letschatty 0.4.333__py3-none-any.whl → 0.4.334__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (78) hide show
  1. letschatty/models/ai_microservices/__init__.py +3 -3
  2. letschatty/models/ai_microservices/expected_output.py +2 -29
  3. letschatty/models/ai_microservices/lambda_events.py +28 -137
  4. letschatty/models/ai_microservices/lambda_invokation_types.py +1 -3
  5. letschatty/models/ai_microservices/n8n_ai_agents_payload.py +1 -3
  6. letschatty/models/analytics/events/__init__.py +2 -3
  7. letschatty/models/analytics/events/chat_based_events/chat_funnel.py +69 -13
  8. letschatty/models/analytics/events/company_based_events/asset_events.py +9 -2
  9. letschatty/models/analytics/events/event_type_to_classes.py +6 -3
  10. letschatty/models/analytics/events/event_types.py +9 -50
  11. letschatty/models/chat/chat.py +2 -0
  12. letschatty/models/chat/chat_with_assets.py +6 -1
  13. letschatty/models/chat/client.py +0 -2
  14. letschatty/models/chat/continuous_conversation.py +1 -1
  15. letschatty/models/company/CRM/funnel.py +365 -33
  16. letschatty/models/company/__init__.py +2 -1
  17. letschatty/models/company/assets/ai_agents_v2/ai_agents_decision_output.py +1 -1
  18. letschatty/models/company/assets/ai_agents_v2/chatty_ai_agent_in_chat.py +1 -4
  19. letschatty/models/company/assets/ai_agents_v2/chatty_ai_mode.py +2 -2
  20. letschatty/models/company/assets/ai_agents_v2/get_chat_with_prompt_response.py +0 -1
  21. letschatty/models/company/assets/ai_agents_v2/pre_qualify_config.py +2 -14
  22. letschatty/models/company/assets/automation.py +10 -19
  23. letschatty/models/company/assets/company_assets.py +2 -0
  24. letschatty/models/data_base/collection_interface.py +29 -101
  25. letschatty/models/data_base/mongo_connection.py +9 -92
  26. letschatty/models/messages/chatty_messages/schema/chatty_content/content_document.py +4 -2
  27. letschatty/models/messages/chatty_messages/schema/chatty_content/content_media.py +4 -3
  28. letschatty/models/utils/custom_exceptions/custom_exceptions.py +1 -14
  29. letschatty/services/ai_agents/smart_follow_up_context_builder_v2.py +2 -5
  30. letschatty/services/chatty_assets/__init__.py +0 -12
  31. letschatty/services/chatty_assets/asset_service.py +13 -190
  32. letschatty/services/chatty_assets/base_container.py +2 -3
  33. letschatty/services/chatty_assets/base_container_with_collection.py +26 -35
  34. letschatty/services/continuous_conversation_service/continuous_conversation_helper.py +0 -11
  35. letschatty/services/events/events_manager.py +1 -218
  36. letschatty/services/factories/analytics/events_factory.py +6 -66
  37. letschatty/services/factories/lambda_ai_orchestrartor/lambda_events_factory.py +8 -25
  38. letschatty/services/messages_helpers/get_caption_or_body_or_preview.py +4 -6
  39. {letschatty-0.4.333.dist-info → letschatty-0.4.334.dist-info}/METADATA +1 -1
  40. {letschatty-0.4.333.dist-info → letschatty-0.4.334.dist-info}/RECORD +42 -78
  41. letschatty/models/analytics/events/chat_based_events/ai_agent_execution_event.py +0 -71
  42. letschatty/services/chatty_assets/assets_collections.py +0 -137
  43. letschatty/services/chatty_assets/collections/__init__.py +0 -38
  44. letschatty/services/chatty_assets/collections/ai_agent_collection.py +0 -19
  45. letschatty/services/chatty_assets/collections/ai_agent_in_chat_collection.py +0 -32
  46. letschatty/services/chatty_assets/collections/ai_component_collection.py +0 -21
  47. letschatty/services/chatty_assets/collections/chain_of_thought_collection.py +0 -30
  48. letschatty/services/chatty_assets/collections/chat_collection.py +0 -21
  49. letschatty/services/chatty_assets/collections/contact_point_collection.py +0 -21
  50. letschatty/services/chatty_assets/collections/fast_answer_collection.py +0 -21
  51. letschatty/services/chatty_assets/collections/filter_criteria_collection.py +0 -18
  52. letschatty/services/chatty_assets/collections/flow_collection.py +0 -20
  53. letschatty/services/chatty_assets/collections/product_collection.py +0 -20
  54. letschatty/services/chatty_assets/collections/sale_collection.py +0 -20
  55. letschatty/services/chatty_assets/collections/source_collection.py +0 -21
  56. letschatty/services/chatty_assets/collections/tag_collection.py +0 -19
  57. letschatty/services/chatty_assets/collections/topic_collection.py +0 -21
  58. letschatty/services/chatty_assets/collections/user_collection.py +0 -20
  59. letschatty/services/chatty_assets/example_usage.py +0 -44
  60. letschatty/services/chatty_assets/services/__init__.py +0 -37
  61. letschatty/services/chatty_assets/services/ai_agent_in_chat_service.py +0 -73
  62. letschatty/services/chatty_assets/services/ai_agent_service.py +0 -23
  63. letschatty/services/chatty_assets/services/chain_of_thought_service.py +0 -70
  64. letschatty/services/chatty_assets/services/chat_service.py +0 -25
  65. letschatty/services/chatty_assets/services/contact_point_service.py +0 -29
  66. letschatty/services/chatty_assets/services/fast_answer_service.py +0 -32
  67. letschatty/services/chatty_assets/services/filter_criteria_service.py +0 -30
  68. letschatty/services/chatty_assets/services/flow_service.py +0 -25
  69. letschatty/services/chatty_assets/services/product_service.py +0 -30
  70. letschatty/services/chatty_assets/services/sale_service.py +0 -25
  71. letschatty/services/chatty_assets/services/source_service.py +0 -28
  72. letschatty/services/chatty_assets/services/tag_service.py +0 -32
  73. letschatty/services/chatty_assets/services/topic_service.py +0 -31
  74. letschatty/services/chatty_assets/services/user_service.py +0 -32
  75. letschatty/services/events/__init__.py +0 -6
  76. letschatty/services/factories/analytics/ai_agent_event_factory.py +0 -161
  77. {letschatty-0.4.333.dist-info → letschatty-0.4.334.dist-info}/LICENSE +0 -0
  78. {letschatty-0.4.333.dist-info → letschatty-0.4.334.dist-info}/WHEEL +0 -0
@@ -4,7 +4,6 @@ from typing import TYPE_CHECKING, Dict, List, Generic, TypeVar, Type, Optional,
4
4
  from bson.objectid import ObjectId
5
5
  from pymongo.collection import Collection
6
6
  from pymongo.database import Database
7
- from motor.motor_asyncio import AsyncIOMotorDatabase, AsyncIOMotorCollection
8
7
 
