lecrapaud 0.2.0__py3-none-any.whl → 0.3.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of lecrapaud might be problematic. Click here for more details.
- lecrapaud/api.py +8 -2
- lecrapaud/db/alembic/versions/2025_05_31_1834-52b809a34371_make_nullablee.py +24 -12
- lecrapaud/db/session.py +11 -0
- lecrapaud/experiment.py +1 -1
- lecrapaud/feature_engineering.py +11 -12
- lecrapaud/feature_selection.py +29 -48
- lecrapaud/model_selection.py +59 -59
- lecrapaud/utils.py +1 -1
- {lecrapaud-0.2.0.dist-info → lecrapaud-0.3.0.dist-info}/METADATA +27 -20
- {lecrapaud-0.2.0.dist-info → lecrapaud-0.3.0.dist-info}/RECORD +13 -16
- lecrapaud/predictions.py +0 -292
- lecrapaud/preprocessing.py +0 -984
- lecrapaud/training.py +0 -239
- /lecrapaud/{directory_management.py → directories.py} +0 -0
- {lecrapaud-0.2.0.dist-info → lecrapaud-0.3.0.dist-info}/LICENSE +0 -0
- {lecrapaud-0.2.0.dist-info → lecrapaud-0.3.0.dist-info}/WHEEL +0 -0
lecrapaud/training.py
DELETED
|
@@ -1,239 +0,0 @@
|
|
|
1
|
-
import logging
|
|
2
|
-
import joblib
|
|
3
|
-
from pathlib import Path
|
|
4
|
-
import os
|
|
5
|
-
|
|
6
|
-
from lecrapaud.experiment import create_dataset
|
|
7
|
-
from lecrapaud.feature_engineering import (
|
|
8
|
-
feature_engineering,
|
|
9
|
-
encode_categorical_features,
|
|
10
|
-
add_pca_features,
|
|
11
|
-
summarize_dataframe,
|
|
12
|
-
)
|
|
13
|
-
from lecrapaud.feature_selection import (
|
|
14
|
-
feature_selection,
|
|
15
|
-
train_val_test_split,
|
|
16
|
-
train_val_test_split_time_series,
|
|
17
|
-
scale_data,
|
|
18
|
-
reshape_time_series,
|
|
19
|
-
)
|
|
20
|
-
from lecrapaud.model_selection import model_selection
|
|
21
|
-
from lecrapaud.search_space import all_models
|
|
22
|
-
from lecrapaud.directory_management import tmp_dir
|
|
23
|
-
from lecrapaud.db import Dataset
|
|
24
|
-
from lecrapaud.utils import logger
|
|
25
|
-
from lecrapaud.config import PYTHON_ENV
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
# Parameters
|
|
29
|
-
columns_date = ["DATE"]
|
|
30
|
-
columns_te_groupby = [["SECTOR", "DATE"], ["SUBINDUSTRY", "DATE"]]
|
|
31
|
-
columns_te_target = ["RET", "VOLUME", "RESIDUAL_RET", "RELATIVE_VOLUME"] + [
|
|
32
|
-
f"{ind}_{p}"
|
|
33
|
-
for p in [9, 14, 21, 50]
|
|
34
|
-
for ind in [
|
|
35
|
-
"CUMUL_RET",
|
|
36
|
-
"SMA",
|
|
37
|
-
"EMA",
|
|
38
|
-
"VOLATILITY",
|
|
39
|
-
"ATR",
|
|
40
|
-
"ADX",
|
|
41
|
-
"%K",
|
|
42
|
-
"RSI",
|
|
43
|
-
"MFI",
|
|
44
|
-
]
|
|
45
|
-
]
|
|
46
|
-
target_clf = [2, 4, 6, 8, 9, 10, 11]
|
|
47
|
-
column_ordinal = ["STOCK"]
|
|
48
|
-
column_binary = ["SECTOR", "SUBINDUSTRY", "LOCATION"]
|
|
49
|
-
columns_pca = []
|
|
50
|
-
target_numbers = range(1, 15)
|
|
51
|
-
date_column = "DATE"
|
|
52
|
-
group_column = "STOCK"
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
def run_training(
|
|
56
|
-
get_data_function: function,
|
|
57
|
-
get_data_params: dict = None,
|
|
58
|
-
time_series: bool = False,
|
|
59
|
-
dataset_id=None,
|
|
60
|
-
years_of_data=2,
|
|
61
|
-
list_of_groups=None,
|
|
62
|
-
percentile=15,
|
|
63
|
-
corr_threshold=80,
|
|
64
|
-
max_features=20,
|
|
65
|
-
max_timesteps=120,
|
|
66
|
-
targets_numbers=range(1, 15),
|
|
67
|
-
models_idx=range(len(all_models)),
|
|
68
|
-
number_of_trials=20,
|
|
69
|
-
perform_hyperoptimization=True,
|
|
70
|
-
perform_crossval=False,
|
|
71
|
-
clean_dir=False,
|
|
72
|
-
preserve_model=False,
|
|
73
|
-
session_name="test",
|
|
74
|
-
):
|
|
75
|
-
logging.captureWarnings(True)
|
|
76
|
-
|
|
77
|
-
if any(all_models[i].get("recurrent") for i in models_idx) and not time_series:
|
|
78
|
-
ValueError(
|
|
79
|
-
"You need to set time_series to true to use recurrent model, or remove recurrent models from models_idx chosen"
|
|
80
|
-
)
|
|
81
|
-
|
|
82
|
-
if dataset_id is None:
|
|
83
|
-
# Get the data
|
|
84
|
-
logger.info("Getting data...")
