128
|
+
raise KeyboardInterrupt
|
|
129
|
+
provider = "openai"
|
|
130
|
+
|
|
131
|
+
elif provider == "azure":
|
|
132
|
+
# check for necessary vars
|
|
133
|
+
azure_creds = get_azure_credentials()
|
|
134
|
+
if not all([azure_creds["azure_key"], azure_creds["azure_endpoint"], azure_creds["azure_version"]]):
|
|
135
|
+
raise ValueError(
|
|
136
|
+
"Missing environment variables for Azure (see https://letta.readme.io/docs/endpoints#azure-openai). Please set then run `letta configure` again."
|
|
137
|
+
)
|
|
138
|
+
else:
|
|
139
|
+
credentials.azure_key = azure_creds["azure_key"]
|
|
140
|
+
credentials.azure_version = azure_creds["azure_version"]
|
|
141
|
+
credentials.azure_endpoint = azure_creds["azure_endpoint"]
|
|
142
|
+
if "azure_deployment" in azure_creds:
|
|
143
|
+
credentials.azure_deployment = azure_creds["azure_deployment"]
|
|
144
|
+
credentials.azure_embedding_version = azure_creds["azure_embedding_version"]
|
|
145
|
+
credentials.azure_embedding_endpoint = azure_creds["azure_embedding_endpoint"]
|
|
146
|
+
if "azure_embedding_deployment" in azure_creds:
|
|
147
|
+
credentials.azure_embedding_deployment = azure_creds["azure_embedding_deployment"]
|
|
148
|
+
credentials.save()
|
|
149
|
+
|
|
150
|
+
model_endpoint_type = "azure"
|
|
151
|
+
model_endpoint = azure_creds["azure_endpoint"]
|
|
152
|
+
|
|
153
|
+
elif provider == "google_ai":
|
|
154
|
+
|
|
155
|
+
# check for key
|
|
156
|
+
if credentials.google_ai_key is None:
|
|
157
|
+
# allow key to get pulled from env vars
|
|
158
|
+
google_ai_key = get_google_ai_credentials()
|
|
159
|
+
# if we still can't find it, ask for it as input
|
|
160
|
+
if google_ai_key is None:
|
|
161
|
+
while google_ai_key is None or len(google_ai_key) == 0:
|
|
162
|
+
# Ask for API key as input
|
|
163
|
+
google_ai_key = questionary.password(
|
|
164
|
+
"Enter your Google AI (Gemini) API key (see https://aistudio.google.com/app/apikey):"
|
|
165
|
+
).ask()
|
|
166
|
+
if google_ai_key is None:
|
|
167
|
+
raise KeyboardInterrupt
|
|
168
|
+
credentials.google_ai_key = google_ai_key
|
|
169
|
+
else:
|
|
170
|
+
# Give the user an opportunity to overwrite the key
|
|
171
|
+
google_ai_key = None
|
|
172
|
+
default_input = shorten_key_middle(credentials.google_ai_key)
|
|
173
|
+
|
|
174
|
+
google_ai_key = questionary.password(
|
|
175
|
+
"Enter your Google AI (Gemini) API key (see https://aistudio.google.com/app/apikey):",
|
|
176
|
+
default=default_input,
|
|
177
|
+
).ask()
|
|
178
|
+
if google_ai_key is None:
|
|
179
|
+
raise KeyboardInterrupt
|
|
180
|
+
# If the user modified it, use the new one
|
|
181
|
+
if google_ai_key != default_input:
|
|
182
|
+
credentials.google_ai_key = google_ai_key
|
|
183
|
+
|
|
184
|
+
default_input = os.getenv("GOOGLE_AI_SERVICE_ENDPOINT", None)
|
|
185
|
+
if default_input is None:
|
|
186
|
+
default_input = "generativelanguage"
|
|
187
|
+
google_ai_service_endpoint = questionary.text(
|
|
188
|
+
"Enter your Google AI (Gemini) service endpoint (see https://ai.google.dev/api/rest):",
|
|
189
|
+
default=default_input,
|
|
190
|
+
).ask()
|
|
191
|
+
credentials.google_ai_service_endpoint = google_ai_service_endpoint
|
|
192
|
+
|
|
193
|
+
# write out the credentials
|
|
194
|
+
credentials.save()
|
|
195
|
+
|
|
196
|
+
model_endpoint_type = "google_ai"
|
|
197
|
+
|
|
198
|
+
elif provider == "anthropic":
|
|
199
|
+
# check for key
|
|
200
|
+
if credentials.anthropic_key is None:
|
|
201
|
+
# allow key to get pulled from env vars
|
|
202
|
+
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY", None)
|
|
203
|
+
# if we still can't find it, ask for it as input
|
|
204
|
+
if anthropic_api_key is None:
|
|
205
|
+
while anthropic_api_key is None or len(anthropic_api_key) == 0:
|
|
206
|
+
# Ask for API key as input
|
|
207
|
+
anthropic_api_key = questionary.password(
|
|
208
|
+
"Enter your Anthropic API key (starts with 'sk-', see https://console.anthropic.com/settings/keys):"
|
|
209
|
+
).ask()
|
|
210
|
+
if anthropic_api_key is None:
|
|
211
|
+
raise KeyboardInterrupt
|
|
212
|
+
credentials.anthropic_key = anthropic_api_key
|
|
213
|
+
credentials.save()
|
|
214
|
+
else:
|
|
215
|
+
# Give the user an opportunity to overwrite the key
|
|
216
|
+
anthropic_api_key = None
|
|
217
|
+
default_input = (
|
|
218
|
+
shorten_key_middle(credentials.anthropic_key) if credentials.anthropic_key.startswith("sk-") else credentials.anthropic_key
|
|
219
|
+
)
|
|
220
|
+
anthropic_api_key = questionary.password(
|
|
221
|
+
"Enter your Anthropic API key (starts with 'sk-', see https://console.anthropic.com/settings/keys):",
|
|
222
|
+
default=default_input,
|
|
223
|
+
).ask()
|
|
224
|
+
if anthropic_api_key is None:
|
|
225
|
+
raise KeyboardInterrupt
|
|
226
|
+
# If the user modified it, use the new one
|
|
227
|
+
if anthropic_api_key != default_input:
|
|
228
|
+
credentials.anthropic_key = anthropic_api_key
|
|
229
|
+
credentials.save()
|
|
230
|
+
|
|
231
|
+
model_endpoint_type = "anthropic"
|
|
232
|
+
model_endpoint = "https://api.anthropic.com/v1"
|
|
233
|
+
model_endpoint = questionary.text("Override default endpoint:", default=model_endpoint).ask()
|
|
234
|
+
if model_endpoint is None:
|
|
235
|
+
raise KeyboardInterrupt
|
|
236
|
+
provider = "anthropic"
|
|
237
|
+
|
|
238
|
+
elif provider == "cohere":
|
|
239
|
+
# check for key
|
|
240
|
+
if credentials.cohere_key is None:
|
|
241
|
+
# allow key to get pulled from env vars
|
|
242
|
+
cohere_api_key = os.getenv("COHERE_API_KEY", None)
|
|
243
|
+
# if we still can't find it, ask for it as input
|
|
244
|
+
if cohere_api_key is None:
|
|
245
|
+
while cohere_api_key is None or len(cohere_api_key) == 0:
|
|
246
|
+
# Ask for API key as input
|
|
247
|
+
cohere_api_key = questionary.password("Enter your Cohere API key (see https://dashboard.cohere.com/api-keys):").ask()
|
|
248
|
+
if cohere_api_key is None:
|
|
249
|
+
raise KeyboardInterrupt
|
|
250
|
+
credentials.cohere_key = cohere_api_key
|
|
251
|
+
credentials.save()
|
|
252
|
+
else:
|
|
253
|
+
# Give the user an opportunity to overwrite the key
|
|
254
|
+
cohere_api_key = None
|
|
255
|
+
default_input = (
|
|
256
|
+
shorten_key_middle(credentials.cohere_key) if credentials.cohere_key.startswith("sk-") else credentials.cohere_key
|
|
257
|
+
)
|
|
258
|
+
cohere_api_key = questionary.password(
|
|
259
|
+
"Enter your Cohere API key (see https://dashboard.cohere.com/api-keys):",
|
|
260
|
+
default=default_input,
|
|
261
|
+
).ask()
|
|
262
|
+
if cohere_api_key is None:
|
|
263
|
+
raise KeyboardInterrupt
|
|
264
|
+
# If the user modified it, use the new one
|
|
265
|
+
if cohere_api_key != default_input:
|
|
266
|
+
credentials.cohere_key = cohere_api_key
|
|
267
|
+
credentials.save()
|
|
268
|
+
|
|
269
|
+
model_endpoint_type = "cohere"
|
|
270
|
+
model_endpoint = "https://api.cohere.ai/v1"
|
|
271
|
+
model_endpoint = questionary.text("Override default endpoint:", default=model_endpoint).ask()
|
|
272
|
+
if model_endpoint is None:
|
|
273
|
+
raise KeyboardInterrupt
|
|
274
|
+