9
8
  from letschatty.models.chat.chat import Chat
10
9
  from ...models.base_models.chatty_asset_model import ChattyAssetModel, CompanyAssetModel, ChattyAssetPreview
@@ -27,116 +26,58 @@ P = TypeVar('P', bound=ChattyAssetPreview)
27
26
  class ChattyAssetCollectionInterface(Generic[T, P], ABC):
28
27
  def __init__(self, database: str, collection: str, connection: MongoConnection, type: Type[T], preview_type: Optional[Type[P]] = None):
29
28
  logger.info(f"Initializing collection {collection} in database {database}")
30
- # Sync database and collection (existing)
31
29
  self.db: Database = connection.client[database]
32
30
  self.collection: Collection = connection.client[database][collection]
33
-
34
- # NEW: Async database and collection
35
- # Store connection reference to ensure we use current event loop
36
- self._connection = connection
37
- self._database_name = database
38
- self._collection_name = collection
39
- self._async_db: Optional[AsyncIOMotorDatabase] = None
40
- self._async_collection: Optional[AsyncIOMotorCollection] = None
41
-
42
31
  self.type = type
43
32
  self.preview_type = preview_type
44
-
45
- @property
46
- def async_db(self) -> AsyncIOMotorDatabase:
47
- """Get async database, ensuring it uses the current event loop"""
48
- # Always ensure connection's async client is using current loop (for Lambda compatibility)
49
- self._connection._ensure_async_client_loop()
50
- # Recreate database reference to ensure it uses the current client
51
- self._async_db = self._connection.async_client[self._database_name]
52
- return self._async_db
53
-
54
- @property
55
- def async_collection(self) -> AsyncIOMotorCollection:
56
- """Get async collection, ensuring it uses the current event loop"""
57
- # Always ensure connection's async client is using current loop (for Lambda compatibility)
58
- self._connection._ensure_async_client_loop()
59
- # Recreate collection reference to ensure it uses the current client
60
- self._async_collection = self._connection.async_client[self._database_name][self._collection_name]
61
- return self._async_collection
62
33
  @abstractmethod
63
34
  def create_instance(self, data: dict) -> T:
64
35
  """Factory method to create instance from data"""
65
36
  pass
66
37
 
67
- # All methods are now async-only for better performance
68
- async def insert(self, asset: T) -> StrObjectId:
69
- """Async insert operation"""
38
+ def insert(self, asset: T) -> StrObjectId:
70
39
  if not isinstance(asset, self.type):
71
40
  raise ValueError(f"Asset must be of type {self.type.__name__}")
72
41
  document = asset.model_dump_json(serializer=SerializerType.DATABASE)
73
42
  logger.debug(f"Inserting document: {document}")
74
- result = await self.async_collection.insert_one(document)
43
+ result = self.collection.insert_one(document)
75
44
  if not result.inserted_id:
76
45
  raise Exception("Failed to insert document")
77
46
  logger.debug(f"Inserted document with id {result.inserted_id}")
78
47
  return result.inserted_id
79
48
 