|
|
85
|
-
data = get_data_function(**get_data_params)
|
|
86
|
-
|
|
87
|
-
# # preprocess & feature engineering => Should be in get_data_function
|
|
88
|
-
# logger.info("Preprocessing...")
|
|
89
|
-
# preprocessed_data = preprocessing(data, for_training=True, save_as_csv=True)
|
|
90
|
-
|
|
91
|
-
logger.info(f"Feature engineering for {session_name}...")
|
|
92
|
-
data_for_training = feature_engineering(
|
|
93
|
-
data,
|
|
94
|
-
columns_date=columns_date,
|
|
95
|
-
columns_te_groupby=columns_te_groupby,
|
|
96
|
-
columns_te_target=columns_te_target,
|
|
97
|
-
)
|
|
98
|
-
|
|
99
|
-
# Split
|
|
100
|
-
if time_series:
|
|
101
|
-
train, val, test = train_val_test_split_time_series(data_for_training)
|
|
102
|
-
else:
|
|
103
|
-
train, val, test = train_val_test_split(
|
|
104
|
-
data, stratify_col=f"target_{target_numbers[0]}"
|
|
105
|
-
) # TODO: only stratifying first target for now
|
|
106
|
-
|
|
107
|
-
# Create Dataset / Experiment (TODO: should be defined sooner)
|
|
108
|
-
dataset = create_dataset(
|
|
109
|
-
train, val, test, corr_threshold, percentile, max_features
|
|
110
|
-
)
|
|
111
|
-
dataset_dir = dataset.path
|
|
112
|
-
dataset_id = dataset.id
|
|
113
|
-
data_dir = f"{dataset_dir}/data"
|
|
114
|
-
preprocessing_dir = f"{dataset_dir}/preprocessing"
|
|
115
|
-
os.makedirs(data_dir, exist_ok=True)
|
|
116
|
-
os.makedirs(preprocessing_dir, exist_ok=True)
|
|
117
|
-
|
|
118
|
-
# PCA
|
|
119
|
-
train, pcas = add_pca_features(train, columns_pca)
|
|
120
|
-
val, _ = add_pca_features(val, columns_pca, pcas=pcas)
|
|
121
|
-
test, _ = add_pca_features(test, columns_pca, pcas=pcas)
|
|
122
|
-
|
|
123
|
-
if PYTHON_ENV != "Test":
|
|
124
|
-
joblib.dump(pcas, f"{preprocessing_dir}/pca.pkl")
|
|
125
|
-
|
|
126
|
-
# Encoding
|
|
127
|
-
train, transformer = encode_categorical_features(
|
|
128
|
-
train, column_ordinal=column_ordinal, column_binary=column_binary
|
|
129
|
-
)
|
|
130
|
-
val, _ = encode_categorical_features(
|
|
131
|
-
val,
|
|
132
|
-
column_ordinal=column_ordinal,
|
|
133
|
-
column_binary=column_binary,
|
|
134
|
-
transformer=transformer,
|
|
135
|
-
)
|
|
136
|
-
test, _ = encode_categorical_features(
|
|
137
|
-
test,
|
|
138
|
-
column_ordinal=column_ordinal,
|
|
139
|
-
column_binary=column_binary,
|
|
140
|
-
transformer=transformer,
|
|
141
|
-
)
|
|
142
|
-
|
|
143
|
-
if PYTHON_ENV != "Test":
|
|
144
|
-
joblib.dump(data_for_training, f"{data_dir}/full.pkl")
|
|
145
|
-
joblib.dump(transformer, f"{preprocessing_dir}/column_transformer.pkl")
|
|
146
|
-
summary = summarize_dataframe(train)
|
|
147
|
-
summary.to_csv(f"{dataset_dir}/feature_summary.csv", index=False)
|
|
148
|
-
|
|
149
|
-
# feature selection
|
|
150
|
-
logger.info("Feature Selection...")