provider = "cohere"
|
|
275
|
+
|
|
276
|
+
else: # local models
|
|
277
|
+
# backend_options_old = ["webui", "webui-legacy", "llamacpp", "koboldcpp", "ollama", "lmstudio", "lmstudio-legacy", "vllm", "openai"]
|
|
278
|
+
backend_options = builtins.list(DEFAULT_ENDPOINTS.keys())
|
|
279
|
+
# assert backend_options_old == backend_options, (backend_options_old, backend_options)
|
|
280
|
+
default_model_endpoint_type = None
|
|
281
|
+
if config.default_llm_config and config.default_llm_config.model_endpoint_type in backend_options:
|
|
282
|
+
# set from previous config
|
|
283
|
+
default_model_endpoint_type = config.default_llm_config.model_endpoint_type
|
|
284
|
+
model_endpoint_type = questionary.select(
|
|
285
|
+
"Select LLM backend (select 'openai' if you have an OpenAI compatible proxy):",
|
|
286
|
+
backend_options,
|
|
287
|
+
default=default_model_endpoint_type,
|
|
288
|
+
).ask()
|
|
289
|
+
if model_endpoint_type is None:
|
|
290
|
+
raise KeyboardInterrupt
|
|
291
|
+
|
|
292
|
+
# set default endpoint
|
|
293
|
+
# if OPENAI_API_BASE is set, assume that this is the IP+port the user wanted to use
|
|
294
|
+
default_model_endpoint = os.getenv("OPENAI_API_BASE")
|
|
295
|
+
# if OPENAI_API_BASE is not set, try to pull a default IP+port format from a hardcoded set
|
|
296
|
+
if default_model_endpoint is None:
|
|
297
|
+
if model_endpoint_type in DEFAULT_ENDPOINTS:
|
|
298
|
+
default_model_endpoint = DEFAULT_ENDPOINTS[model_endpoint_type]
|
|
299
|
+
model_endpoint = questionary.text("Enter default endpoint:", default=default_model_endpoint).ask()
|
|
300
|
+
if model_endpoint is None:
|
|
301
|
+
raise KeyboardInterrupt
|
|
302
|
+
while not utils.is_valid_url(model_endpoint):
|
|
303
|
+
typer.secho(f"Endpoint must be a valid address", fg=typer.colors.YELLOW)
|
|
304
|
+
model_endpoint = questionary.text("Enter default endpoint:", default=default_model_endpoint).ask()
|
|
305
|
+
if model_endpoint is None:
|
|
306
|
+
raise KeyboardInterrupt
|
|
307
|
+
elif config.default_llm_config and config.default_llm_config.model_endpoint:
|
|
308
|
+
model_endpoint = questionary.text("Enter default endpoint:", default=config.default_llm_config.model_endpoint).ask()
|
|
309
|
+
if model_endpoint is None:
|
|
310
|
+
raise KeyboardInterrupt
|
|
311
|
+
while not utils.is_valid_url(model_endpoint):
|
|
312
|
+
typer.secho(f"Endpoint must be a valid address", fg=typer.colors.YELLOW)
|
|
313
|
+
model_endpoint = questionary.text("Enter default endpoint:", default=config.default_llm_config.model_endpoint).ask()
|
|
314
|
+
if model_endpoint is None:
|
|
315
|
+
raise KeyboardInterrupt
|
|
316
|
+
else:
|
|
317
|
+
# default_model_endpoint = None
|
|
318
|
+
model_endpoint = None
|
|
319
|
+
model_endpoint = questionary.text("Enter default endpoint:").ask()
|
|
320
|
+
if model_endpoint is None:
|
|
321
|
+
raise KeyboardInterrupt
|
|
322
|
+
while not utils.is_valid_url(model_endpoint):
|
|
323
|
+
typer.secho(f"Endpoint must be a valid address", fg=typer.colors.YELLOW)
|
|
324
|
+
model_endpoint = questionary.text("Enter default endpoint:").ask()
|
|
325
|
+
if model_endpoint is None:
|
|
326
|
+
raise KeyboardInterrupt
|
|
327
|
+
else:
|
|
328
|
+
model_endpoint = default_model_endpoint
|
|
329
|
+
assert model_endpoint, f"Environment variable OPENAI_API_BASE must be set."
|
|
330
|
+
|
|
331
|
+
return model_endpoint_type, model_endpoint
|
|
332
|
+
|
|
333
|
+
|
|
334
|
+
def get_model_options(
|
|
335
|
+
credentials: LettaCredentials,
|
|
336
|
+
model_endpoint_type: str,
|
|
337
|
+
model_endpoint: str,
|
|
338
|
+
filter_list: bool = True,
|
|
339
|
+
filter_prefix: str = "gpt-",
|
|
340
|
+
) -> list:
|
|
341
|
+
try:
|
|
342
|
+
if model_endpoint_type == "openai":
|
|
343
|
+
if credentials.openai_key is None:
|
|
344
|
+
raise ValueError("Missing OpenAI API key")
|
|
345
|
+
fetched_model_options_response = openai_get_model_list(url=model_endpoint, api_key=credentials.openai_key)
|
|
346
|
+
|
|
347
|
+
# Filter the list for "gpt" models only
|
|
348
|
+
if filter_list:
|
|
349
|
+
model_options = [obj["id"] for obj in fetched_model_options_response["data"] if obj["id"].startswith(filter_prefix)]
|
|
350
|
+
else:
|
|
351
|
+
model_options = [obj["id"] for obj in fetched_model_options_response["data"]]
|
|
352
|
+
|
|
353
|
+
elif model_endpoint_type == "azure":
|
|
354
|
+
if credentials.azure_key is None:
|
|
355
|
+
raise ValueError("Missing Azure key")
|
|
356
|
+
if credentials.azure_version is None:
|
|
357
|
+
raise ValueError("Missing Azure version")
|
|
358
|
+
fetched_model_options_response = azure_openai_get_model_list(
|
|
359
|
+
url=model_endpoint, api_key=credentials.azure_key, api_version=credentials.azure_version
|
|
360
|
+
)
|
|
361
|
+
|
|
362
|
+
# Filter the list for "gpt" models only
|
|
363
|
+
if filter_list:
|
|
364
|
+
model_options = [obj["id"] for obj in fetched_model_options_response["data"] if obj["id"].startswith(filter_prefix)]
|
|
365
|
+
else:
|
|
366
|
+
model_options = [obj["id"] for obj in fetched_model_options_response["data"]]
|
|
367
|
+
|
|
368
|
+
elif model_endpoint_type == "google_ai":
|
|
369
|
+
if credentials.google_ai_key is None:
|
|
370
|
+
raise ValueError("Missing Google AI API key")
|
|
371
|
+
if credentials.google_ai_service_endpoint is None:
|
|
372
|
+
raise ValueError("Missing Google AI service endpoint")
|
|
373
|
+
model_options = google_ai_get_model_list(
|
|
374
|
+
service_endpoint=credentials.google_ai_service_endpoint, api_key=credentials.google_ai_key
|
|
375
|
+
)
|
|
376
|
+
model_options = [str(m["name"]) for m in model_options]
|
|
377
|
+
model_options = [mo[len("models/") :] if mo.startswith("models/") else mo for mo in model_options]
|
|
378
|
+
|
|
379
|
+
# TODO remove manual filtering for gemini-pro
|
|
380
|
+
model_options = [mo for mo in model_options if str(mo).startswith("gemini") and "-pro" in str(mo)]
|
|
381
|
+
# model_options = ["gemini-pro"]
|
|
382
|
+
|
|
383
|
+
elif model_endpoint_type == "anthropic":
|
|
384
|
+
if credentials.anthropic_key is None:
|
|
385
|
+
raise ValueError("Missing Anthropic API key")
|
|
386
|
+
fetched_model_options = anthropic_get_model_list(url=model_endpoint, api_key=credentials.anthropic_key)
|
|
387
|
+
model_options = [obj["name"] for obj in fetched_model_options]
|
|
388
|
+
|
|
389
|
+
elif model_endpoint_type == "cohere":
|
|
390
|
+
if credentials.cohere_key is None:
|
|
391
|
+
raise ValueError("Missing Cohere API key")
|
|
392
|
+
fetched_model_options = cohere_get_model_list(url=model_endpoint, api_key=credentials.cohere_key)
|
|
393
|
+
model_options = [obj for obj in fetched_model_options]
|
|
394
|
+
|
|
395
|
+
else:
|
|
396
|
+
# Attempt to do OpenAI endpoint style model fetching
|
|
397
|
+
# TODO support local auth with api-key header
|
|
398
|
+
if credentials.openllm_auth_type == "bearer_token":
|
|
399
|
+
api_key = credentials.openllm_key
|
|
400
|
+
else:
|
|
401
|
+
api_key = None
|
|
402
|
+
fetched_model_options_response = openai_get_model_list(url=model_endpoint, api_key=api_key, fix_url=True)
|
|
