lets-plot 4.5.2a2__cp38-cp38-win_amd64.whl → 4.5.3a1__cp38-cp38-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of lets-plot might be problematic. Click here for more details.

@@ -86,11 +86,17 @@ def infer_type(data: Union[Dict, 'pandas.DataFrame', 'polars.DataFrame']) -> Dic
86
86
  continue
87
87
 
88
88
  type_set = set(type(val) for val in var_content)
89
- if None in type_set:
90
- type_set.remove(None)
89
+ if type(None) in type_set:
90
+ type_set.remove(type(None))
91
+
92
+ if len(type_set) == 0:
93
+ continue
91
94
 
92
95
  if len(type_set) > 1:
93
- type_info[var_name] = 'unknown(mixed types)'
96
+ if all(issubclass(type_obj, int) or issubclass(type_obj, float) for type_obj in type_set):
97
+ type_info[var_name] = TYPE_FLOATING
98
+ else:
99
+ type_info[var_name] = 'unknown(mixed types)'
94
100
  continue
95
101
 
96
102
  try:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: lets-plot
3
- Version: 4.5.2a2
3
+ Version: 4.5.3a1
4
4
  Summary: An open source library for statistical plotting
5
5
  Home-page: https://lets-plot.org
6
6
  Author: JetBrains
@@ -1,9 +1,9 @@
1
- lets_plot_kotlin_bridge.cp38-win_amd64.pyd,sha256=Fcb-866ttZKDzKHIPlJfM3OID9YyeFrRZmNHJJVBMcw,7680512
1
+ lets_plot_kotlin_bridge.cp38-win_amd64.pyd,sha256=bJBYrwRqIX2zcp76PhGT01WWvQgUG7bzxUk-K-He_sY,7696896
2
2
  lets_plot/__init__.py,sha256=aOXcSZVe50fLxe5PN_EjUUrylcqzc-kbSBunOpl_wmc,11507
3
3
  lets_plot/_global_settings.py,sha256=dozwVWl2_Sg_-sWC08IYqVBhg4PCDAxHBERvD_XoWJU,7631
4
4
  lets_plot/_kbridge.py,sha256=LCmRSeFeLFoESoVsm72QuZGFKDsRMMoN0lQF01xju1g,1250
5
5
  lets_plot/_type_utils.py,sha256=6hyHbuAmxadW-h0AhTlHgKjQe-3g8cEhnskZ9zBnx5w,3029
6
- lets_plot/_version.py,sha256=nBfZcoSaw6rkfV82A-OTvAvbAhg_CG_sQPTuiNF-L4M,245
6
+ lets_plot/_version.py,sha256=mVOun4dScFKuYWAh0NLCg7Q0tZTh3kxiPihZolRFarI,245
7
7
  lets_plot/mapping.py,sha256=vWWGrVgzgo1u3R8djyshSoOEuaqlqSQpEVeQNqeKWk0,3691
8
8
  lets_plot/settings_utils.py,sha256=vKrsXMuJHR88ZZhPtQFAC-xrWKCpCPiRetfx1GpBGKU,8678
9
9
  lets_plot/tilesets.py,sha256=opnIz6UI3Gu34JRICD_Tj_hrRmhBC-Rj1NuKLiWeJkk,9549
@@ -14,7 +14,7 @@ lets_plot/bistro/im.py,sha256=HDpoNcqzYQrFfw40qAQQ8CvD0lQPzpNWkF93UrjLYjQ,5654
14
14
  lets_plot/bistro/joint.py,sha256=8dn7mhbDkPCzVefrMSZ1kOJlX82RclWS4IBQe1lYymw,6744
15
15
  lets_plot/bistro/qq.py,sha256=lXRoStspJ6cBiZ6WFNS5gPXQGyE1iBq4c40V9OuQHok,8305
16
16
  lets_plot/bistro/residual.py,sha256=FaKP0T34wcBZNL_xMKrqDohSyVb5A6_oYqpKPo_uBr4,12654
17
- lets_plot/bistro/waterfall.py,sha256=Xz_F0vHuZ__bVgaljjOz6Uf6gQWng3QgHhrBSkkY1jM,10585
17
+ lets_plot/bistro/waterfall.py,sha256=hV0QQO8btMqCT0RWtmoMy3YYwHptVrH8hqkivhKOflo,10725
18
18
  lets_plot/export/__init__.py,sha256=JloMKV4OAMgxBuYg8ObByZ3LJvqcUKed1G286WLA85E,194
19
19
  lets_plot/export/ggsave_.py,sha256=fSb9C3hUUmng-NbsIrv7F_a9F7aHXH8PWrSGW3MWyjQ,4704
20
20
  lets_plot/frontend_context/__init__.py,sha256=LALJE-5rVdEcgCP-sWTwNAVoVZB-Pr2lG8CpVn04FrY,212
