lets-plot 4.5.3a1__cp38-cp38-macosx_11_0_arm64.whl → 4.6.0a2__cp38-cp38-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of lets-plot might be problematic. Click here for more details.

lets_plot/plot/scale.py CHANGED
@@ -90,10 +90,8 @@ def scale_shape(solid=True, name=None, breaks=None, labels=None, lablim=None, li
90
90
  labels=labels,
91
91
  lablim=lablim,
92
92
  limits=limits,
93
- expand=None,
94
93
  na_value=na_value,
95
94
  guide=guide,
96
- trans=None,
97
95
  format=format,
98
96
  #
99
97
  solid=solid)
@@ -192,10 +190,8 @@ def scale_manual(aesthetic, values, *,
192
190
  labels=labels,
193
191
  lablim=lablim,
194
192
  limits=limits,
195
- expand=None,
196
193
  na_value=na_value,
197
194
  guide=guide,
198
- trans=None,
199
195
  format=format,
200
196
  #
201
197
  values=values)
@@ -668,7 +664,7 @@ def _is_color_scale(aesthetic):
668
664
 
669
665
  def scale_continuous(aesthetic, *,
670
666
  name=None, breaks=None, labels=None, lablim=None,
671
- limits=None, na_value=None, guide=None, trans=None, format=None,
667
+ limits=None, expand=None, na_value=None, guide=None, trans=None, format=None,
672
668
  scale_mapper_kind=None,
673
669
  **kwargs):
674
670
  """
@@ -691,6 +687,10 @@ def scale_continuous(aesthetic, *,
691
687
  The maximum label length (in characters) before trimming is applied.
692
688
  limits : list
693
689
  A numeric vector of length two providing limits of the scale.
690
+ expand : list
691
+ A numeric vector of length two giving multiplicative and additive expansion constants.
692
+ The vector size == 1 => only multiplicative expand (and additive expand by default).
693
+ Defaults: multiplicative = 0.05, additive = 0.
694
694
  na_value
695
695
  Missing values will be replaced with this value.
696
696
  guide
@@ -737,6 +737,22 @@ def scale_continuous(aesthetic, *,
737
737
  coord_cartesian() + \\
738
738
  ggsize(600, 200)
739
739
 
740
+ |
741
+
742
+ .. jupyter-execute::
743
+ :linenos:
744
+ :emphasize-lines: 10
745
+
746
+ from lets_plot import *
747
+ LetsPlot.setup_html()
748
+
749
+ d = {
750
+ 'x': [0, 1, 2],
751
+ 'y': [0, 1, 2]
752
+ }
753
+ ggplot(d) + \\
754
+ geom_point(aes(x='x', y='y'), size=15) + \\
755
+ scale_continuous(['x','y'], expand=[0, 0]) # no expansion - points right on the edges
740
756
  """
741
757
  if _is_color_scale(aesthetic):
742
758
  scale_mapper_kind = 'color_gradient' if scale_mapper_kind is None else scale_mapper_kind
@@ -747,7 +763,7 @@ def scale_continuous(aesthetic, *,
747
763
  labels=labels,
748
764
  lablim=lablim,
749
765
  limits=limits,
750
- expand=None,
766
+ expand=expand,
751
767
  na_value=na_value,
752
768
  guide=guide,
753
769
  trans=trans,
@@ -992,7 +1008,6 @@ def scale_gradient(aesthetic, *,
992
1008
  labels=labels,
993
1009
  lablim=lablim,
994
1010
  limits=limits,
995
- expand=None,
996
1011
  na_value=na_value,
997
1012
  guide=guide,
998
1013
  trans=trans,
@@ -1242,7 +1257,6 @@ def scale_gradient2(aesthetic, *,
1242
1257
  labels=labels,
1243
1258
  lablim=lablim,
1244
1259
  limits=limits,
1245
- expand=None,
1246
1260
  na_value=na_value,
1247
1261
  guide=guide,
1248
1262
  trans=trans,
@@ -1498,7 +1512,6 @@ def scale_gradientn(aesthetic, *,
1498
1512
  labels=labels,
1499
1513
  lablim=lablim,
1500
1514
  limits=limits,
1501
- expand=None,
1502
1515
  na_value=na_value,
1503
1516
  guide=guide,
1504
1517
  trans=trans,
@@ -1746,7 +1759,6 @@ def scale_hue(aesthetic, *,
1746
1759
  labels=labels,
1747
1760
  lablim=lablim,
1748
1761
  limits=limits,
1749
- expand=None,
1750
1762
  na_value=na_value,
1751
1763
  guide=guide,
1752
1764
  trans=trans,
@@ -1933,7 +1945,8 @@ def scale_color_hue(h=None, c=None, l=None, h_start=None, direction=None, name=N
1933
1945
 
1934
1946
  def scale_discrete(aesthetic, *,
1935
1947
  direction=None,
1936
- name=None, breaks=None, labels=None, lablim=None, limits=None, na_value=None, guide=None, format=None,
1948
+ name=None, breaks=None, labels=None, lablim=None,
1949
+ limits=None, expand=None, na_value=None, guide=None, format=None,
1937
1950
  scale_mapper_kind=None,
1938
1951
  **kwargs):
1939
1952
  """
@@ -1960,6 +1973,10 @@ def scale_discrete(aesthetic, *,
1960
1973
  limits : list
1961
1974
  A vector specifying the data range for the scale
1962
1975
  and the default order of their display in guides.