403
|
+
model_options = [obj["id"] for obj in fetched_model_options_response["data"]]
|
|
404
|
+
# NOTE no filtering of local model options
|
|
405
|
+
|
|
406
|
+
# list
|
|
407
|
+
return model_options
|
|
408
|
+
|
|
409
|
+
except:
|
|
410
|
+
raise Exception(f"Failed to get model list from {model_endpoint}")
|
|
411
|
+
|
|
412
|
+
|
|
413
|
+
def configure_model(config: LettaConfig, credentials: LettaCredentials, model_endpoint_type: str, model_endpoint: str):
|
|
414
|
+
# set: model, model_wrapper
|
|
415
|
+
model, model_wrapper = None, None
|
|
416
|
+
if model_endpoint_type == "openai" or model_endpoint_type == "azure":
|
|
417
|
+
# Get the model list from the openai / azure endpoint
|
|
418
|
+
hardcoded_model_options = ["gpt-4", "gpt-4-32k", "gpt-4-1106-preview", "gpt-3.5-turbo", "gpt-3.5-turbo-16k"]
|
|
419
|
+
fetched_model_options = []
|
|
420
|
+
try:
|
|
421
|
+
fetched_model_options = get_model_options(
|
|
422
|
+
credentials=credentials, model_endpoint_type=model_endpoint_type, model_endpoint=model_endpoint
|
|
423
|
+
)
|
|
424
|
+
except Exception as e:
|
|
425
|
+
# NOTE: if this fails, it means the user's key is probably bad
|
|
426
|
+
typer.secho(
|
|
427
|
+
f"Failed to get model list from {model_endpoint} - make sure your API key and endpoints are correct!", fg=typer.colors.RED
|
|
428
|
+
)
|
|
429
|
+
raise e
|
|
430
|
+
|
|
431
|
+
# First ask if the user wants to see the full model list (some may be incompatible)
|
|
432
|
+
see_all_option_str = "[see all options]"
|
|
433
|
+
other_option_str = "[enter model name manually]"
|
|
434
|
+
|
|
435
|
+
# Check if the model we have set already is even in the list (informs our default)
|
|
436
|
+
valid_model = config.default_llm_config and config.default_llm_config.model in hardcoded_model_options
|
|
437
|
+
model = questionary.select(
|
|
438
|
+
"Select default model (recommended: gpt-4):",
|
|
439
|
+
choices=hardcoded_model_options + [see_all_option_str, other_option_str],
|
|
440
|
+
default=config.default_llm_config.model if valid_model else hardcoded_model_options[0],
|
|
441
|
+
).ask()
|
|
442
|
+
if model is None:
|
|
443
|
+
raise KeyboardInterrupt
|
|
444
|
+
|
|
445
|
+
# If the user asked for the full list, show it
|
|
446
|
+
if model == see_all_option_str:
|
|
447
|
+
typer.secho(f"Warning: not all models shown are guaranteed to work with Letta", fg=typer.colors.RED)
|
|
448
|
+
model = questionary.select(
|
|
449
|
+
"Select default model (recommended: gpt-4):",
|
|
450
|
+
choices=fetched_model_options + [other_option_str],
|
|
451
|
+
default=config.default_llm_config.model if (valid_model and config.default_llm_config) else fetched_model_options[0],
|
|
452
|
+
).ask()
|
|
453
|
+
if model is None:
|
|
454
|
+
raise KeyboardInterrupt
|
|
455
|
+
|
|
456
|
+
# Finally if the user asked to manually input, allow it
|
|
457
|
+
if model == other_option_str:
|
|
458
|
+
model = ""
|
|
459
|
+
while len(model) == 0:
|
|
460
|
+
model = questionary.text(
|
|
461
|
+
"Enter custom model name:",
|
|
462
|
+
).ask()
|
|
463
|
+
if model is None:
|
|
464
|
+
raise KeyboardInterrupt
|
|
465
|
+
|
|
466
|
+
elif model_endpoint_type == "google_ai":
|
|
467
|
+
try:
|
|
468
|
+
fetched_model_options = get_model_options(
|
|
469
|
+
credentials=credentials, model_endpoint_type=model_endpoint_type, model_endpoint=model_endpoint
|
|
470
|
+
)
|
|
471
|
+
except Exception as e:
|
|
472
|
+
# NOTE: if this fails, it means the user's key is probably bad
|
|
473
|
+
typer.secho(
|
|
474
|
+
f"Failed to get model list from {model_endpoint} - make sure your API key and endpoints are correct!", fg=typer.colors.RED
|
|
475
|
+
)
|
|
476
|
+
raise e
|
|
477
|
+
|
|
478
|
+
model = questionary.select(
|
|
479
|
+
"Select default model:",
|
|
480
|
+
choices=fetched_model_options,
|
|
481
|
+
default=fetched_model_options[0],
|
|
482
|
+
).ask()
|
|
483
|
+
if model is None:
|
|
484
|
+
raise KeyboardInterrupt
|
|
485
|
+
|
|
486
|
+
elif model_endpoint_type == "anthropic":
|
|
487
|
+
try:
|
|
488
|
+
fetched_model_options = get_model_options(
|
|
489
|
+
credentials=credentials, model_endpoint_type=model_endpoint_type, model_endpoint=model_endpoint
|
|
490
|
+
)
|
|
491
|
+
except Exception as e:
|
|
492
|
+
# NOTE: if this fails, it means the user's key is probably bad
|
|
493
|
+
typer.secho(
|
|
494
|
+
f"Failed to get model list from {model_endpoint} - make sure your API key and endpoints are correct!", fg=typer.colors.RED
|
|
495
|
+
)
|
|
496
|
+
raise e
|
|
497
|
+
|
|
498
|
+
model = questionary.select(
|
|
499
|
+
"Select default model:",
|
|
500
|
+
choices=fetched_model_options,
|
|
501
|
+
default=fetched_model_options[0],
|
|
502
|
+
).ask()
|
|
503
|
+
if model is None:
|
|
504
|
+
raise KeyboardInterrupt
|
|
505
|
+
|
|
506
|
+
elif model_endpoint_type == "cohere":
|
|
507
|
+
|
|
508
|
+
fetched_model_options = []
|
|
509
|
+
try:
|
|
510
|
+
fetched_model_options = get_model_options(
|
|
511
|
+
credentials=credentials, model_endpoint_type=model_endpoint_type, model_endpoint=model_endpoint
|
|
512
|
+
)
|
|
513
|
+
except Exception as e:
|
|
514
|
+
# NOTE: if this fails, it means the user's key is probably bad
|
|
515
|
+
typer.secho(
|
|
516
|
+
f"Failed to get model list from {model_endpoint} - make sure your API key and endpoints are correct!", fg=typer.colors.RED
|
|
517
|
+
)
|
|
518
|
+
raise e
|
|
519
|
+
|
|
520
|
+
fetched_model_options = [m["name"] for m in fetched_model_options]
|
|
521
|
+
hardcoded_model_options = [m for m in fetched_model_options if m in COHERE_VALID_MODEL_LIST]
|
|
522
|
+
|
|
523
|
+
# First ask if the user wants to see the full model list (some may be incompatible)
|
|
524
|
+
see_all_option_str = "[see all options]"
|
|
525
|
+
other_option_str = "[enter model name manually]"
|
|
526
|
+
|
|
527
|
+
# Check if the model we have set already is even in the list (informs our default)
|
|
528
|
+
valid_model = config.default_llm_config.model in hardcoded_model_options
|
|
529
|
+
model = questionary.select(
|
|
530
|
+
"Select default model (recommended: command-r-plus):",
|
|
531
|
+
choices=hardcoded_model_options + [see_all_option_str, other_option_str],
|
|
532
|
+
default=config.default_llm_config.model if valid_model else hardcoded_model_options[0],
|
|
533
|
+
).ask()
|
|
534
|
+
if model is None:
|
|
535
|
+
raise KeyboardInterrupt
|
|
536
|
+
|
|
537
|
+
# If the user asked for the full list, show it
|
|
538
|
+
if model == see_all_option_str:
|
|
539
|
+
typer.secho(f"Warning: not all models shown are guaranteed to work with Letta", fg=typer.colors.RED)
|
|
540
|
+
model = questionary.select(
|
|
541
|
+
"Select default model (recommended: command-r-plus):",
|
|
542
|
+
choices=fetched_model_options + [other_option_str],
|
|
543
|
+
default=config.default_llm_config.model if valid_model else fetched_model_options[0],
|
|
544
|
+
).ask()
|
|
545
|
+
if model is None:
|
|
546
|
+
raise KeyboardInterrupt
|
|
547
|
+
|
|
548
|
+
# Finally if the user asked to manually input, allow it
|
|
549
|
+
if model == other_option_str:
