lemonade-sdk 7.0.1__py3-none-any.whl → 7.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of lemonade-sdk might be problematic. Click here for more details.

lemonade/cli.py CHANGED
@@ -19,6 +19,7 @@ import lemonade.cache as cache
19
19
  from lemonade.tools.mmlu import AccuracyMMLU
20
20
  from lemonade.tools.humaneval import AccuracyHumaneval
21
21
  from lemonade.tools.perplexity import AccuracyPerplexity
22
+ from lemonade.tools.accuracy import LMEvalHarness
22
23
  from lemonade.tools.prompt import LLMPrompt
23
24
  from lemonade.tools.quark.quark_load import QuarkLoad
24
25
  from lemonade.tools.quark.quark_quantize import QuarkQuantize
@@ -36,6 +37,7 @@ def main():
36
37
  AccuracyMMLU,
37
38
  AccuracyHumaneval,
38
39
  AccuracyPerplexity,
40
+ LMEvalHarness,
39
41
  LLMPrompt,
40
42
  HuggingfaceBench,
41
43
  OgaBench,
@@ -0,0 +1,335 @@
1
+ import argparse
2
+ import json
3
+ import os
4
+ import socket
5
+ import subprocess
6
+ import sys
7
+ import time
8
+ from typing import Optional
9
+
10
+ import requests
11
+
12
+ from lemonade.state import State
13
+ from lemonade.tools import Tool
14
+ import lemonade.common.printing as printing
15
+ import lemonade.common.build as build
16
+
17
+ from lemonade.tools.server.thread_utils import ServerRunner
18
+
19
+
20
+ def is_port_in_use(port, host="localhost"):
21
+ """
22
+ Check if a port is in use
23
+ """
24
+ with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
25
+ return s.connect_ex((host, port)) == 0
26
+
27
+
28
+ class LMEvalHarness(Tool):
29
+ """
30
+ Tool for evaluating LLMs using lm-eval-harness on industry standard benchmarks
31
+ like MMLU, GSM8k, and more. See docs/lemonade/lm_eval.md for more details.
32
+ """
33
+
34
+ unique_name = "lm-eval-harness"
35
+
36
+ def __init__(self):
37
+ super().__init__(
38
+ monitor_message="Evaluate model accuracy using ElutherAI's lm-eval-harness"
39
+ )
40
+ self.status_stats = []
41
+ self.server_runner = None
42
+
43
+ @staticmethod
44
+ def parser(add_help: bool = True) -> argparse.ArgumentParser:
45
+ parser = __class__.helpful_parser(
46
+ short_description="Evaluate model using lm-eval-harness",
47
+ add_help=add_help,
48
+ )
49
+
50
+ parser.add_argument(
51
+ "--task",
52
+ type=str,
53
+ required=True,
54
+ help="Task(s) to evaluate on (e.g., gsm8k, mmlu)",
55
+ )
56
+
57
+ parser.add_argument(
58
+ "--server-port", type=int, default=8000, help="Port to use for the server"
59
+ )
60
+
61
+ parser.add_argument(
62
+ "--num-fewshot",
63
+ type=int,
64
+ default=0,
65
+ help="Number of examples in few-shot prompts",
66
+ )
67
+
68
+ parser.add_argument(
69
+ "--limit",
70
+ type=int,
71
+ default=None,
72
+ help="Limit the number of examples per task",
73
+ )
74
+
75
+ parser.add_argument(
76
+ "--log-samples",
77
+ action="store_true",
78
+ help="Log samples for each task to log file",
79
+ )
80
+
81
+ parser.add_argument(
82
+ "--output-path",
83
+ type=str,
84
+ default=None,
85
+ help="Path to save evaluation results",
86
+ )
87
+
88
+ return parser
89
+
90
+ def _process_results(self, results_dir, state):
91
+ """Process evaluation results and save to state stats"""
92
+ if not os.path.exists(results_dir) or not os.path.isdir(results_dir):
93
+ printing.log_warning(f"Results directory not found at {results_dir}")
94
+ return
95
+
96
+ model_dirs = [
97
+ d
98
+ for d in os.listdir(results_dir)
99
+ if os.path.isdir(os.path.join(results_dir, d))
100
+ ]
101
+
102
+ if not model_dirs:
103
+ printing.log_warning(f"No model directories found in {results_dir}")
104
+ return
105
+
106
+ model_dir = os.path.join(results_dir, model_dirs[0])
107
+ printing.log_info(f"Found model directory: {model_dir}")
108
+
109
+ # Find the results JSON file with timestamp