1976
+ expand : list
1977
+ A numeric vector of length two giving multiplicative and additive expansion constants.
1978
+ The vector size == 1 => only multiplicative expand (and additive expand by default).
1979
+ Defaults: multiplicative = 0.05, additive = 0.
1963
1980
  na_value
1964
1981
  Missing values will be replaced with this value.
1965
1982
  guide
@@ -2006,6 +2023,22 @@ def scale_discrete(aesthetic, *,
2006
2023
  ggplot() + geom_point(aes(x, y, color=z, fill=z), shape=21, size=4) + \\
2007
2024
  scale_discrete(aesthetic=['color', 'fill'], guide='none')
2008
2025
 
2026
+ |
2027
+
2028
+ .. jupyter-execute::
2029
+ :linenos:
2030
+ :emphasize-lines: 10
2031
+
2032
+ from lets_plot import *
2033
+ LetsPlot.setup_html()
2034
+
2035
+ d = {
2036
+ 'x': [0, 1, 2],
2037
+ 'y': [0, 1, 2]
2038
+ }
2039
+ ggplot(d) + \\
2040
+ geom_point(aes(x='x', y='y'), size=15) + \\
2041
+ scale_discrete(['x','y'], expand=[0, 0]) # no expansion - points right on the edges
2009
2042
  """
2010
2043
  return _scale(aesthetic=aesthetic,
2011
2044
  name=name,
@@ -2013,7 +2046,7 @@ def scale_discrete(aesthetic, *,
2013
2046
  labels=labels,
2014
2047
  lablim=lablim,
2015
2048
  limits=limits,
2016
- expand=None,
2049
+ expand=expand,
2017
2050
  na_value=na_value,
2018
2051
  guide=guide,
2019
2052
  format=format,
@@ -2266,7 +2299,6 @@ def scale_grey(aesthetic, *,
2266
2299
  labels=labels,
2267
2300
  lablim=lablim,
2268
2301
  limits=limits,
2269
- expand=None,
2270
2302
  na_value=na_value,
2271
2303
  guide=guide,
2272
2304
  trans=trans,
@@ -2550,7 +2582,6 @@ def scale_brewer(aesthetic, *,
2550
2582
  labels=labels,
2551
2583
  lablim=lablim,
2552
2584
  limits=limits,
2553
- expand=None,
2554
2585
  na_value=na_value,
2555
2586
  guide=guide,
2556
2587
  trans=trans,
@@ -2858,7 +2889,6 @@ def scale_viridis(aesthetic, *,
2858
2889
  labels=labels,
2859
2890
  lablim=lablim,
2860
2891
  limits=limits,
2861
- expand=None,
2862
2892
  na_value=na_value,
2863
2893
  guide=guide,
2864
2894
  trans=trans,
@@ -3146,7 +3176,6 @@ def scale_alpha(range=None, name=None, breaks=None, labels=None, lablim=None, li
3146
3176
  labels=labels,
3147
3177
  lablim=lablim,
3148
3178
  limits=limits,
3149
- expand=None,
3150
3179
  na_value=na_value,
3151
3180
  guide=guide,
3152
3181
  trans=trans,
@@ -3221,7 +3250,6 @@ def scale_size(range=None, name=None, breaks=None, labels=None, lablim=None, lim
3221
3250
  labels=labels,
3222
3251
  lablim=lablim,
3223
3252
  limits=limits,
3224
- expand=None,
3225
3253
  na_value=na_value,
3226
3254
  guide=guide,
3227
3255
  trans=trans,
@@ -3300,7 +3328,6 @@ def scale_size_area(max_size=None, name=None, breaks=None, labels=None, lablim=N