|
|
151
|
-
for target_number in targets_numbers:
|
|
152
|
-
feature_selection(
|
|
153
|
-
dataset_id=dataset_id,
|
|
154
|
-
train=train,
|
|
155
|
-
target_number=target_number,
|
|
156
|
-
single_process=True,
|
|
157
|
-
)
|
|
158
|
-
|
|
159
|
-
dataset = Dataset.get(dataset_id)
|
|
160
|
-
all_features = dataset.get_all_features()
|
|
161
|
-
columns_to_keep = all_features + [f"TARGET_{i}" for i in target_numbers]
|
|
162
|
-
|
|
163
|
-
duplicates = [
|
|
164
|
-
col for col in set(columns_to_keep) if columns_to_keep.count(col) > 1
|
|
165
|
-
]
|
|
166
|
-
if duplicates:
|
|
167
|
-
raise ValueError(f"Doublons détectés dans columns_to_keep: {duplicates}")
|
|
168
|
-
|
|
169
|
-
train = train[columns_to_keep]
|
|
170
|
-
val = val[columns_to_keep]
|
|
171
|
-
test = test[columns_to_keep]
|
|
172
|
-
|
|
173
|
-
# save data
|
|
174
|
-
if PYTHON_ENV != "Test":
|
|
175
|
-
joblib.dump(train[columns_to_keep], f"{data_dir}/train.pkl")
|
|
176
|
-
joblib.dump(val[columns_to_keep], f"{data_dir}/val.pkl")
|
|
177
|
-
joblib.dump(test[columns_to_keep], f"{data_dir}/test.pkl")
|
|
178
|
-
|
|
179
|
-
# scaling features
|
|
180
|
-
if any(t not in target_clf for t in target_numbers) and any(
|
|
181
|
-
all_models[i].get("need_scaling") for i in models_idx
|
|
182
|
-
):
|
|
183
|
-
logger.info("Scaling features...")
|
|
184
|
-
train_scaled, scaler_x, scalers_y = scale_data(
|
|
185
|
-
train, save_dir=preprocessing_dir
|
|
186
|
-
)
|
|
187
|
-
val_scaled, _, _ = scale_data(
|
|
188
|
-
val, save_dir=preprocessing_dir, scaler_x=scaler_x, scalers_y=scalers_y
|
|
189
|
-
)
|
|
190
|
-
test_scaled, _, _ = scale_data(
|
|
191
|
-
test, save_dir=preprocessing_dir, scaler_x=scaler_x, scalers_y=scalers_y
|
|
192
|
-
)
|
|
193
|
-
else:
|
|
194
|
-
train_scaled = None
|
|
195
|
-
val_scaled = None
|
|
196
|
-
test_scaled = None
|
|
197
|
-
|
|
198
|
-
# save data
|
|
199
|
-
if PYTHON_ENV != "Test":
|
|
200
|
-
joblib.dump(train_scaled, f"{data_dir}/train_scaled.pkl")
|
|
201
|
-
joblib.dump(val_scaled, f"{data_dir}/val_scaled.pkl")
|
|
202
|
-
joblib.dump(test_scaled, f"{data_dir}/test_scaled.pkl")
|
|
203
|
-
|
|
204
|
-
data = {
|
|
205
|
-
"train": train,
|
|
206
|
-
"val": val,
|
|
207
|
-
"test": test,
|
|
208
|
-
"train_scaled": train_scaled,
|
|
209
|
-
"val_scaled": val_scaled,
|
|
210
|
-
"test_scaled": test_scaled,
|
|
211
|
-
"scalers_y": scalers_y,
|
|
212
|
-
}
|
|
213
|
-
|
|
214
|
-
# reshape data for time series
|
|
215
|
-
reshaped_data = None
|
|
216
|
-
if any(all_models[i].get("recurrent") for i in models_idx) and time_series:
|
|
217
|
-
# reshaping data for recurrent models
|
|
218
|
-
logger.info("Reshaping data for recurrent models...")
|
|
219
|
-
reshaped_data = reshape_time_series(
|
|
220
|
-
train_scaled, val_scaled, test_scaled, all_features, timesteps=max_timesteps
|
|
221
|
-
)
|
|
222
|
-
|
|
223
|
-
# model selection and hyperoptimization
|
|
224
|
-
logger.info("Model Selection and Hyperoptimization...")
|
|
225
|
-
for target_number in target_numbers:
|
|
226
|
-
model_selection(
|
|
227
|
-
dataset_id=dataset_id,
|
|
228
|
-
models_idx=models_idx,
|
|
229
|
-
target_number=target_number,
|
|
230
|
-
session_name=session_name,
|
|
231
|
-
perform_hyperoptimization=perform_hyperoptimization,
|
|
232
|
-
perform_crossval=perform_crossval,
|
|
233
|
-
number_of_trials=number_of_trials,
|
|
234
|
-
plot=False,
|
|
235
|
-
clean_dir=clean_dir,
|
|
236
|
-
preserve_model=preserve_model,
|
|
237
|
-
reshaped_data=reshaped_data,
|
|
238
|
-
data=(data or None),
|
|
239
|
-
)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|