110
+ results_files = [
111
+ f
112
+ for f in os.listdir(model_dir)
113
+ if f.startswith("results_") and f.endswith(".json")
114
+ ]
115
+
116
+ if not results_files:
117
+ printing.log_warning(f"No results files found in {model_dir}")
118
+ return
119
+
120
+ # Sort by timestamp
121
+ results_files.sort(reverse=True)
122
+ results_file_path = os.path.join(model_dir, results_files[0])
123
+ printing.log_info(f"Processing results from {results_file_path}")
124
+
125
+ # Read and process results
126
+ try:
127
+ with open(results_file_path, "r", encoding="utf-8") as f:
128
+ results = json.load(f)
129
+
130
+ # Extract and display metrics
131
+ if "results" in results:
132
+ for task_name, metrics in results["results"].items():
133
+ printing.log_info(f"Results for {task_name}:")
134
+
135
+ for metric, value in metrics.items():
136
+ if isinstance(value, (int, float)) and not metric.startswith(
137
+ "alias"
138
+ ):
139
+ # Format metric name for stats
140
+ clean_metric = metric.replace(",", "_")
141
+ stat_name = f"lm_eval_{task_name}_{clean_metric}"
142
+
143
+ # Save to state stats as percentage
144
+ state.save_stat(stat_name, float(value) * 100)
145
+ state.save_stat(f"{stat_name}_units", "%")
146
+ self.status_stats.append(stat_name)
147
+
148
+ printing.log_info(
149
+ f" {metric}: {value:.4f} ({value*100:.2f}%)"
150
+ )
151
+
152
+ # Save summary metrics if available
153
+ avg_metrics = {}
154
+ if "higher_is_better" in results:
155
+ for metric_type in results["higher_is_better"].values():
156
+ for metric in metric_type.keys():
157
+ if metric not in avg_metrics:
158
+ avg_metrics[metric] = []
159
+
160
+ for task_metrics in results["results"].values():
161
+ for metric, value in task_metrics.items():
162
+ if isinstance(value, (int, float)) and not metric.startswith(
163
+ "alias"
164
+ ):
165
+ base_metric = metric.split(",")[0]
166
+ if base_metric in avg_metrics:
167
+ avg_metrics[base_metric].append(value)
168
+
169
+ # Calculate and save averages
170
+ for metric, values in avg_metrics.items():
171
+ if values:
172
+ avg_value = sum(values) / len(values)
173
+ stat_name = f"lm_eval_average_{metric}"
174
+ state.save_stat(stat_name, float(avg_value) * 100)
175
+ state.save_stat(f"{stat_name}_units", "%")
176
+ self.status_stats.append(stat_name)
177
+ printing.log_info(
178
+ f"Average {metric}: {avg_value:.4f} ({avg_value*100:.2f}%)"
179
+ )
180
+
181
+ except (IOError, json.JSONDecodeError) as e:
182
+ printing.log_error(f"Error processing results: {e}")
183
+
184
+ def run(
185
+ self,
186
+ state: State,
187
+ task: str,
188
+ server_port: int = 8000,
189
+ server_host: str = "localhost",
190
+ num_fewshot: int = 0,
191
+ limit: Optional[int] = None,
192
+ log_samples: bool = False,
193
+ output_path: Optional[str] = None,
194
+ ) -> State:
195
+
196
+ model = state.model
197
+ tokenizer = state.tokenizer
198
+
199
+ if model is None or tokenizer is None:
200
+ raise ValueError(
201
+ "Model and tokenizer must be loaded in state before running lm-eval-harness"
202
+ )
203
+
204
+ # Set up output path
205
+ if output_path is None:
206
+ output_path = os.path.join(
207
+ build.output_dir(state.cache_dir, state.build_name), "lm_eval_results"
208
+ )
209
+
210
+ os.makedirs(output_path, exist_ok=True)
211
+
212
+ # Check if port is already in use
213
+ if is_port_in_use(server_port, server_host):
214
+ error_msg = (
215
+ f"Port {server_port} is already in use. "
216
+ "Please close all applications using this port and try again."
217
+ )
218
+ printing.log_error(error_msg)
219
+ raise RuntimeError(error_msg)
220
+
221
+ # Retroactively determine recipe based on model type to select correct iterator
222
+ # The model is already loaded in server, so we only need recipe for iterator selection