3300
3328
  labels=labels,
3301
3329
  lablim=lablim,
3302
3330
  limits=limits,
3303
- expand=None,
3304
3331
  na_value=na_value,
3305
3332
  guide=guide,
3306
3333
  trans=trans,
@@ -3375,7 +3402,6 @@ def scale_linewidth(range=None, name=None, breaks=None, labels=None, lablim=None
3375
3402
  labels=labels,
3376
3403
  lablim=lablim,
3377
3404
  limits=limits,
3378
- expand=None,
3379
3405
  na_value=na_value,
3380
3406
  guide=guide,
3381
3407
  trans=trans,
@@ -3449,7 +3475,6 @@ def scale_stroke(range=None, name=None, breaks=None, labels=None, lablim=None, l
3449
3475
  labels=labels,
3450
3476
  lablim=lablim,
3451
3477
  limits=limits,
3452
- expand=None,
3453
3478
  na_value=na_value,
3454
3479
  guide=guide,
3455
3480
  trans=trans,
@@ -67,7 +67,7 @@ class SupPlotsSpec(FeatureSpec):
67
67
  supplots = supplots.__add__(spec)
68
68
  return supplots
69
69
 
70
- elif isinstance(other, FeatureSpec) and other.kind in ["ggsize", "theme", "ggtoolbar"]:
70
+ elif isinstance(other, FeatureSpec) and other.kind in ["ggsize", "theme", "ggtitle", "caption", "ggtoolbar"]:
71
71
 
72
72
  supplots = SupPlotsSpec.duplicate(self)
73
73
  # ToDo: duplication!
@@ -0,0 +1,24 @@
1
+ # Copyright (c) 2025. JetBrains s.r.o.
2
+ # Use of this source code is governed by the MIT license that can be found in the LICENSE file.
3
+
4
+ from lets_plot.plot.core import PlotSpec
5
+ from ._global_theme import _get_global_theme
6
+ from .subplots import SupPlotsSpec
7
+
8
+
9
+ def _strip_theme_if_global(fig):
10
+ # Strip this global theme if defined
11
+ global_theme_options = _get_global_theme()
12
+
13
+ # Strip global theme options from plots in grid (see issue: #966).
14
+ if global_theme_options is not None and fig is not None and 'theme' in fig.props() and fig.props()[
15
+ 'theme'] == global_theme_options.props():
16
+ if isinstance(fig, PlotSpec):
17
+ fig = PlotSpec.duplicate(fig)
18
+ fig.props().pop('theme')
19
+ return fig
20
+ elif isinstance(fig, SupPlotsSpec):
21
+ fig = SupPlotsSpec.duplicate(fig)
22
+ fig.props().pop('theme')
23
+ return fig
24
+ return fig
lets_plot/plot/theme_.py CHANGED
@@ -99,20 +99,20 @@ def theme(*,
99
99
  Parameters
100
100
  ----------
101
101
  exponent_format : {'e', 'pow', 'pow_full'} or tuple, default='e'
102
- Format for numeric labels in scientific notation.
102
+ Controls the appearance of numbers formatted with 'e' or 'g' types.
103
103
 
104
- - e for "e" notation (e.g. 1e+6);
105
- - pow_full for "power" notation (e.g. 1x10^6). This will enable superscript formatting for the exponent;
106
- - pow works as pow_full but will shorten powers of 10 (e.g. 10^6 instead of 1x10^6).