|
|
550
|
+
model = ""
|
|
551
|
+
while len(model) == 0:
|
|
552
|
+
model = questionary.text(
|
|
553
|
+
"Enter custom model name:",
|
|
554
|
+
).ask()
|
|
555
|
+
if model is None:
|
|
556
|
+
raise KeyboardInterrupt
|
|
557
|
+
|
|
558
|
+
else: # local models
|
|
559
|
+
|
|
560
|
+
# ask about local auth
|
|
561
|
+
if model_endpoint_type in ["groq"]: # TODO all llm engines under 'local' that will require api keys
|
|
562
|
+
use_local_auth = True
|
|
563
|
+
local_auth_type = "bearer_token"
|
|
564
|
+
local_auth_key = questionary.password(
|
|
565
|
+
"Enter your Groq API key:",
|
|
566
|
+
).ask()
|
|
567
|
+
if local_auth_key is None:
|
|
568
|
+
raise KeyboardInterrupt
|
|
569
|
+
credentials.openllm_auth_type = local_auth_type
|
|
570
|
+
credentials.openllm_key = local_auth_key
|
|
571
|
+
credentials.save()
|
|
572
|
+
else:
|
|
573
|
+
use_local_auth = questionary.confirm(
|
|
574
|
+
"Is your LLM endpoint authenticated? (default no)",
|
|
575
|
+
default=False,
|
|
576
|
+
).ask()
|
|
577
|
+
if use_local_auth is None:
|
|
578
|
+
raise KeyboardInterrupt
|
|
579
|
+
if use_local_auth:
|
|
580
|
+
local_auth_type = questionary.select(
|
|
581
|
+
"What HTTP authentication method does your endpoint require?",
|
|
582
|
+
choices=SUPPORTED_AUTH_TYPES,
|
|
583
|
+
default=SUPPORTED_AUTH_TYPES[0],
|
|
584
|
+
).ask()
|
|
585
|
+
if local_auth_type is None:
|
|
586
|
+
raise KeyboardInterrupt
|
|
587
|
+
local_auth_key = questionary.password(
|
|
588
|
+
"Enter your authentication key:",
|
|
589
|
+
).ask()
|
|
590
|
+
if local_auth_key is None:
|
|
591
|
+
raise KeyboardInterrupt
|
|
592
|
+
# credentials = LettaCredentials.load()
|
|
593
|
+
credentials.openllm_auth_type = local_auth_type
|
|
594
|
+
credentials.openllm_key = local_auth_key
|
|
595
|
+
credentials.save()
|
|
596
|
+
|
|
597
|
+
# ollama also needs model type
|
|
598
|
+
if model_endpoint_type == "ollama":
|
|
599
|
+
default_model = (
|
|
600
|
+
config.default_llm_config.model
|
|
601
|
+
if config.default_llm_config and config.default_llm_config.model_endpoint_type == "ollama"
|
|
602
|
+
else DEFAULT_OLLAMA_MODEL
|
|
603
|
+
)
|
|
604
|
+
model = questionary.text(
|
|
605
|
+
"Enter default model name (required for Ollama, see: https://letta.readme.io/docs/ollama):",
|
|
606
|
+
default=default_model,
|
|
607
|
+
).ask()
|
|
608
|
+
if model is None:
|
|
609
|
+
raise KeyboardInterrupt
|
|
610
|
+
model = None if len(model) == 0 else model
|
|
611
|
+
|
|
612
|
+
default_model = (
|
|
613
|
+
config.default_llm_config.model if config.default_llm_config and config.default_llm_config.model_endpoint_type == "vllm" else ""
|
|
614
|
+
)
|
|
615
|
+
|
|
616
|
+
# vllm needs huggingface model tag
|
|
617
|
+
if model_endpoint_type in ["vllm", "groq"]:
|
|
618
|
+
try:
|
|
619
|
+
# Don't filter model list for vLLM since model list is likely much smaller than OpenAI/Azure endpoint
|
|
620
|
+
# + probably has custom model names
|
|
621
|
+
# TODO support local auth
|
|
622
|
+
model_options = get_model_options(
|
|
623
|
+
credentials=credentials, model_endpoint_type=model_endpoint_type, model_endpoint=model_endpoint
|
|
624
|
+
)
|
|
625
|
+
except:
|
|
626
|
+
print(f"Failed to get model list from {model_endpoint}, using defaults")
|
|
627
|
+
model_options = None
|
|
628
|
+
|
|
629
|
+
# If we got model options from vLLM endpoint, allow selection + custom input
|
|
630
|
+
if model_options is not None:
|
|
631
|
+
other_option_str = "other (enter name)"
|
|
632
|
+
valid_model = config.default_llm_config.model in model_options
|
|
633
|
+
model_options.append(other_option_str)
|
|
634
|
+
model = questionary.select(
|
|
635
|
+
"Select default model:",
|
|
636
|
+
choices=model_options,
|
|
637
|
+
default=config.default_llm_config.model if valid_model else model_options[0],
|
|
638
|
+
).ask()
|
|
639
|
+
if model is None:
|
|
640
|
+
raise KeyboardInterrupt
|
|
641
|
+
|
|
642
|
+
# If we got custom input, ask for raw input
|
|
643
|
+
if model == other_option_str:
|
|
644
|
+
model = questionary.text(
|
|
645
|
+
"Enter HuggingFace model tag (e.g. ehartford/dolphin-2.2.1-mistral-7b):",
|
|
646
|
+
default=default_model,
|
|
647
|
+
).ask()
|
|
648
|
+
if model is None:
|
|
649
|
+
raise KeyboardInterrupt
|
|
650
|
+
# TODO allow empty string for input?
|
|
651
|
+
model = None if len(model) == 0 else model
|
|
652
|
+
|
|
653
|
+
else:
|
|
654
|
+
model = questionary.text(
|
|
655
|
+
"Enter HuggingFace model tag (e.g. ehartford/dolphin-2.2.1-mistral-7b):",
|
|
656
|
+
default=default_model,
|
|
657
|
+
).ask()
|
|
658
|
+
if model is None:
|
|
659
|
+
raise KeyboardInterrupt
|
|
660
|
+
model = None if len(model) == 0 else model
|
|
661
|
+
|
|
662
|
+
# model wrapper
|
|
663
|
+
available_model_wrappers = builtins.list(get_available_wrappers().keys())
|
|
664
|
+
model_wrapper = questionary.select(
|
|
665
|
+
f"Select default model wrapper (recommended: {DEFAULT_WRAPPER_NAME}):",
|
|
666
|
+
choices=available_model_wrappers,
|
|
667
|
+
default=DEFAULT_WRAPPER_NAME,
|
|
668
|
+
).ask()
|
|
669
|
+
if model_wrapper is None:
|
|
670
|
+
raise KeyboardInterrupt
|
|
671
|
+
|
|
672
|
+
# set: context_window
|
|
673
|
+
if str(model) not in LLM_MAX_TOKENS:
|
|
674
|
+
|
|
675
|
+
context_length_options = [
|
|
676
|
+
str(2**12), # 4096
|
|
677
|
+
str(2**13), # 8192
|
|
678
|
+
str(2**14), # 16384
|
|
679
|
+
str(2**15), # 32768
|
|
680
|
+
str(2**18), # 262144
|
|
681
|
+
"custom", # enter yourself
|
|
682
|
+
]
|
|
683
|
+
|
|
684
|
+
if model_endpoint_type == "google_ai":
|
|
685
|
+
try:
|
|
686
|
+
fetched_context_window = str(
|
|
687
|
+
google_ai_get_model_context_window(
|
|
688
|
+
service_endpoint=credentials.google_ai_service_endpoint, api_key=credentials.google_ai_key, model=model
|
|
689
|
+
)
|
|
690
|
+
)
|
|
691
|
+
print(f"Got context window {fetched_context_window} for model {model} (from Google API)")
|
|
692
|
+
context_length_options = [
|
|
693
|
+
fetched_context_window,
|
|
694
|
+
"custom",
|
|
695
|
+
]
|
|
696
|
+
except Exception as e:
|
|
697
|
+
print(f"Failed to get model details for model '{model}' on Google AI API ({str(e)})")
|
|
698
|
+
|
|
699
|
+
context_window_input = questionary.select(
|
|
700
|
+
"Select your model's context window (see https://cloud.google.com/vertex-ai/generative-ai/docs/learn/model-versioning#gemini-model-versions):",
|
|
701
|
+
choices=context_length_options,
|
|
702
|
+
default=context_length_options[0],
|
|
703
|
+
).ask()
|
|
704
|
+
if context_window_input is None:
|
|
705
|
+
raise KeyboardInterrupt
|
|
706
|
+
|
|
707
|
+
elif model_endpoint_type == "anthropic":
|
|
708
|
+
try:
|
|
709
|
+
fetched_context_window = str(
|
|
710
|
+
antropic_get_model_context_window(url=model_endpoint, api_key=credentials.anthropic_key, model=model)
|
|
711
|
+
)
|
|
712
|
+
print(f"Got context window {fetched_context_window} for model {model}")
|
|
713
|
+
context_length_options = [
|
|
714
|
+
fetched_context_window,
|
|
715
|
+
"custom",
|
|
716
|
+
]
|
|
717
|
+
except Exception as e:
|
|
718
|
+