80
- async def update(self, asset: T) -> StrObjectId:
81
- """Async update operation"""
49
+ def update(self, asset: T) -> StrObjectId:
82
50
  logger.debug(f"Updating document with id {asset.id}")
83
51
  if not isinstance(asset, self.type):
84
52
  raise ValueError(f"Asset must be of type {self.type.__name__}")
85
53
  asset.update_now()
86
54
  document = asset.model_dump_json(serializer=SerializerType.DATABASE)
87
- document.pop('_id', None)
88
- result = await self.async_collection.update_one(
89
- {"_id": ObjectId(asset.id)},
90
- {"$set": document}
91
- )
55
+ document.pop('_id', None) # Still needed
56
+ result = self.collection.update_one({"_id": ObjectId(asset.id)}, {"$set": document})
92
57
  if result.matched_count == 0:
93
58
  raise NotFoundError(f"No document found with id {asset.id}")
94
59
  if result.modified_count == 0:
95
60
  logger.debug(f"No changes were made to the document with id {asset.id} probably because the values were the same")
96
61
  return asset.id
97
62
 
98
- async def get_by_id(self, doc_id: str) -> T:
99
- """Get by ID operation"""
100
- logger.debug(f"Getting document with id {doc_id} from collection {self.async_collection.name}")
101
- doc = await self.async_collection.find_one({"_id": ObjectId(doc_id)})
63
+ def get_by_id(self, doc_id: str) -> T:
64
+ logger.debug(f"Getting document with id {doc_id} from collection {self.collection.name} and db {self.db.name}")
65
+ doc = self.collection.find_one({"_id": ObjectId(doc_id)})
66
+
102
67
  if doc:
103
68
  return self.create_instance(doc)
104
69
  else:
105
- raise NotFoundError(f"No document found with id {doc_id} in collection")
70
+ raise NotFoundError(f"No document found with id {doc_id} in db collection {self.collection.name} and db {self.db.name}")
106
71
 
107
- async def get_docs(self, company_id: Optional[StrObjectId], query={}, limit=0) -> List[T]:
108
- """Get multiple documents operation"""
109
- logger.debug(f"Getting documents from collection with company_id {company_id} and query {query}")
72
+ def get_docs(self, company_id:Optional[StrObjectId], query = {}, limit = 0) -> List[T]:
73
+ logger.debug(f"Getting documents from collection {self.collection.name} with company_id {company_id} and query {query}")
110
74
  if company_id:
111
- query = query.copy()
75
+ query = query.copy() # Create a copy to avoid modifying the original
112
76
  query["company_id"] = company_id
113
- cursor = self.async_collection.find(filter=query)
114
- if limit:
115
- cursor = cursor.limit(limit)
116
- docs = await cursor.to_list(length=limit if limit > 0 else None)
117
- logger.debug(f"Found {len(docs)} documents")
77
+ docs = list(self.collection.find(filter=query).limit(limit))
78
+ logger.debug(f"Found {len(docs)} documents in collection {self.collection.name}")
118
79
  return [self.create_instance(doc) for doc in docs]
119
80
 
120
- async def delete(self, doc_id: str, deletion_type: DeletionType = DeletionType.LOGICAL) -> StrObjectId:
121
- """Delete operation"""
122
- logger.debug(f"Deleting document with id {doc_id} - deletion type: {deletion_type}")
123
- if deletion_type == DeletionType.LOGICAL:
124
- result = await self.async_collection.update_one(
125
- {"_id": ObjectId(doc_id)},
126
- {"$set": {"deleted_at": datetime.now(ZoneInfo("UTC")), "updated_at": datetime.now(ZoneInfo("UTC"))}}
127
- )
128
- if result.modified_count == 0:
129
- raise NotFoundError(f"No document found with id {doc_id}")
130
- return doc_id
131
- elif deletion_type == DeletionType.PHYSICAL:
132
- result = await self.async_collection.delete_one({"_id": ObjectId(doc_id)})
133
- if result.deleted_count == 0:
134
- raise NotFoundError(f"No document found with id {doc_id}")
135
- return doc_id
136
- else:
137
- raise ValueError(f"Invalid deletion type: {deletion_type}")
138
-
139
- # Additional methods - keeping these sync as they're less critical
140
81
  def get_preview_docs(self, projection = {}, all=True) -> List[P]:
141
82
  """We get the previews of all the documents in the collection for all companies"""
142
83
  if not self.preview_type:
@@ -157,31 +98,18 @@ class ChattyAssetCollectionInterface(Generic[T, P], ABC):
157
98
  docs = self.collection.find(query)
158
99
  return [self.create_instance(doc) for doc in docs]
159
100
 