@@ -47,7 +47,7 @@ lets_plot/geo_data/gis/response.py,sha256=MsAk10JQe0XC-h4Cv0w7uzYxAtlx3YaSrqYXA6
47
47
  lets_plot/geo_data_internals/__init__.py,sha256=ZwcoMdyQ_k9589f2D3nXXjedJpyiDR8WyqaghTh_EVQ,238
48
48
  lets_plot/geo_data_internals/constants.py,sha256=2dViytUZPiojilhWV3UWzBAXgdHl5OoIJsNMsI0V7yU,441
49
49
  lets_plot/geo_data_internals/utils.py,sha256=8vfDa99yq1YpVNr-RDtpCJfbrON04rIG6cugpQXnJlU,1000
50
- lets_plot/package_data/lets-plot.min.js,sha256=g6qFtr38C28vx2TsqLPfSQL7bWKogRjX3z13C1D3RTI,2774659
50
+ lets_plot/package_data/lets-plot.min.js,sha256=4lCodSFpiksWWgKsNz54MVIqcU29C0w2_58VOTcnqoo,2779274
51
51
  lets_plot/plot/__init__.py,sha256=GiiaHZnDDw6C2RRMSlsTbBi9hklr0VS-9j0sfvGYmHw,1779
52
52
  lets_plot/plot/_global_theme.py,sha256=eatwhJiiqnY6mrNW0Y1NMco2e7xxldhItgj1IOkhRuI,311
53
53
  lets_plot/plot/annotation.py,sha256=9jFJ2BTfLXKD-I0uBJrf8tC6cnv31ANTge8cDRJNHfc,7893
@@ -75,15 +75,15 @@ lets_plot/plot/scale_colormap_mpl.py,sha256=Kn-_-RMOGIBT5-Wf7iSXQ31G9J0QTy6oFGE3
75
75
  lets_plot/plot/scale_convenience.py,sha256=UOXX07wP5aARYwsOZ-6rK_RR0szhdhnThPvia6LOqrE,4271
76
76
  lets_plot/plot/scale_identity_.py,sha256=6Uz5focUCHIqB9TPhJs7VsPrlZA7JmDOoP2iZYgCuOU,24454
77
77
  lets_plot/plot/scale_position.py,sha256=_DlKxIKm2_UBxgnCmAdzYf9Mk0bT8xd-PJlnVz2eIpI,47621
78
- lets_plot/plot/series_meta.py,sha256=Nh-Vcq-zcg_oN4wdoHZxn6aKuScH3_5mVJ4D8LhbO3A,5621
78
+ lets_plot/plot/series_meta.py,sha256=dKfCgTR7RPP3MJjrd1Civ1G0w9I39MH4T6gqJrry0Fc,5909
79
79
  lets_plot/plot/stat.py,sha256=wfFhM1WGNiBH2PLroq8Y6RbRMz6jZrRYaJBcWWbbkCo,23514
80
80
  lets_plot/plot/subplots.py,sha256=euKS4m13r0Ilqu1kSBDoW1cjxgFqPRPuPiFyoERO6ro,11633
81
81
  lets_plot/plot/theme_.py,sha256=T6yb7Y79pwOv1r-gE2q0ib0oAowrp3BCy8AO7eeRwJM,29546
82
82
  lets_plot/plot/theme_set.py,sha256=KLQSAihJU8_FmAU0at8WUAtgnIqCvU2Rd5awNhTZimo,9496
83
83
  lets_plot/plot/tooltip.py,sha256=TdyJ8pjNuomAF6jeaRsFyFxWWoSSoFFSzsTTnUYBg2Q,16469
84
84
  lets_plot/plot/util.py,sha256=w5PWWPPG_b3g8z9yxfodsd38Csu-qg6z_Zgmzbavsn0,8812
85
- lets_plot-4.5.2a2.dist-info/LICENSE,sha256=D7RdUBHyt0ua4vSZs8H7-HIcliPTSk9zY3sNzx8fejY,1087
86
- lets_plot-4.5.2a2.dist-info/METADATA,sha256=_HeWeDIUx2AG8I5ts341PEr759pM2p8pBWYUp4DFGjc,11364
87
- lets_plot-4.5.2a2.dist-info/WHEEL,sha256=rTcqimtzpX3smAWAhGmiRSWAxTY4PqYPNE-p4kscHDQ,99
88
- lets_plot-4.5.2a2.dist-info/top_level.txt,sha256=ID-ORXUWN-oVZmD4YFy1rQVm2QT1D-MlGON3vdxqgpY,34
89
- lets_plot-4.5.2a2.dist-info/RECORD,,
85
+ lets_plot-4.5.3a1.dist-info/LICENSE,sha256=D7RdUBHyt0ua4vSZs8H7-HIcliPTSk9zY3sNzx8fejY,1087
86
+ lets_plot-4.5.3a1.dist-info/METADATA,sha256=VOTEzxqikfCzHo81Z53l-a9wHVxuACfKPLEt5irZ7to,11364
87
+ lets_plot-4.5.3a1.dist-info/WHEEL,sha256=rTcqimtzpX3smAWAhGmiRSWAxTY4PqYPNE-p4kscHDQ,99
88
+ lets_plot-4.5.3a1.dist-info/top_level.txt,sha256=ID-ORXUWN-oVZmD4YFy1rQVm2QT1D-MlGON3vdxqgpY,34
89
+ lets_plot-4.5.3a1.dist-info/RECORD,,
Binary file