print(f"Failed to get model details for model '{model}' ({str(e)})")
|
|
719
|
+
|
|
720
|
+
context_window_input = questionary.select(
|
|
721
|
+
"Select your model's context window (see https://docs.anthropic.com/claude/docs/models-overview):",
|
|
722
|
+
choices=context_length_options,
|
|
723
|
+
default=context_length_options[0],
|
|
724
|
+
).ask()
|
|
725
|
+
if context_window_input is None:
|
|
726
|
+
raise KeyboardInterrupt
|
|
727
|
+
|
|
728
|
+
elif model_endpoint_type == "cohere":
|
|
729
|
+
try:
|
|
730
|
+
fetched_context_window = str(
|
|
731
|
+
cohere_get_model_context_window(url=model_endpoint, api_key=credentials.cohere_key, model=model)
|
|
732
|
+
)
|
|
733
|
+
print(f"Got context window {fetched_context_window} for model {model}")
|
|
734
|
+
context_length_options = [
|
|
735
|
+
fetched_context_window,
|
|
736
|
+
"custom",
|
|
737
|
+
]
|
|
738
|
+
except Exception as e:
|
|
739
|
+
print(f"Failed to get model details for model '{model}' ({str(e)})")
|
|
740
|
+
|
|
741
|
+
context_window_input = questionary.select(
|
|
742
|
+
"Select your model's context window (see https://docs.cohere.com/docs/command-r):",
|
|
743
|
+
choices=context_length_options,
|
|
744
|
+
default=context_length_options[0],
|
|
745
|
+
).ask()
|
|
746
|
+
if context_window_input is None:
|
|
747
|
+
raise KeyboardInterrupt
|
|
748
|
+
|
|
749
|
+
else:
|
|
750
|
+
|
|
751
|
+
# Ask the user to specify the context length
|
|
752
|
+
context_window_input = questionary.select(
|
|
753
|
+
"Select your model's context window (for Mistral 7B models, this is probably 8k / 8192):",
|
|
754
|
+
choices=context_length_options,
|
|
755
|
+
default=str(LLM_MAX_TOKENS["DEFAULT"]),
|
|
756
|
+
).ask()
|
|
757
|
+
if context_window_input is None:
|
|
758
|
+
raise KeyboardInterrupt
|
|
759
|
+
|
|
760
|
+
# If custom, ask for input
|
|
761
|
+
if context_window_input == "custom":
|
|
762
|
+
while True:
|
|
763
|
+
context_window_input = questionary.text("Enter context window (e.g. 8192)").ask()
|
|
764
|
+
if context_window_input is None:
|
|
765
|
+
raise KeyboardInterrupt
|
|
766
|
+
try:
|
|
767
|
+
context_window = int(context_window_input)
|
|
768
|
+
break
|
|
769
|
+
except ValueError:
|
|
770
|
+
print(f"Context window must be a valid integer")
|
|
771
|
+
else:
|
|
772
|
+
context_window = int(context_window_input)
|
|
773
|
+
else:
|
|
774
|
+
# Pull the context length from the models
|
|
775
|
+
context_window = int(LLM_MAX_TOKENS[str(model)])
|
|
776
|
+
return model, model_wrapper, context_window
|
|
777
|
+
|
|
778
|
+
|
|
779
|
+
def configure_embedding_endpoint(config: LettaConfig, credentials: LettaCredentials):
|
|
780
|
+
# configure embedding endpoint
|
|
781
|
+
|
|
782
|
+
default_embedding_endpoint_type = config.default_embedding_config.embedding_endpoint_type if config.default_embedding_config else None
|
|
783
|
+
|
|
784
|
+
embedding_endpoint_type, embedding_endpoint, embedding_dim, embedding_model = None, None, None, None
|
|
785
|
+
embedding_provider = questionary.select(
|
|
786
|
+
"Select embedding provider:", choices=["openai", "azure", "hugging-face", "local"], default=default_embedding_endpoint_type
|
|
787
|
+
).ask()
|
|
788
|
+
if embedding_provider is None:
|
|
789
|
+
raise KeyboardInterrupt
|
|
790
|
+
|
|
791
|
+
if embedding_provider == "openai":
|
|
792
|
+
# check for key
|
|
793
|
+
if credentials.openai_key is None:
|
|
794
|
+
# allow key to get pulled from env vars
|
|
795
|
+
openai_api_key = os.getenv("OPENAI_API_KEY", None)
|
|
796
|
+
if openai_api_key is None:
|
|
797
|
+
# if we still can't find it, ask for it as input
|
|
798
|
+
while openai_api_key is None or len(openai_api_key) == 0:
|
|
799
|
+
# Ask for API key as input
|
|
800
|
+
openai_api_key = questionary.password(
|
|
801
|
+
"Enter your OpenAI API key (starts with 'sk-', see https://platform.openai.com/api-keys):"
|
|
802
|
+
).ask()
|
|
803
|
+
if openai_api_key is None:
|
|
804
|
+
raise KeyboardInterrupt
|
|
805
|
+
credentials.openai_key = openai_api_key
|
|
806
|
+
credentials.save()
|
|
807
|
+
|
|
808
|
+
embedding_endpoint_type = "openai"
|
|
809
|
+
embedding_endpoint = "https://api.openai.com/v1"
|
|
810
|
+
embedding_dim = 1536
|
|
811
|
+
embedding_model = "text-embedding-ada-002"
|
|
812
|
+
|
|
813
|
+
elif embedding_provider == "azure":
|
|
814
|
+
# check for necessary vars
|
|
815
|
+
azure_creds = get_azure_credentials()
|
|
816
|
+
if not all([azure_creds["azure_key"], azure_creds["azure_embedding_endpoint"], azure_creds["azure_embedding_version"]]):
|
|
817
|
+
raise ValueError(
|
|
818
|
+
"Missing environment variables for Azure (see https://letta.readme.io/docs/endpoints#azure-openai). Please set then run `letta configure` again."
|
|
819
|
+
)
|
|
820
|
+
credentials.azure_key = azure_creds["azure_key"]
|
|
821
|
+
credentials.azure_version = azure_creds["azure_version"]
|
|
822
|
+
credentials.azure_embedding_endpoint = azure_creds["azure_embedding_endpoint"]
|
|
823
|
+
credentials.save()
|
|
824
|
+
|
|
825
|
+
embedding_endpoint_type = "azure"
|
|
826
|
+
embedding_endpoint = azure_creds["azure_embedding_endpoint"]
|
|
827
|
+
embedding_dim = 1536
|
|
828
|
+
embedding_model = "text-embedding-ada-002"
|
|
829
|
+
|
|
830
|
+
elif embedding_provider == "hugging-face":
|
|
831
|
+
# configure hugging face embedding endpoint (https://github.com/huggingface/text-embeddings-inference)
|
|
832
|
+
# supports custom model/endpoints
|
|
833
|
+
embedding_endpoint_type = "hugging-face"
|
|
834
|
+
embedding_endpoint = None
|
|
835
|
+
|
|
836
|
+
# get endpoint
|
|
837
|
+
embedding_endpoint = questionary.text("Enter default endpoint:").ask()
|
|
838
|
+
if embedding_endpoint is None:
|
|
839
|
+
raise KeyboardInterrupt
|
|
840
|
+
while not utils.is_valid_url(embedding_endpoint):
|
|
841
|
+
typer.secho(f"Endpoint must be a valid address", fg=typer.colors.YELLOW)
|
|
842
|
+
embedding_endpoint = questionary.text("Enter default endpoint:").ask()
|
|
843
|
+
if embedding_endpoint is None:
|
|
844
|
+
raise KeyboardInterrupt
|
|
845
|
+
|
|
846
|
+
# get model type
|
|
847
|
+
default_embedding_model = (
|
|
848
|
+
config.default_embedding_config.embedding_model if config.default_embedding_config else "BAAI/bge-large-en-v1.5"
|
|
849
|
+
)
|
|
850
|
+
embedding_model = questionary.text(
|
|
851
|
+
"Enter HuggingFace model tag (e.g. BAAI/bge-large-en-v1.5):",
|
|
852
|
+
default=default_embedding_model,
|
|
853
|
+
).ask()
|
|
854
|
+
if embedding_model is None:
|
|
855
|
+
raise KeyboardInterrupt
|
|
856
|
+
|
|
857
|
+
# get model dimentions
|
|
858
|
+
default_embedding_dim = config.default_embedding_config.embedding_dim if config.default_embedding_config else "1024"
|
|
859
|
+
embedding_dim = questionary.text("Enter embedding model dimentions (e.g. 1024):", default=str(default_embedding_dim)).ask()
|
|
860
|
+
if embedding_dim is None:
|
|
861
|
+
raise KeyboardInterrupt
|
|
862
|
+
try:
|
|
863
|
+
embedding_dim = int(embedding_dim)
|
|
864
|
+
except Exception:
|
|
865
|
+
raise ValueError(f"Failed to cast {embedding_dim} to integer.")