104
+ Value is either a string - style, or a tuple: (style, lower_exp_bound, upper_exp_bound)
105
+ where style can be:
106
+
107
+ - 'e' : e-notation (e.g., 1e+6)
108
+ - 'pow' : superscript powers of 10 in shortened form (e.g., 10^6)
109
+ - 'pow_full' : superscript powers of 10 with coefficient (e.g., 1×10^6)
107
110
 
108
- If parameter is a tuple, then it should be a three-element tuple:
111
+ For 'g' type formatting, scientific notation is applied when the number's exponent
112
+ is less than or equal to the lower_exp_bound (-7 by default) or greater than or equal
113
+ to the upper_exp_bound (6 by default, but can be affected by `precision` in format specifier).
109
114
 
110
- - the first element is the format - 'e', 'pow', 'pow_full';
111
- - the second element is minimum exponent value from which to use scientific notation (default is -7);
112
- - the third element is maximum exponent value from which to use scientific notation (default is taken from `precision` of the current formatting, see `Formatting <https://lets-plot.org/python/pages/formats.html>`__).
113
-
114
- Minimum and maximum exponent values are only taken into account when "g" format is used,
115
- see `Formatting <https://lets-plot.org/python/pages/formats.html>`__.
115
+ See `Formatting <https://lets-plot.org/python/pages/formats.html>`__.
116
116
 
117
117
  Superscript is not supported when exporting to PNG/PDF.
118
118
  line : str or dict
@@ -576,7 +576,7 @@ def element_text(
576
576
  face : str
577
577
  Font face ("plain", "italic", "bold", "bold_italic").
578
578
  size : int
579
- Text size in pt.
579
+ Text size in px.
580
580
  angle : float
581
581
  Angle to rotate the text (in degrees).
582
582
  hjust : float
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: lets-plot
3
- Version: 4.5.3a1
3
+ Version: 4.6.0a2
4
4
  Summary: An open source library for statistical plotting
5
5
  Home-page: https://lets-plot.org
6
6
  Author: JetBrains
@@ -183,4 +183,4 @@ Please make sure you read it.
183
183
  ## License
184
184
 
185
185
  Code and documentation released under the [MIT license](https://github.com/JetBrains/lets-plot/blob/master/LICENSE).
186
- Copyright © 2019-2024, JetBrains s.r.o.
186
+ Copyright © 2019-2025, JetBrains s.r.o.
@@ -1,19 +1,19 @@
1
- lets_plot_kotlin_bridge.cpython-38-darwin.so,sha256=lRIUXlScTQyDyGK4XN9JjUZmtl70oRw_aOmFuUjui3A,10159040
1
+ lets_plot_kotlin_bridge.cpython-38-darwin.so,sha256=EbjVWnqor_PkvVxeRVLBr3DjTvkg7Lgqs1aozPml7-M,9422608
2
2