160
- async def get_by_ids(self, ids: List[StrObjectId]) -> List[T]:
161
- """
162
- Get multiple assets by their IDs in a single query.
163
-
164
- Args:
165
- ids: List of asset IDs
166
-
167
- Returns:
168
- List of assets objects
169
- """
170
- if not ids:
171
- return []
172
-
173
- # Convert string IDs to ObjectIds
174
- object_ids = [ObjectId(id) for id in ids]
175
-
176
- # Query for all filter criteria with matching IDs
177
- query = {
178
- "_id": {"$in": object_ids},
179
- "deleted_at": None
180
- }
181
-
182
- # Use the sync collection directly (inherited from ChattyAssetCollectionInterface)
183
- docs = await self.async_collection.find(query).to_list(length=None)
184
-
185
- # Create FilterCriteria instances
186
- return [self.create_instance(doc) for doc in docs]
101
+ def delete(self, doc_id: str, deletion_type : DeletionType = DeletionType.LOGICAL) -> StrObjectId:
102
+ logger.debug(f"Deleting document with id {doc_id} - deletion type: {deletion_type}")
103
+ if deletion_type == DeletionType.LOGICAL:
104
+ result = self.collection.update_one({"_id": ObjectId(doc_id)}, {"$set": {"deleted_at": datetime.now(ZoneInfo("UTC")), "updated_at": datetime.now(ZoneInfo("UTC"))}})
105
+ if result.modified_count == 0:
106
+ raise NotFoundError(f"No document found with id {doc_id}")
107
+ return doc_id
108
+ elif deletion_type == DeletionType.PHYSICAL:
109
+ result = self.collection.delete_one({"_id": ObjectId(doc_id)})
110
+ if result.deleted_count == 0:
111
+ raise NotFoundError(f"No document found with id {doc_id}")
112
+ return doc_id
113
+ else:
114
+ raise ValueError(f"Invalid deletion type: {deletion_type}")
187
115
 
@@ -1,14 +1,8 @@
1
1
  from ..base_models.singleton import SingletonMeta
2
2
  from pymongo import MongoClient
3
- from motor.motor_asyncio import AsyncIOMotorClient
4
3
  from typing import Optional
5
- from urllib.parse import quote_plus
6
4
  import os
7
5
  import atexit
8
- import asyncio
9
- import logging
10
-
11
- logger = logging.getLogger(__name__)
12
6
 
13
7
  class MongoConnection(metaclass=SingletonMeta):
14
8
  def __init__(
@@ -16,103 +10,26 @@ class MongoConnection(metaclass=SingletonMeta):
16
10
  username: Optional[str] = None,
17
11
  password: Optional[str] = None,
18
12
  uri_base: Optional[str] = None,
19
- instance: Optional[str] = None,
20
- verify_on_init: bool = True
13
+ instance: Optional[str] = None
21
14
  ):
22
15
  self.username = username or os.getenv('MONGO_USERNAME')
23
16
  self.password = password or os.getenv('MONGO_PASSWORD')
24
17
  self.uri_base = uri_base or os.getenv('MONGO_URI_BASE')
25
18
  self.instance = instance or os.getenv('MONGO_INSTANCE_COMPONENT')
26
-
19
+
27
20
  if not all([self.username, self.password, self.uri_base, self.instance]):
28
21
  raise ValueError("Missing required MongoDB connection parameters")
29
-
30
- # URL-encode username and password to handle special characters per RFC 3986
31
- encoded_username = quote_plus(self.username)
32
- encoded_password = quote_plus(self.password)
33
-
34
- uri = f"{self.uri_base}://{encoded_username}:{encoded_password}@{self.instance}.mongodb.net"
35
-
36
- # Sync client (existing)
22
+
23
+ uri = f"{self.uri_base}://{self.username}:{self.password}@{self.instance}.mongodb.net"
37
24
  self.client = MongoClient(uri)
38
-
39
- # NEW: Async client for async operations
40
- # Don't pass io_loop - Motor will automatically use the current event loop
41
- # This is important for Lambda where the event loop changes between invocations
42
- self.async_client = AsyncIOMotorClient(uri)
43
-
44
- # Verify connections if requested
45
- if verify_on_init:
46
- try:
47
- # Try to get running loop
48
- loop = asyncio.get_running_loop()
49
- # If we get here, there's a running loop
50
- logger.warning(
51
- "Event loop is already running. Skipping connection verification in __init__. "
52
- "Call verify_connection_async() from async context to verify connection."
53
- )
54
- self._connection_verified = False
55
- except RuntimeError:
56
- # No running loop, safe to use run_until_complete
57
- try:
58
- # Test sync client
59
- self.client.admin.command('ping')
60
-
61
- # Test async client in sync context
62
- loop = asyncio.new_event_loop()
63
- asyncio.set_event_loop(loop)
64
- loop.run_until_complete(self.async_client.admin.command('ping'))
65
- self._connection_verified = True
66
- loop.close()
67
- except Exception as e:
68
- self.client.close()
69
- self.async_client.close()
70
- raise ConnectionError(f"Failed to connect to MongoDB: {str(e)}")
71
- else:
72
- self._connection_verified = False
73
-
74
- atexit.register(self.close)
75
-
76
- def _ensure_async_client_loop(self):
77
- """Ensure async client is using the current event loop (for Lambda compatibility)"""
78
25
  try:
79
- current_loop = asyncio.get_running_loop()
80
- # Check if client's loop is closed or different
81
- client_loop = getattr(self.async_client, '_io_loop', None)
82
- if client_loop is not None:
83
- try:
84
- # Try to check if the loop is closed
85
- if client_loop.is_closed():
86
- # Recreate client with current loop
87
- logger.warning("Async client's event loop is closed, recreating client")
88
- old_client = self.async_client
89
- uri = f"{self.uri_base}://{quote_plus(self.username)}:{quote_plus(self.password)}@{self.instance}.mongodb.net"
90
- self.async_client = AsyncIOMotorClient(uri)
91
- try:
92
- old_client.close()
93
- except:
94
- pass
95
- except AttributeError:
96
- # _io_loop might not exist in newer Motor versions
97
- pass
98
- except RuntimeError:
99
- # No running loop, which is fine - Motor will handle it
100
- pass
101
-
102
- async def verify_connection_async(self) -> bool:
103
- """Verify MongoDB connection asynchronously. Safe to call from async context."""
104
- try:
105
- # Ensure we're using the current event loop
106
- self._ensure_async_client_loop()
107
- await self.async_client.admin.command('ping')
108
- self._connection_verified = True
109
- return True
26
+ self.client.admin.command('ping')
110
27
  except Exception as e:
111
- logger.error(f"Failed to verify MongoDB connection: {e}")
112
- raise ConnectionError(f"Failed to verify MongoDB connection: {e}")
28
+ self.client.close()
29
+ raise ConnectionError(f"Failed to connect to MongoDB: {str(e)}")
113
30
 