|
|
866
|
+
elif embedding_provider == "ollama":
|
|
867
|
+
# configure ollama embedding endpoint
|
|
868
|
+
embedding_endpoint_type = "ollama"
|
|
869
|
+
embedding_endpoint = "http://localhost:11434/api/embeddings"
|
|
870
|
+
# Source: https://github.com/ollama/ollama/blob/main/docs/api.md#generate-embeddings:~:text=http%3A//localhost%3A11434/api/embeddings
|
|
871
|
+
|
|
872
|
+
# get endpoint (is this necessary?)
|
|
873
|
+
embedding_endpoint = questionary.text("Enter Ollama API endpoint:").ask()
|
|
874
|
+
if embedding_endpoint is None:
|
|
875
|
+
raise KeyboardInterrupt
|
|
876
|
+
while not utils.is_valid_url(embedding_endpoint):
|
|
877
|
+
typer.secho(f"Endpoint must be a valid address", fg=typer.colors.YELLOW)
|
|
878
|
+
embedding_endpoint = questionary.text("Enter Ollama API endpoint:").ask()
|
|
879
|
+
if embedding_endpoint is None:
|
|
880
|
+
raise KeyboardInterrupt
|
|
881
|
+
|
|
882
|
+
# get model type
|
|
883
|
+
default_embedding_model = (
|
|
884
|
+
config.default_embedding_config.embedding_model if config.default_embedding_config else "mxbai-embed-large"
|
|
885
|
+
)
|
|
886
|
+
embedding_model = questionary.text(
|
|
887
|
+
"Enter Ollama model tag (e.g. mxbai-embed-large):",
|
|
888
|
+
default=default_embedding_model,
|
|
889
|
+
).ask()
|
|
890
|
+
if embedding_model is None:
|
|
891
|
+
raise KeyboardInterrupt
|
|
892
|
+
|
|
893
|
+
# get model dimensions
|
|
894
|
+
default_embedding_dim = config.default_embedding_config.embedding_dim if config.default_embedding_config else "512"
|
|
895
|
+
embedding_dim = questionary.text("Enter embedding model dimensions (e.g. 512):", default=str(default_embedding_dim)).ask()
|
|
896
|
+
if embedding_dim is None:
|
|
897
|
+
raise KeyboardInterrupt
|
|
898
|
+
try:
|
|
899
|
+
embedding_dim = int(embedding_dim)
|
|
900
|
+
except Exception:
|
|
901
|
+
raise ValueError(f"Failed to cast {embedding_dim} to integer.")
|
|
902
|
+
else: # local models
|
|
903
|
+
embedding_endpoint_type = "local"
|
|
904
|
+
embedding_endpoint = None
|
|
905
|
+
embedding_model = "BAAI/bge-small-en-v1.5"
|
|
906
|
+
embedding_dim = 384
|
|
907
|
+
|
|
908
|
+
return embedding_endpoint_type, embedding_endpoint, embedding_dim, embedding_model
|
|
909
|
+
|
|
910
|
+
|
|
911
|
+
def configure_archival_storage(config: LettaConfig, credentials: LettaCredentials):
|
|
912
|
+
# Configure archival storage backend
|
|
913
|
+
archival_storage_options = ["postgres", "chroma", "milvus", "qdrant"]
|
|
914
|
+
archival_storage_type = questionary.select(
|
|
915
|
+
"Select storage backend for archival data:", archival_storage_options, default=config.archival_storage_type
|
|
916
|
+
).ask()
|
|
917
|
+
if archival_storage_type is None:
|
|
918
|
+
raise KeyboardInterrupt
|
|
919
|
+
archival_storage_uri, archival_storage_path = config.archival_storage_uri, config.archival_storage_path
|
|
920
|
+
|
|
921
|
+
# configure postgres
|
|
922
|
+
if archival_storage_type == "postgres":
|
|
923
|
+
archival_storage_uri = questionary.text(
|
|
924
|
+
"Enter postgres connection string (e.g. postgresql+pg8000://{user}:{password}@{ip}:5432/{database}):",
|
|
925
|
+
default=config.archival_storage_uri if config.archival_storage_uri else "",
|
|
926
|
+
).ask()
|
|
927
|
+
if archival_storage_uri is None:
|
|
928
|
+
raise KeyboardInterrupt
|
|
929
|
+
|
|
930
|
+
# TODO: add back
|
|
931
|
+
## configure lancedb
|
|
932
|
+
# if archival_storage_type == "lancedb":
|
|
933
|
+
# archival_storage_uri = questionary.text(
|
|
934
|
+
# "Enter lanncedb connection string (e.g. ./.lancedb",
|
|
935
|
+
# default=config.archival_storage_uri if config.archival_storage_uri else "./.lancedb",
|
|
936
|
+
# ).ask()
|
|
937
|
+
|
|
938
|
+
# configure chroma
|
|
939
|
+
if archival_storage_type == "chroma":
|
|
940
|
+
chroma_type = questionary.select("Select chroma backend:", ["http", "persistent"], default="persistent").ask()
|
|
941
|
+
if chroma_type is None:
|
|
942
|
+
raise KeyboardInterrupt
|
|
943
|
+
if chroma_type == "http":
|
|
944
|
+
archival_storage_uri = questionary.text("Enter chroma ip (e.g. localhost:8000):", default="localhost:8000").ask()
|
|
945
|
+
if archival_storage_uri is None:
|
|
946
|
+
raise KeyboardInterrupt
|
|
947
|
+
if chroma_type == "persistent":
|
|
948
|
+
archival_storage_path = os.path.join(LETTA_DIR, "chroma")
|
|
949
|
+
|
|
950
|
+
if archival_storage_type == "qdrant":
|
|
951
|
+
qdrant_type = questionary.select("Select Qdrant backend:", ["local", "server"], default="local").ask()
|
|
952
|
+
if qdrant_type is None:
|
|
953
|
+
raise KeyboardInterrupt
|
|
954
|
+
if qdrant_type == "server":
|
|
955
|
+
archival_storage_uri = questionary.text(
|
|
956
|
+
"Enter the Qdrant instance URI (Default: localhost:6333):", default="localhost:6333"
|
|
957
|
+
).ask()
|
|
958
|
+
if archival_storage_uri is None:
|
|
959
|
+
raise KeyboardInterrupt
|
|
960
|
+
if qdrant_type == "local":
|
|
961
|
+
archival_storage_path = os.path.join(LETTA_DIR, "qdrant")
|
|
962
|
+
|
|
963
|
+
if archival_storage_type == "milvus":
|
|
964
|
+
default_milvus_uri = archival_storage_path = os.path.join(LETTA_DIR, "milvus.db")
|
|
965
|
+
archival_storage_uri = questionary.text(
|
|
966
|
+
f"Enter the Milvus connection URI (Default: {default_milvus_uri}):", default=default_milvus_uri
|
|
967
|
+
).ask()
|
|
968
|
+
if archival_storage_uri is None:
|
|
969
|
+
raise KeyboardInterrupt
|
|
970
|
+
return archival_storage_type, archival_storage_uri, archival_storage_path
|
|
971
|
+
|
|
972
|
+
# TODO: allow configuring embedding model
|
|
973
|
+
|
|
974
|
+
|
|
975
|
+
def configure_recall_storage(config: LettaConfig, credentials: LettaCredentials):
|
|
976
|
+
# Configure recall storage backend
|
|
977
|
+
recall_storage_options = ["sqlite", "postgres"]
|
|
978
|
+
recall_storage_type = questionary.select(
|
|
979
|
+
"Select storage backend for recall data:", recall_storage_options, default=config.recall_storage_type
|
|
980
|
+
).ask()
|
|
981
|
+
if recall_storage_type is None:
|
|
982
|
+
raise KeyboardInterrupt
|
|
983
|
+
recall_storage_uri, recall_storage_path = config.recall_storage_uri, config.recall_storage_path
|
|
984
|
+
# configure postgres
|
|
985
|
+
if recall_storage_type == "postgres":
|
|
986
|
+
recall_storage_uri = questionary.text(
|
|
987
|
+
"Enter postgres connection string (e.g. postgresql+pg8000://{user}:{password}@{ip}:5432/{database}):",
|
|
988
|
+
default=config.recall_storage_uri if config.recall_storage_uri else "",
|
|
989
|
+
).ask()
|
|
990
|
+
if recall_storage_uri is None:
|
|
991
|
+
raise KeyboardInterrupt
|
|
992
|
+
|
|
993
|
+
return recall_storage_type, recall_storage_uri, recall_storage_path
|
|
994
|
+
|
|
995
|
+
|
|
996
|
+
@app.command()
|
|
997
|
+
def configure():
|
|
998
|
+
"""Updates default Letta configurations
|
|
999