223
+ checkpoint = getattr(state, "checkpoint", "unknown")
224
+ if "OrtGenaiModel" in str(type(model)):
225
+ recipe = "oga-"
226
+ else:
227
+ recipe = "unknown"
228
+
229
+ # Start the server thread
230
+ self.server_runner = ServerRunner(
231
+ model=model,
232
+ tokenizer=tokenizer,
233
+ checkpoint=checkpoint,
234
+ recipe=recipe,
235
+ host=server_host,
236
+ port=server_port,
237
+ )
238
+ self.server_runner.start()
239
+
240
+ # Wait for server initialization
241
+ printing.log_info("Waiting for server initialization...")
242
+
243
+ # Wait for server to start and be responsive
244
+ server_url = f"http://{server_host}:{server_port}"
245
+ max_retries = 30
246
+ retry_delay = 1
247
+
248
+ printing.log_info(f"Checking if server is available at {server_url}...")
249
+ for i in range(max_retries):
250
+ try:
251
+ response = requests.get(f"{server_url}/api/v0/health", timeout=2)
252
+ if response.status_code == 200:
253
+ printing.log_info(f"Server is ready after {i+1} attempts")
254
+ break
255
+ except requests.exceptions.RequestException:
256
+ if i < max_retries - 1:
257
+ time.sleep(retry_delay)
258
+ else:
259
+ printing.log_error(
260
+ f"Server did not start after {max_retries} attempts"
261
+ )
262
+ raise RuntimeError("Failed to start the server")
263
+
264
+ # Build API URL
265
+ results_file = os.path.join(output_path, f"{task}_results")
266
+
267
+ printing.log_info(f"Running lm-eval-harness on {task}...")
268
+
269
+ # Build lm-eval-harness command
270
+ cmd = [
271
+ "lm_eval",
272
+ "--model",
273
+ "local-completions",
274
+ "--tasks",
275
+ task,
276
+ "--model_args",
277
+ (
278
+ f"model={checkpoint},"
279
+ f"base_url={server_url}/api/v0/completions,"
280
+ f"num_concurrent=1,"
281
+ f"max_retries=5,"
282
+ f"retry_timeout=10,"
283
+ f"tokenized_requests=False"
284
+ ),
285
+ "--num_fewshot",
286
+ str(num_fewshot),
287
+ "--output_path",
288
+ results_file,
289
+ ]
290
+
291
+ if limit is not None:
292
+ cmd.extend(["--limit", str(limit)])
293
+
294
+ if log_samples:
295
+ cmd.extend(["--log_samples"])
296
+
297
+ try:
298
+ # On Windows, set UTF-8 mode to handle Unicode output
299
+ env = os.environ.copy()
300
+ if sys.platform == "win32":
301
+ env["PYTHONIOENCODING"] = "utf-8"
302
+
303
+ # Execute lm-eval-harness command
304
+ result = subprocess.run(
305
+ cmd, check=True, text=True, capture_output=True, env=env
306
+ )
307
+
308
+ # Log relevant output and skip any parts that might cause encoding issues
309
+ try:
310
+ printing.log_info(result.stdout)
311
+ except UnicodeEncodeError:
312
+ printing.log_info(
313
+ "Results obtained successfully but couldn't display due to encoding issues"
314
+ )
315
+
316
+ # Process results from the correct location
317
+ results_dir = os.path.join(output_path, f"{task}_results")
318
+ self._process_results(results_dir, state)
319
+
320
+ except subprocess.CalledProcessError as e:
321
+ printing.log_error(f"Error running lm-eval-harness: {e}")
322
+ printing.log_error(f"stderr: {e.stderr}")
323
+ except (IOError, ValueError, requests.RequestException) as e:
324
+ printing.log_error(f"Error: {e}")
325
+ finally:
326
+ # Shut down server
327
+ if self.server_runner and self.server_runner.is_alive():
328
+ printing.log_info("Shutting down server runner...")
329
+ self.server_runner.shutdown()
330
+
331
+ # Make sure we don't have any lingering references to state's model/tokenizer
332
+ # that could prevent garbage collection
333
+ self.server_runner = None
334
+
335
+ return state
@@ -326,6 +326,7 @@ class HuggingfaceAdapter(ModelAdapter):
326
326
  def generate(
327
327
  self,
328
328
  input_ids,
329
+ random_seed=1,
329
330
  **kwargs,
330
331
  ):
331
332
 