  lets_plot/__init__.py,sha256=JBXXtPi4nwhU9jrsUXcQTP1iaGF0jbHBVk_66pohq9I,11224
3
3
  lets_plot/_global_settings.py,sha256=4P9UL6xWEARJuxyvXBQUxt1NE_YDrU_ElF34pr72VhA,7440
4
- lets_plot/_kbridge.py,sha256=H8-GGwhKjnmLlyfAoR_VBHhgb7wlWnQP0-fDto5FF-4,1214
4
+ lets_plot/_kbridge.py,sha256=c5WraZIVSbkTdkaL1nH5T3YsxMk8GGzx_UoKGIO6Qgw,3520
5
5
  lets_plot/_type_utils.py,sha256=2GZ4GrJHe7rk_DPSHj88nBW8R9xxx7IGbgGQwhQclOg,2919
6
- lets_plot/_version.py,sha256=tiyf7P2McyFr2nQ7paQwKU1mBJSpwGjIHc9cOMelL-w,239
6
+ lets_plot/_version.py,sha256=rmD4JqP-SlpUQyW_PbAPrMYIfXQjRnGxlytOEgaAbH0,239
7
7
  lets_plot/mapping.py,sha256=q-O14pcnAosRIWcgg9-CkXMF43p5H7cKbyT4ne9w6hY,3576
8
8
  lets_plot/settings_utils.py,sha256=PrceNltN0JNzYxkIx0hwGgzX9dNxgVNqZY5hQ-r8QMQ,8434
9
9
  lets_plot/tilesets.py,sha256=6Hqz-m-rFCq2XbMHtRJ0Zq3GTrnV-GCIhlFMT1opevs,9186
10
10
  lets_plot/bistro/__init__.py,sha256=4Vix3Qu2P4zqGiDx8gnTd3usCLQQGBRKhseSNjrsBUY,426
11
- lets_plot/bistro/_plot2d_common.py,sha256=AnzmYmgdcZBysB_4X3EtSKmLkST3TScMBJacU9To0bM,3619
11
+ lets_plot/bistro/_plot2d_common.py,sha256=NuRH-tJ-PKtC4X69hvtGu9Zhn0IvsGviDeHoy3JuXSQ,3883
12
12
  lets_plot/bistro/corr.py,sha256=nfxVWcS1UOfIMXWuE69-2ya0Omxi5jhIcRp3pSTxHZA,12892
13
- lets_plot/bistro/im.py,sha256=1WRJolrSGcZbR0n_qbX8oiuPk37D-coT6ZVDbFm7uAc,5489
14
- lets_plot/bistro/joint.py,sha256=5-4121HVo79ie39qJgvAa0_EyG1wlrRx6c1YkudalFM,6552
13
+ lets_plot/bistro/im.py,sha256=HFoesQff1_LJyOhzN_92a2uUOEBfrI3SG5qzgDj1Qu8,6379
14
+ lets_plot/bistro/joint.py,sha256=BIAII_eYGyHJ43kk7BABqRDhUMIIpLNafMN-0YDrl_w,6571
15
15
  lets_plot/bistro/qq.py,sha256=4AMBjbtcwE4mQNmZSglGt1w8MnvhNqg7CZEVNb9fUr4,8098
16
- lets_plot/bistro/residual.py,sha256=8AwpW5bFD79HJ9MyqkNJKVLtGRtoCrr1W4LJ4bJqXYI,12313
16
+ lets_plot/bistro/residual.py,sha256=el9B_nd4vT53hIXvgVtqbMr5QvjxLZwzH4UbCGxlxbM,12332
17
17
  lets_plot/bistro/waterfall.py,sha256=5iPADC8T6zUbjum5DKS4QihifdqTFaE8WOok5ULO0gU,10474
18
18
  lets_plot/export/__init__.py,sha256=lDs6fqtQjkgJyKqeYlOdhrHMN__TeggTz73hgHAkyzc,188
19
19
  lets_plot/export/ggsave_.py,sha256=2RaY-_spIIV3LL7r1MP9dvM7SMsIeR8CqtGXPjIp4tI,4571
@@ -47,43 +47,45 @@ lets_plot/geo_data/gis/response.py,sha256=7Ac2VN4Hl9iffm7wAyfL80Wzo7sG9A1F5BqzJU
47
47
  lets_plot/geo_data_internals/__init__.py,sha256=4R6hr7MVB9iRi9JNQm_UUQL9jCe_dYDtizw_230V2Yg,234
48
48
  lets_plot/geo_data_internals/constants.py,sha256=IDpHhOOg7dbfIKqLNSk3AGa-5HjDcnItFZDxCm4fylw,428
49
49
  lets_plot/geo_data_internals/utils.py,sha256=phV_Q84xz4uZH2jI9WLUrYDyZAz0d2-00OOLxkRH4iw,967
50