|
+
|
|
1000
|
+
This function and quickstart should be the ONLY place where LettaConfig.save() is called
|
|
1001
|
+
"""
|
|
1002
|
+
|
|
1003
|
+
# check credentials
|
|
1004
|
+
credentials = LettaCredentials.load()
|
|
1005
|
+
openai_key = get_openai_credentials()
|
|
1006
|
+
|
|
1007
|
+
LettaConfig.create_config_dir()
|
|
1008
|
+
|
|
1009
|
+
# Will pre-populate with defaults, or what the user previously set
|
|
1010
|
+
config = LettaConfig.load()
|
|
1011
|
+
try:
|
|
1012
|
+
model_endpoint_type, model_endpoint = configure_llm_endpoint(
|
|
1013
|
+
config=config,
|
|
1014
|
+
credentials=credentials,
|
|
1015
|
+
)
|
|
1016
|
+
model, model_wrapper, context_window = configure_model(
|
|
1017
|
+
config=config,
|
|
1018
|
+
credentials=credentials,
|
|
1019
|
+
model_endpoint_type=str(model_endpoint_type),
|
|
1020
|
+
model_endpoint=str(model_endpoint),
|
|
1021
|
+
)
|
|
1022
|
+
embedding_endpoint_type, embedding_endpoint, embedding_dim, embedding_model = configure_embedding_endpoint(
|
|
1023
|
+
config=config,
|
|
1024
|
+
credentials=credentials,
|
|
1025
|
+
)
|
|
1026
|
+
archival_storage_type, archival_storage_uri, archival_storage_path = configure_archival_storage(
|
|
1027
|
+
config=config,
|
|
1028
|
+
credentials=credentials,
|
|
1029
|
+
)
|
|
1030
|
+
recall_storage_type, recall_storage_uri, recall_storage_path = configure_recall_storage(
|
|
1031
|
+
config=config,
|
|
1032
|
+
credentials=credentials,
|
|
1033
|
+
)
|
|
1034
|
+
except ValueError as e:
|
|
1035
|
+
typer.secho(str(e), fg=typer.colors.RED)
|
|
1036
|
+
return
|
|
1037
|
+
|
|
1038
|
+
# openai key might have gotten added along the way
|
|
1039
|
+
openai_key = credentials.openai_key if credentials.openai_key is not None else openai_key
|
|
1040
|
+
|
|
1041
|
+
# TODO: remove most of this (deplicated with User table)
|
|
1042
|
+
config = LettaConfig(
|
|
1043
|
+
default_llm_config=LLMConfig(
|
|
1044
|
+
model=model,
|
|
1045
|
+
model_endpoint=model_endpoint,
|
|
1046
|
+
model_endpoint_type=model_endpoint_type,
|
|
1047
|
+
model_wrapper=model_wrapper,
|
|
1048
|
+
context_window=context_window,
|
|
1049
|
+
),
|
|
1050
|
+
default_embedding_config=EmbeddingConfig(
|
|
1051
|
+
embedding_endpoint_type=embedding_endpoint_type,
|
|
1052
|
+
embedding_endpoint=embedding_endpoint,
|
|
1053
|
+
embedding_dim=embedding_dim,
|
|
1054
|
+
embedding_model=embedding_model,
|
|
1055
|
+
),
|
|
1056
|
+
# storage
|
|
1057
|
+
archival_storage_type=archival_storage_type,
|
|
1058
|
+
archival_storage_uri=archival_storage_uri,
|
|
1059
|
+
archival_storage_path=archival_storage_path,
|
|
1060
|
+
# recall storage
|
|
1061
|
+
recall_storage_type=recall_storage_type,
|
|
1062
|
+
recall_storage_uri=recall_storage_uri,
|
|
1063
|
+
recall_storage_path=recall_storage_path,
|
|
1064
|
+
# metadata storage (currently forced to match recall storage)
|
|
1065
|
+
metadata_storage_type=recall_storage_type,
|
|
1066
|
+
metadata_storage_uri=recall_storage_uri,
|
|
1067
|
+
metadata_storage_path=recall_storage_path,
|
|
1068
|
+
)
|
|
1069
|
+
|
|
1070
|
+
typer.secho(f"📖 Saving config to {config.config_path}", fg=typer.colors.GREEN)
|
|
1071
|
+
config.save()
|
|
1072
|
+
|
|
1073
|
+
from letta import create_client
|
|
1074
|
+
|
|
1075
|
+
client = create_client()
|
|
1076
|
+
print("User ID:", client.user_id)
|
|
1077
|
+
|
|
1078
|
+
|
|
1079
|
+
class ListChoice(str, Enum):
|
|
1080
|
+
agents = "agents"
|
|
1081
|
+
humans = "humans"
|
|
1082
|
+
personas = "personas"
|
|
1083
|
+
sources = "sources"
|
|
1084
|
+
|
|
1085
|
+
|
|
1086
|
+
@app.command()
|
|
1087
|
+
def list(arg: Annotated[ListChoice, typer.Argument]):
|
|
1088
|
+
from letta.client.client import create_client
|
|
1089
|
+
|
|
1090
|
+
client = create_client()
|
|
1091
|
+
table = ColorTable(theme=Themes.OCEAN)
|
|
1092
|
+
if arg == ListChoice.agents:
|
|
1093
|
+
"""List all agents"""
|
|
1094
|
+
table.field_names = ["Name", "LLM Model", "Embedding Model", "Embedding Dim", "Persona", "Human", "Data Source", "Create Time"]
|
|
1095
|
+
for agent in tqdm(client.list_agents()):
|
|
1096
|
+
# TODO: add this function
|
|
1097
|
+
sources = client.list_attached_sources(agent_id=agent.id)
|
|
1098
|
+
source_names = [source.name for source in sources if source is not None]
|
|
1099
|
+
table.add_row(
|
|
1100
|
+
[
|
|
1101
|
+
agent.name,
|
|
1102
|
+
agent.llm_config.model,
|
|
1103
|
+
agent.embedding_config.embedding_model,
|
|
1104
|
+
agent.embedding_config.embedding_dim,
|
|
1105
|
+
agent.memory.get_block("persona").value[:100] + "...",
|
|
1106
|
+
agent.memory.get_block("human").value[:100] + "...",
|
|
1107
|
+
",".join(source_names),
|
|
1108
|
+
utils.format_datetime(agent.created_at),
|
|
1109
|
+
]
|
|
1110
|
+
)
|
|
1111
|
+
print(table)
|
|
1112
|
+
elif arg == ListChoice.humans:
|
|
1113
|
+
"""List all humans"""
|
|
1114
|
+
table.field_names = ["Name", "Text"]
|
|
1115
|
+
for human in client.list_humans():
|
|
1116
|
+
table.add_row([human.name, human.value.replace("\n", "")[:100]])
|
|
1117
|
+
print(table)
|
|
1118
|
+
elif arg == ListChoice.personas:
|
|
1119
|
+
"""List all personas"""
|
|
1120
|
+
table.field_names = ["Name", "Text"]
|
|
1121
|
+
for persona in client.list_personas():
|
|
1122
|
+
table.add_row([persona.name, persona.value.replace("\n", "")[:100]])
|
|
1123
|
+
print(table)
|
|
1124
|
+
elif arg == ListChoice.sources:
|
|
1125
|
+
"""List all data sources"""
|
|
1126
|
+
|
|
1127
|
+
# create table
|
|
1128
|
+
table.field_names = ["Name", "Description", "Embedding Model", "Embedding Dim", "Created At"]
|
|
1129
|
+
# TODO: eventually look accross all storage connections
|
|
1130
|
+
# TODO: add data source stats
|
|
1131
|
+
# TODO: connect to agents
|
|
1132
|
+
|
|
1133
|
+
# get all sources
|
|
1134
|
+
for source in client.list_sources():
|
|
1135
|
+
# get attached agents
|
|
1136
|
+
table.add_row(
|
|
1137
|
+
[
|
|
1138
|
+
source.name,
|
|
1139
|
+
source.description,
|
|
1140
|
+
source.embedding_config.embedding_model,
|
|
1141
|
+
source.embedding_config.embedding_dim,
|
|
1142
|
+
utils.format_datetime(source.created_at),
|
|
1143
|
+
]
|
|
1144
|
+
)
|
|
1145
|
+
|
|
1146
|
+
print(table)
|
|
1147
|
+
else:
|
|
1148
|
+
raise ValueError(f"Unknown argument {arg}")
|
|
1149
|
+
return table
|
|
1150
|
+
|
|
1151
|
+
|
|
1152
|
+
@app.command()
|
|
1153
|
+
def add_tool(
|
|
1154
|
+
filename: str = typer.Option(..., help="Path to the Python file containing the function"),
|
|
1155
|
+
name: Optional[str] = typer.Option(None, help="Name of the tool"),
|
|
1156
|
+
update: bool = typer.Option(True, help="Update the tool if it already exists"),
|
|
1157
|
+
tags: Optional[List[str]] = typer.Option(None, help="Tags for the tool"),
|
|
1158
|
+
):
|
|
1159
|
+
"""Add or update a tool from a Python file."""