31
+ atexit.register(self.close)
32
+
114
33
  def close(self) -> None:
115
34
  if hasattr(self, 'client'):
116
35
  self.client.close()
117
- if hasattr(self, 'async_client'):
118
- self.async_client.close()
@@ -1,5 +1,6 @@
1
1
  from pydantic import BaseModel, Field, model_validator, ValidationInfo
2
2
  from typing import Optional
3
+ from urllib.parse import urlparse, unquote
3
4
  from .content_media import ChattyContentMedia
4
5
 
5
6
  class ChattyContentDocument(ChattyContentMedia):
@@ -8,5 +9,6 @@ class ChattyContentDocument(ChattyContentMedia):
8
9
  @model_validator(mode='before')
9
10
  def validate_filename(cls, data: dict, info: ValidationInfo):
10
11
  if not data.get("filename") and data.get("url"):
11
- data["filename"] = data["url"].split("/")[-1]
12
- return data
12
+ parsed = urlparse(data["url"])
13
+ data["filename"] = unquote(parsed.path.split("/")[-1])
14
+ return data
@@ -1,5 +1,6 @@
1
1
  from pydantic import BaseModel, Field, field_validator, HttpUrl
2
2
  from typing import Optional
3
+ from urllib.parse import quote
3
4
  class ChattyContentMedia(BaseModel):
4
5
  id: Optional[str] = Field(description="Unique identifier for the image. Also known as media_id", default="")
5
6
  url: str = Field(description="URL of the media from S3")
@@ -11,9 +12,9 @@ class ChattyContentMedia(BaseModel):
11
12
  def validate_url(cls, v):
12
13
  if not v:
13
14
  raise ValueError("URL is required")
14
- HttpUrl(v)
15
- return v
15
+ encoded = quote(str(v), safe=":/?&=%#")
16
+ HttpUrl(encoded)
17
+ return encoded
16
18
 
17
19
  def get_body_or_caption(self) -> str:
18
20
  return self.caption
19
-
@@ -5,7 +5,6 @@ import json
5
5
  from datetime import timedelta
6
6
 
7
7
  from letschatty.models.utils.definitions import Area
8
- from pydantic_core.core_schema import custom_error_schema
9
8
  logger = logging.getLogger("logger")
10
9
 
11
10
  class Context(BaseModel):
@@ -230,16 +229,4 @@ class OpenAIError(CustomException):
230
229
 