- lets_plot/package_data/lets-plot.min.js,sha256=kxYpQo2qeSKrBfsh6A5tvRwJmuhmuo-Ei9YcQbGikKA,2779274
51
- lets_plot/plot/__init__.py,sha256=XrJ9P8gX-RsQqYhHLrcmuByVqk9PEm4kb6EQXrqVJug,1717
50
+ lets_plot/package_data/lets-plot.min.js,sha256=9GVPVwviWOobhr8O-cl2SELRLBCwAi_GJaii7ZIdEZI,2295723
51
+ lets_plot/plot/__init__.py,sha256=RNsQuVS8qe4Xf4so7PJiQJKdYYnDMIqydUQNzstqhZI,1771
52
52
  lets_plot/plot/_global_theme.py,sha256=hOV9MzYpfjdF6hDE3mfLv_LqFtaouCJcccoW8pGoFoU,297
53
53
  lets_plot/plot/annotation.py,sha256=ZBQ9ZTxOVT-ePVTUocPTQnM92loiVP0jgWw8XM9Cfmo,7660
54
54
  lets_plot/plot/coord.py,sha256=h9ZTNmSbRjIdVTL_TTl9Dn5AsY46tYxuAKddUPjwe8s,7976
55
- lets_plot/plot/core.py,sha256=qJrSJeb6drY4GHQgZF0Zlr6q9yoPk0nfMO5-ls8mhTc,31533
55
+ lets_plot/plot/core.py,sha256=I3H-btDBoAoPeLxY2v4mVbrrTwvu6MBFGXcFYPTUSKk,31542
56
56
  lets_plot/plot/expand_limits_.py,sha256=UJzBbNNrdSG7osANmchQ-Jcg27DuSzFXGu27-WxiPSI,2307
57
57
  lets_plot/plot/facet.py,sha256=1vDo1xk0G95x2SSf6HNWfeEgXS-FDxtpd18fo63_6gI,7030
58
58
  lets_plot/plot/font_features.py,sha256=vUc_ICerwqnwwJbDaAm_fS8fmbRTZHzPoAHRszw0SF4,2238
59
- lets_plot/plot/geom.py,sha256=rF-SPpUiMDgcnz4DfZw6_sza4F-exoFha6UJ874aTIE,342373
59
+ lets_plot/plot/geom.py,sha256=tTU4V-VX1db7tj1aTYNBV8HdiEKt9R83YmF_jOg2_oY,349057
60
60
  lets_plot/plot/geom_extras.py,sha256=I_ERjnZlk5VyilJELx0sA_4C2a_Ycjc2Thas-I6WZoo,1694
61
61
  lets_plot/plot/geom_function_.py,sha256=bMGr73qaEW3HnxlWADvHyt_nYn9HJGZzBqYiHx4yIHY,7871
62
62
  lets_plot/plot/geom_imshow_.py,sha256=LWlNVriYK26HZGUjdkbiB4YaoTlVQxUyaNUPY46RVqw,14759
63
63
  lets_plot/plot/geom_livemap_.py,sha256=mDfMoH_R3cvP30NjcPwfQE88L5eCcjQ87pKwhcyuRZM,13127
64
- lets_plot/plot/gggrid_.py,sha256=sSPdyj28v4eAcT4MeSWUjqr76m7MU8e-KIh8O-uuGSo,4484
64
+ lets_plot/plot/ggbunch_.py,sha256=kRAZGcDDe33SrU9kH_XVJqJBTfW3ho3VXm3ZchUzPO4,3091
65
+ lets_plot/plot/gggrid_.py,sha256=6M7YRxcrpftAardpKTMbkIeN0V7CB9FvFLdlSAKhZMA,3893
65
66
  lets_plot/plot/ggtb_.py,sha256=27B87h5gpg0Q7ZM5VrQ0D2K3Dd6Yjs8DhRvZEoZ_TvI,1687
66
67
  lets_plot/plot/guide.py,sha256=C-mDgjXKwQz_Pv6OB1rcQohAIUAl0QvoApPsAR5lbs4,6694
67
68
  lets_plot/plot/label.py,sha256=iXTTLP-AjFtHRnti8v4mZMnGLRNLhsxhvetoQPhi8H0,4549
68
69
  lets_plot/plot/marginal_layer.py,sha256=Y4FMmQZlUuLxzjjntVQThuV8scG6LbEmDGjstGMOls4,6357
69
- lets_plot/plot/plot.py,sha256=qtkQzu9kfkq0URpgUun_4x2y2LOvEeGxEzgfF5_vjOE,7865
70
+ lets_plot/plot/plot.py,sha256=t7zXnu6tiqhwvthO4C7CfaYv2gH_zPzQ8ias9cK3m3Y,8282
70
71
  lets_plot/plot/pos.py,sha256=FIVYTElPSU5P8ZjI0FyweO2j1Cgb62dvJ172xXtxUp8,10359