@@ -346,6 +347,11 @@ class HuggingfaceAdapter(ModelAdapter):
346
347
  **kwargs,
347
348
  }
348
349
 
350
+ if random_seed is None:
351
+ torch.random.seed()
352
+ else:
353
+ torch.random.manual_seed(random_seed)
354
+
349
355
  with torch.no_grad(), torch.inference_mode():
350
356
  outputs = self.model.generate(input_ids=input_ids, **generation_kwargs)
351
357
 
@@ -139,6 +139,7 @@ class OrtGenaiModel(ModelAdapter):
139
139
  pad_token_id=None,
140
140
  stopping_criteria=None,
141
141
  max_length=None,
142
+ random_seed=1,
142
143
  ):
143
144
  params = og.GeneratorParams(self.model)
144
145
 
@@ -179,6 +180,9 @@ class OrtGenaiModel(ModelAdapter):
179
180
  if use_oga_pre_6_api:
180
181
  params.input_ids = input_ids
181
182
 
183
+ if random_seed is None:
184
+ random_seed = -1 # In og.Generator, -1 = seed with random device
185
+
182
186
  if self.config and "search" in self.config:
183
187
  search_config = self.config["search"]
184
188
  params.set_search_options(
@@ -196,10 +200,7 @@ class OrtGenaiModel(ModelAdapter):
196
200
  past_present_share_buffer=search_config.get(
197
201
  "past_present_share_buffer", True
198
202
  ),
199
- # Make sure that results do not vary across laptops
200
- # by default, random_seed=-1 causes different laptops to give
201
- # different results
202
- random_seed=1,
203
+ random_seed=random_seed,
203
204
  # Not currently supported by OGA
204
205
  # diversity_penalty=search_config.get('diversity_penalty', 0.0),
205
206
  # no_repeat_ngram_size=search_config.get('no_repeat_ngram_size', 0),
@@ -212,6 +213,7 @@ class OrtGenaiModel(ModelAdapter):
212
213
  temperature=temperature,
213
214
  max_length=max_length_to_use,
214
215
  min_length=min_length,
216
+ random_seed=random_seed,
215
217
  )
216
218
  params.try_graph_capture_with_max_batch_size(1)
217
219
 
lemonade/tools/prompt.py CHANGED
@@ -15,6 +15,7 @@ DEFAULT_GENERATE_PARAMS = {
15
15
  "temperature": 0.7,
16
16
  }
17
17
 
18
+ DEFAULT_RANDOM_SEED = 1
18
19
  DEFAULT_MAX_NEW_TOKENS = 512
19
20
  DEFAULT_N_TRIALS = 1
20
21
 
@@ -108,6 +109,19 @@ class LLMPrompt(Tool):
108
109
  f"(useful for testing, default is {DEFAULT_N_TRIALS})",
109
110
  )
110
111
 
112
+ parser.add_argument(
113
+ "--random-seed",
114
+ "-r",
115
+ default=str(DEFAULT_RANDOM_SEED),
116
+ help="Positive integer seed for random number generator used in "
117
+ "sampling tokens "
118
+ f"(default is {DEFAULT_RANDOM_SEED}). If the number of trials is "
119
+ "greater than one, then the seed is incremented by one for each "
120
+ "trial. Set to `None` for random, non-repeatable results. This "
121
+ "random seed behavior only applies to models loaded with "
122
+ "`oga-load` or `huggingface-load`.",
123
+ )
124
+
111
125
  return parser
112
126
 
113
127
  def parse(self, state: State, args, known_only=True) -> argparse.Namespace:
@@ -123,6 +137,11 @@ class LLMPrompt(Tool):
123
137
  with open(parsed_args.prompt, "r", encoding="utf-8") as f:
124
138
  parsed_args.prompt = f.read()
125
139
 
140
+ if parsed_args.random_seed == "None":
141
+ parsed_args.random_seed = None
142
+ else:
143
+ parsed_args.random_seed = int(parsed_args.random_seed)
144
+
126
145
  return parsed_args
127
146
 
128
147
  def run(
@@ -132,6 +151,7 @@ class LLMPrompt(Tool):
132
151
  max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
133
152
  n_trials: int = DEFAULT_N_TRIALS,
134
153
  template: bool = False,
154
+ random_seed: int = DEFAULT_RANDOM_SEED,
135
155
  ) -> State:
136
156
 
137
157
  model: ModelAdapter = state.model
@@ -170,9 +190,16 @@ class LLMPrompt(Tool):
170
190
 
171
191
  # Get the response from the LLM, which may include the prompt in it
172
192
  response = model.generate(
173
- input_ids, max_new_tokens=max_new_tokens, **DEFAULT_GENERATE_PARAMS
193
+ input_ids,
194
+ max_new_tokens=max_new_tokens,
195
+ random_seed=random_seed,
196
+ **DEFAULT_GENERATE_PARAMS,
174
197
  )
175
198
 
199
+ # Increment random seed if not none
200
+ if random_seed is not None:
201
+ random_seed += 1
202
+
176
203
  # Flatten the input and response
177
204
  input_ids_array = (
178
205
  input_ids if isinstance(input_ids, (list, str)) else input_ids[0]