231
230
  class NewerAvailableMessageToBeProcessedByAiAgent(CustomException):
232
231
  def __init__(self, message="Duplicated incoming message call for ai agent", status_code=400, **context_data):
233
- super().__init__(message, status_code=status_code, **context_data)
234
-
235
- class MissingAIAgentInChat(CustomException):
236
- def __init__(self, message="Missing AI agent in chat", status_code=400, **context_data):
237
- super().__init__(message, status_code=status_code, **context_data)
238
-
239
- class ChattyAIModeOff(CustomException):
240
- def __init__(self, message="Chatty AI agent is in OFF mode", status_code=400, **context_data):
241
- super().__init__(message, status_code=status_code, **context_data)
242
-
243
- class ChatWithActiveContinuousConversation(CustomException):
244
- def __init__(self, message="Chat has active continuous conversation", status_code=400, **context_data):
245
- super().__init__(message, status_code=status_code, **context_data)
232
+ super().__init__(message, status_code=status_code, **context_data)
@@ -14,16 +14,13 @@ class SmartFollowUpContextBuilder(ContextBuilder):
14
14
 
15
15
  @staticmethod
16
16
  def check_minimum_time_since_last_message(chat: Chat, follow_up_strategy: FollowUpStrategy,smart_follow_up_state: FlowStateAssignedToChat) -> bool:
17
- # consecutive_count is 0-indexed (0 = no follow-ups sent yet), but get_interval_for_followup expects 1-indexed
18
- # So we add 1 to get the interval for the follow-up we're about to send
19
- next_followup_number = smart_follow_up_state.consecutive_count + 1
20
- expected_interval_minutes = follow_up_strategy.get_interval_for_followup(next_followup_number)
17
+ expected_interval_minutes = follow_up_strategy.get_interval_for_followup(smart_follow_up_state.consecutive_count)
21
18
  last_message_timestamp = chat.last_message_timestamp
22
19
  if last_message_timestamp is None:
23
20
  raise HumanInterventionRequired("There's no last message in the chat, can't validate the minimum time since last message for the smart follow up")
24
21
  time_since_last_message = datetime.now(ZoneInfo('UTC')) - last_message_timestamp
25
22
  if time_since_last_message.total_seconds() < expected_interval_minutes * 60:
26
- raise PostponeFollowUp(time_delta= timedelta(seconds=expected_interval_minutes * 60 - time_since_last_message.total_seconds()), message=f"Se pospuso el Smart Follow Up porque no ha pasado el tiempo mínimo esperado de {expected_interval_minutes/60} horas para el seguimiento #{next_followup_number}")
23
+ raise PostponeFollowUp(time_delta= timedelta(seconds=expected_interval_minutes * 60 - time_since_last_message.total_seconds()), message=f"Se pospuso el Smart Follow Up porque no ha pasado el tiempo mínimo esperado de {expected_interval_minutes/60} horas para el seguimiento #{smart_follow_up_state.consecutive_count}")
27
24
  return True
28
25
 
29
26
 
@@ -1,14 +1,2 @@
1
1
  from .base_container import ChattyAssetBaseContainer
2
2
  from .base_container_with_collection import ChattyAssetContainerWithCollection
3
- from .assets_collections import AssetsCollections
4
- from .services import (
5
- ProductService,
6
- TagService,
7
- UserService,
8
- ChatService,
9
- SourceService,
10
- FlowService,
11
- SaleService,
12
- ContactPointService,
13
- AiAgentService
14
- )
@@ -1,22 +1,11 @@
1
1
  from __future__ import annotations
2
- from typing import TypeVar, Generic, Type, Callable, Protocol, Optional, ClassVar, TYPE_CHECKING, List
3
-
4
- from bson import ObjectId
5
- from letschatty.models.utils.types import StrObjectId
2
+ from typing import TypeVar, Generic, Type, Callable, Protocol, Optional
6
3
  from .base_container_with_collection import ChattyAssetCollectionInterface, ChattyAssetContainerWithCollection, CacheConfig
7
4
  from ...models.base_models import ChattyAssetModel
8
5
  from ...models.base_models.chatty_asset_model import ChattyAssetPreview
9
6
  from ...models.data_base.mongo_connection import MongoConnection
10
7
  import logging
11
8
  import os
12
-
13
- if TYPE_CHECKING:
14
- from ...models.analytics.events.base import EventType
15
- from ...models.company.empresa import EmpresaModel
16
- from ...models.execution.execution import ExecutionContext
17
- from ...models.company.assets.company_assets import CompanyAssetType
18
- from ...models.utils.types.deletion_type import DeletionType
19
-
20
9
  logger = logging.getLogger("AssetService")
21
10
 
22
11
  # Protocol for assets that specify their preview type
@@ -55,75 +44,17 @@ class AssetCollection(Generic[T, P], ChattyAssetCollectionInterface[T, P]):
55
44
  raise ValueError(f"Data must be a dictionary, got {type(data)}: {data}")
56
45
  return self._create_instance_method(data)
57
46
 