71
72
  lets_plot/plot/sampling.py,sha256=qy0aesxFgpx-cO0-dC1Wv9r4oSbtz7hRPC9YsNk9Pyo,8489
72
73
  lets_plot/plot/sandbox_.py,sha256=Tb5UwJqe8HMMSCbDLdrj_BcxPSkmyxy-hI0_2L6kpBk,545
73
- lets_plot/plot/scale.py,sha256=roUvClEVR7sqpe20lOilqLQEL-7RdiIpK4ZsgmVXY44,136064
74
+ lets_plot/plot/scale.py,sha256=Y3JYxPUKLcxiWCnLHeleXSi-63NNAh5bmgKTi1tkZwA,136939
74
75
  lets_plot/plot/scale_colormap_mpl.py,sha256=D5iWNaWGWpVFCJiNDwf-wHa8Snbd1YiWp6yktOkUl_A,10267
75
76
  lets_plot/plot/scale_convenience.py,sha256=VWe9BJhFlUbWL2CLrOrxPy523dGIKIOL7A2H7OPx8_0,4116
76
77
  lets_plot/plot/scale_identity_.py,sha256=qHo_CI7Xb9Olqza_MqvEV672AaaXM9gWac20SX4AGc4,23796
77
78
  lets_plot/plot/scale_position.py,sha256=J8pFmYX2YorK6JhDKtgpFCMS5JhvKSzuASEwQCc6IgA,46285
78
79
  lets_plot/plot/series_meta.py,sha256=0aleiIjUKG5nhqrkPwUpWELedz79JgRjq8zwcnevUiA,5780
79
80
  lets_plot/plot/stat.py,sha256=XuZvGxt801db37yM6MsiLb8L5f6BN2L0wfP-QjBDjcc,22933
80
- lets_plot/plot/subplots.py,sha256=Lhapm_3Z8-yPKTNg3Ey4RXGgJ_6X7zUxwWQ7Ob1Yks4,11311
81
- lets_plot/plot/theme_.py,sha256=JFEH3BOQiwdKOp_LwLhS2mJghiZRWXTkcfditjc3U5g,28866
81
+ lets_plot/plot/subplots.py,sha256=l3lbbxhCwgib1sIUYx-POpJXT8HbhMk9OeIh3zo8kEM,11333
82
+ lets_plot/plot/subplots_util.py,sha256=T04pwI7LaYliUqEdRHog1SGExVt9XosQk6XDwqOg7q0,913
83
+ lets_plot/plot/theme_.py,sha256=nOUOPRDtUtbzl5lRiDnhLbWkNd2KKGkk4GsoKpQwX9E,28677
82
84
  lets_plot/plot/theme_set.py,sha256=USNU-ccPKlZ4KEC1ij92n-SHY5271Ru_c1CQIIWXonI,9103
83
85
  lets_plot/plot/tooltip.py,sha256=AvRjT5UPop5wVORFHnaVeBhAIHTYbIjf0FXXUTB4Qvg,15983
84
86
  lets_plot/plot/util.py,sha256=778yCTbEOvFRNueMyEPhRkJtPEwzh3Lo0LQO0FtoM0U,8586
85
- lets_plot-4.5.3a1.dist-info/LICENSE,sha256=r43VKLFaMylB4Ru-pE07j0cfUO7wQpMnWm-uZ8hEqMw,1066
86
- lets_plot-4.5.3a1.dist-info/METADATA,sha256=ii_g2UJpFi40AMrxmyjP53aD130njgMRGjlJSNtmoWI,11178
87
- lets_plot-4.5.3a1.dist-info/WHEEL,sha256=7_oe0rMIEoZOpgBhth1WRv0SCKz8pdiUZgyT0NjKRv8,107
88
- lets_plot-4.5.3a1.dist-info/top_level.txt,sha256=ID-ORXUWN-oVZmD4YFy1rQVm2QT1D-MlGON3vdxqgpY,34
89
- lets_plot-4.5.3a1.dist-info/RECORD,,
87
+ lets_plot-4.6.0a2.dist-info/LICENSE,sha256=r43VKLFaMylB4Ru-pE07j0cfUO7wQpMnWm-uZ8hEqMw,1066
88
+ lets_plot-4.6.0a2.dist-info/METADATA,sha256=3ebD2zE-9hkXirksI0dUd5WKuaD6NB8oJg9eZ_m6-n0,11178
89
+ lets_plot-4.6.0a2.dist-info/WHEEL,sha256=7_oe0rMIEoZOpgBhth1WRv0SCKz8pdiUZgyT0NjKRv8,107
90
+ lets_plot-4.6.0a2.dist-info/top_level.txt,sha256=ID-ORXUWN-oVZmD4YFy1rQVm2QT1D-MlGON3vdxqgpY,34
91
+ lets_plot-4.6.0a2.dist-info/RECORD,,