|
|
1160
|
+
from letta.client.client import create_client
|
|
1161
|
+
|
|
1162
|
+
client = create_client(base_url=os.getenv("MEMGPT_BASE_URL"), token=os.getenv("MEMGPT_SERVER_PASS"))
|
|
1163
|
+
|
|
1164
|
+
# 1. Parse the Python file
|
|
1165
|
+
with open(filename, "r", encoding="utf-8") as file:
|
|
1166
|
+
source_code = file.read()
|
|
1167
|
+
|
|
1168
|
+
# 2. Parse the source code to extract the function
|
|
1169
|
+
# Note: here we assume it is one function only in the file.
|
|
1170
|
+
module = ast.parse(source_code)
|
|
1171
|
+
func_def = None
|
|
1172
|
+
for node in module.body:
|
|
1173
|
+
if isinstance(node, ast.FunctionDef):
|
|
1174
|
+
func_def = node
|
|
1175
|
+
break
|
|
1176
|
+
|
|
1177
|
+
if not func_def:
|
|
1178
|
+
raise ValueError("No function found in the provided file")
|
|
1179
|
+
|
|
1180
|
+
# 3. Compile the function to make it callable
|
|
1181
|
+
# Explanation courtesy of GPT-4:
|
|
1182
|
+
# Compile the AST (Abstract Syntax Tree) node representing the function definition into a code object
|
|
1183
|
+
# ast.Module creates a module node containing the function definition (func_def)
|
|
1184
|
+
# compile converts the AST into a code object that can be executed by the Python interpreter
|
|
1185
|
+
# The exec function executes the compiled code object in the current context,
|
|
1186
|
+
# effectively defining the function within the current namespace
|
|
1187
|
+
exec(compile(ast.Module([func_def], []), filename, "exec"))
|
|
1188
|
+
# Retrieve the function object by evaluating its name in the current namespace
|
|
1189
|
+
# eval looks up the function name in the current scope and returns the function object
|
|
1190
|
+
func = eval(func_def.name)
|
|
1191
|
+
|
|
1192
|
+
# 4. Add or update the tool
|
|
1193
|
+
tool = client.create_tool(func=func, name=name, tags=tags, update=update)
|
|
1194
|
+
print(f"Tool {tool.name} added successfully")
|
|
1195
|
+
|
|
1196
|
+
|
|
1197
|
+
@app.command()
|
|
1198
|
+
def list_tools():
|
|
1199
|
+
"""List all available tools."""
|
|
1200
|
+
from letta.client.client import create_client
|
|
1201
|
+
|
|
1202
|
+
client = create_client(base_url=os.getenv("MEMGPT_BASE_URL"), token=os.getenv("MEMGPT_SERVER_PASS"))
|
|
1203
|
+
|
|
1204
|
+
tools = client.list_tools()
|
|
1205
|
+
for tool in tools:
|
|
1206
|
+
print(f"Tool: {tool.name}")
|
|
1207
|
+
|
|
1208
|
+
|
|
1209
|
+
@app.command()
|
|
1210
|
+
def add(
|
|
1211
|
+
option: str, # [human, persona]
|
|
1212
|
+
name: Annotated[str, typer.Option(help="Name of human/persona")],
|
|
1213
|
+
text: Annotated[Optional[str], typer.Option(help="Text of human/persona")] = None,
|
|
1214
|
+
filename: Annotated[Optional[str], typer.Option("-f", help="Specify filename")] = None,
|
|
1215
|
+
):
|
|
1216
|
+
"""Add a person/human"""
|
|
1217
|
+
from letta.client.client import create_client
|
|
1218
|
+
|
|
1219
|
+
client = create_client(base_url=os.getenv("MEMGPT_BASE_URL"), token=os.getenv("MEMGPT_SERVER_PASS"))
|
|
1220
|
+
if filename: # read from file
|
|
1221
|
+
assert text is None, "Cannot specify both text and filename"
|
|
1222
|
+
with open(filename, "r", encoding="utf-8") as f:
|
|
1223
|
+
text = f.read()
|
|
1224
|
+
else:
|
|
1225
|
+
assert text is not None, "Must specify either text or filename"
|
|
1226
|
+
if option == "persona":
|
|
1227
|
+
persona_id = client.get_persona_id(name)
|
|
1228
|
+
if persona_id:
|
|
1229
|
+
client.get_persona(persona_id)
|
|
1230
|
+
# config if user wants to overwrite
|
|
1231
|
+
if not questionary.confirm(f"Persona {name} already exists. Overwrite?").ask():
|
|
1232
|
+
return
|
|
1233
|
+
client.update_persona(persona_id, text=text)
|
|
1234
|
+
else:
|
|
1235
|
+
client.create_persona(name=name, text=text)
|
|
1236
|
+
|
|
1237
|
+
elif option == "human":
|
|
1238
|
+
human_id = client.get_human_id(name)
|
|
1239
|
+
if human_id:
|
|
1240
|
+
human = client.get_human(human_id)
|
|
1241
|
+
# config if user wants to overwrite
|
|
1242
|
+
if not questionary.confirm(f"Human {name} already exists. Overwrite?").ask():
|
|
1243
|
+
return
|
|
1244
|
+
client.update_human(human_id, text=text)
|
|
1245
|
+
else:
|
|
1246
|
+
human = client.create_human(name=name, text=text)
|
|
1247
|
+
else:
|
|
1248
|
+
raise ValueError(f"Unknown kind {option}")
|
|
1249
|
+
|
|
1250
|
+
|
|
1251
|
+
@app.command()
|
|
1252
|
+
def delete(option: str, name: str):
|
|
1253
|
+
"""Delete a source from the archival memory."""
|
|
1254
|
+
from letta.client.client import create_client
|
|
1255
|
+
|
|
1256
|
+
client = create_client(base_url=os.getenv("MEMGPT_BASE_URL"), token=os.getenv("MEMGPT_API_KEY"))
|
|
1257
|
+
try:
|
|
1258
|
+
# delete from metadata
|
|
1259
|
+
if option == "source":
|
|
1260
|
+
# delete metadata
|
|
1261
|
+
source_id = client.get_source_id(name)
|
|
1262
|
+
assert source_id is not None, f"Source {name} does not exist"
|
|
1263
|
+
client.delete_source(source_id)
|
|
1264
|
+
elif option == "agent":
|
|
1265
|
+
agent_id = client.get_agent_id(name)
|
|
1266
|
+
assert agent_id is not None, f"Agent {name} does not exist"
|
|
1267
|
+
client.delete_agent(agent_id=agent_id)
|
|
1268
|
+
elif option == "human":
|
|
1269
|
+
human_id = client.get_human_id(name)
|
|
1270
|
+
assert human_id is not None, f"Human {name} does not exist"
|
|
1271
|
+
client.delete_human(human_id)
|
|
1272
|
+
elif option == "persona":
|
|
1273
|
+
persona_id = client.get_persona_id(name)
|
|
1274
|
+
assert persona_id is not None, f"Persona {name} does not exist"
|
|
1275
|
+
client.delete_persona(persona_id)
|
|
1276
|
+
else:
|
|
1277
|
+
raise ValueError(f"Option {option} not implemented")
|
|
1278
|
+
|
|
1279
|
+
typer.secho(f"Deleted {option} '{name}'", fg=typer.colors.GREEN)
|
|
1280
|
+
|
|
1281
|
+
except Exception as e:
|
|
1282
|
+
typer.secho(f"Failed to delete {option}'{name}'\n{e}", fg=typer.colors.RED)
|