58
-
59
47
  class AssetService(Generic[T, P], ChattyAssetContainerWithCollection[T, P]):
60
- """
61
- Generic service for handling CRUD operations for any Chatty asset.
62
-
63
- Supports optional automatic event handling for API implementations.
64
- Set these class attributes to enable events:
65
- - asset_type_enum: CompanyAssetType (e.g., CompanyAssetType.PRODUCTS)
66
- - event_type_created: EventType (e.g., EventType.PRODUCT_CREATED)
67
- - event_type_updated: EventType (e.g., EventType.PRODUCT_UPDATED)
68
- - event_type_deleted: EventType (e.g., EventType.PRODUCT_DELETED)
69
- """
70
-
71
- # Optional: Set these in subclasses to enable automatic event handling
72
- asset_type_enum: ClassVar[Optional['CompanyAssetType']] = None
73
- event_type_created: ClassVar[Optional['EventType']] = None
74
- event_type_updated: ClassVar[Optional['EventType']] = None
75
- event_type_deleted: ClassVar[Optional['EventType']] = None
76
-
77
- collection: AssetCollection[T, P] # Type annotation for better type checking
48
+ """Generic service for handling CRUD operations for any Chatty asset"""
78
49
 
79
50
  def __init__(self,
80
- collection: AssetCollection[T, P],
51
+ collection_name: str,
52
+ asset_type: Type[T],
53
+ connection: MongoConnection,
54
+ create_instance_method: Callable[[dict], T],
55
+ preview_type: Optional[Type[P]] = None,
81
56
  cache_config: CacheConfig = CacheConfig.default()):
82
- """
83
- Initialize AssetService with a pre-configured collection.
84
-
85
- The item_type and preview_type are automatically extracted from the collection,
86
- eliminating redundancy and simplifying the API.
87
-
88
- Args:
89
- collection: Pre-configured AssetCollection subclass
90
- cache_config: Cache configuration
91
- """
92
- logger.debug(f"AssetService {self.__class__.__name__} initializing with collection")
93
- super().__init__(
94
- item_type=collection.type,
95
- preview_type=collection.preview_type,
96
- collection=collection,
97
- cache_config=cache_config,
98
- )
99
- logger.debug(f"AssetService {self.__class__.__name__} initialized")
100
-
101
- @classmethod
102
- def from_config(cls,
103
- collection_name: str,
104
- asset_type: Type[T],
105
- connection: MongoConnection,
106
- create_instance_method: Callable[[dict], T],
107
- preview_type: Optional[Type[P]] = None,
108
- cache_config: CacheConfig = CacheConfig.default()) -> 'AssetService[T, P]':
109
- """
110
- Create an AssetService using the legacy configuration pattern.
111
-
112
- This class method is provided for backward compatibility.
113
- New code should use pre-configured AssetCollection subclasses.
114
-
115
- Args:
116
- collection_name: MongoDB collection name
117
- asset_type: The asset model type
118
- connection: MongoDB connection
119
- create_instance_method: Factory method to create asset instances
120
- preview_type: Optional preview type
121
- cache_config: Cache configuration
122
-
123
- Returns:
124
- AssetService instance
125
- """
126
- logger.debug(f"AssetService creating from config for {collection_name}")
57
+ logger.debug(f"AssetService {self.__class__.__name__} initializing for {collection_name}")
127
58
  asset_collection = AssetCollection(
128
59
  collection=collection_name,
129
60
  asset_type=asset_type,
@@ -131,102 +62,13 @@ class AssetService(Generic[T, P], ChattyAssetContainerWithCollection[T, P]):
131
62
  create_instance_method=create_instance_method,
132
63
  preview_type=preview_type
133
64
  )
134
- return cls(
65
+ super().__init__(
66
+ item_type=asset_type,
67
+ preview_type=preview_type,
135
68
  collection=asset_collection,
136
- cache_config=cache_config
69
+ cache_config=cache_config,
137
70
  )
138
-
139
- def _should_handle_events(self) -> bool:
140
- """Check if this service should handle events automatically"""
141
- return (self.asset_type_enum is not None and
142
- self.event_type_created is not None and
143
- self.event_type_updated is not None and
144
- self.event_type_deleted is not None)
145
-
146
- def _queue_event(self, item: T, event_type: 'EventType', execution_context: 'ExecutionContext', company_info: 'EmpresaModel'):
147
- """Queue an event for this asset if event handling is enabled"""
148
- if not self._should_handle_events() or not self.asset_type_enum:
149
- return
150
-
151
- try:
152
- from ...services.factories.analytics.events_factory import EventFactory
153
- from ...services.events import events_manager
154
-
155
- # Type guard - company_id should exist on ChattyAssetModel
156
- if not hasattr(item, 'company_id'):
157
- logger.warning(f"Asset {type(item).__name__} missing company_id, skipping event")
158
- return
159
-
160
- events = EventFactory.asset_events(
161
- company_id=item.company_id, # type: ignore[attr-defined]
162
- executor_id=execution_context.executor.id,
163
- asset=item,
164
- asset_type=self.asset_type_enum,
165
- event_type=event_type,
166
- time=execution_context.time,
167
- trace_id=execution_context.trace_id,
168
- executor_type=execution_context.executor.type,
169
- company_info=company_info
170
- )
171
- events_manager.queue_events(events)
172
- except ImportError:
173
- # Events not available (microservice context) - skip
174
- pass
175
-
176
- # All methods are now async-only for better performance
177
- async def insert(self, item: T, execution_context: 'ExecutionContext', company_info: Optional['EmpresaModel'] = None) -> T:
178
- """Insert with automatic event handling if configured"""
179
- result = await super().insert(item, execution_context)
180
- if company_info and self._should_handle_events() and self.event_type_created:
181
- self._queue_event(result, self.event_type_created, execution_context, company_info)
182
- return result
183
-
184
- async def update(self, id: str, new_item: T, execution_context: 'ExecutionContext', company_info: Optional['EmpresaModel'] = None) -> T:
185
- """Update with automatic event handling if configured"""
186
- result = await super().update(id, new_item, execution_context)
187
- if company_info and self._should_handle_events() and self.event_type_updated:
188
- self._queue_event(result, self.event_type_updated, execution_context, company_info)
189
- return result
190
-
191
- async def delete(self, id: str, execution_context: 'ExecutionContext', company_info: Optional['EmpresaModel'] = None, deletion_type: Optional['DeletionType'] = None) -> T:
192
- """Delete with automatic event handling if configured"""
193
- from ...models.utils.types.deletion_type import DeletionType as DT
194
- result = await super().delete(id, execution_context, deletion_type or DT.LOGICAL)
195
- if company_info and self._should_handle_events() and self.event_type_deleted:
196
- self._queue_event(result, self.event_type_deleted, execution_context, company_info)
197
- return result
198
-
199
- async def restore(self, id: str, execution_context: 'ExecutionContext', company_info: Optional['EmpresaModel'] = None) -> T:
200
- """Restore with automatic event handling if configured"""
201
- result = await super().restore(id, execution_context)
202
- if company_info and self._should_handle_events() and self.event_type_updated:
203
- self._queue_event(result, self.event_type_updated, execution_context, company_info)
204
- return result
205
-
206
- # Generic convenience methods
207
- async def create_asset(self, data: dict, execution_context: 'ExecutionContext', company_info: 'EmpresaModel') -> T:
208
- """
209
- Generic create method - creates instance from dict and inserts with events.
210
- Can be called as create_asset or aliased to create_product/create_tag/etc.
211
- """
212
- data["company_id"] = execution_context.company_id
213
- item = self.collection.create_instance(data)
214
- return await self.insert(item, execution_context, company_info)
215
-
216
- async def update_asset(self, id: str, data: dict, execution_context: 'ExecutionContext', company_info: 'EmpresaModel') -> T:
217
- """
218
- Generic update method - creates instance from dict and updates with events.
219
- Can be called as update_asset or aliased to update_product/update_tag/etc.
220
- """
221
- new_item = self.collection.create_instance(data)
222
- return await self.update(id, new_item, execution_context, company_info)
223
-
224
- async def delete_asset(self, id: str, execution_context: 'ExecutionContext', company_info: 'EmpresaModel') -> T:
225
- """
226
- Generic delete method - deletes with events.
227
- Can be called as delete_asset or aliased to delete_product/delete_tag/etc.
228
- """
229
- return await self.delete(id, execution_context, company_info)
71
+ logger.debug(f"AssetService {self.__class__.__name__} initialized for {collection_name}")
230
72
 
231
73
  def get_preview_type(self) -> Type[P]:
232
74
  """Get the preview type from the asset class if it has one"""
@@ -239,22 +81,3 @@ class AssetService(Generic[T, P], ChattyAssetContainerWithCollection[T, P]):
239
81
  preview_type = self.get_preview_type()
240
82
  return super().get_preview_by_id(id, company_id, preview_type)
241
83
 
242
- # Additional async read methods (passthrough to base class)
243
- async def get_by_id(self, id: str) -> T:
244
- """Get by ID"""
245
- return await super().get_by_id(id)
246
-
247
- async def get_all(self, company_id: str) -> List[T]:
248
- """Get all for company"""
249
- return await super().get_all(company_id)
250
-
251
- async def get_by_query(self, query: dict, company_id: Optional[str]) -> List[T]:
252
- """Get by query"""
253
- return await super().get_by_query(query, company_id)
254
-
255
- async def get_item_dumped(self, id: str) -> dict:
256
- """Get item by ID and return as JSON serialized dict for frontend"""
257
- from ...models.utils.types.serializer_type import SerializerType
258
- item = await self.get_by_id(id)
259
- return item.model_dump_json(serializer=SerializerType.FRONTEND)
260
-