learning3d 0.1.0__py3-none-any.whl → 0.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (87) hide show
  1. {learning3d/data_utils → data_utils}/dataloaders.py +16 -14
  2. examples/test_curvenet.py +118 -0
  3. {learning3d/examples → examples}/test_dcp.py +3 -5
  4. {learning3d/examples → examples}/test_deepgmr.py +3 -5
  5. {learning3d/examples → examples}/test_masknet.py +1 -3
  6. {learning3d/examples → examples}/test_masknet2.py +1 -3
  7. {learning3d/examples → examples}/test_pcn.py +2 -4
  8. {learning3d/examples → examples}/test_pcrnet.py +1 -3
  9. {learning3d/examples → examples}/test_pnlk.py +1 -3
  10. {learning3d/examples → examples}/test_pointconv.py +1 -3
  11. {learning3d/examples → examples}/test_pointnet.py +1 -3
  12. {learning3d/examples → examples}/test_prnet.py +3 -5
  13. {learning3d/examples → examples}/test_rpmnet.py +1 -3
  14. {learning3d/examples → examples}/train_PointNetLK.py +2 -4
  15. {learning3d/examples → examples}/train_dcp.py +2 -4
  16. {learning3d/examples → examples}/train_deepgmr.py +2 -4
  17. {learning3d/examples → examples}/train_masknet.py +2 -4
  18. {learning3d/examples → examples}/train_pcn.py +2 -4
  19. {learning3d/examples → examples}/train_pcrnet.py +2 -4
  20. {learning3d/examples → examples}/train_pointconv.py +2 -4
  21. {learning3d/examples → examples}/train_pointnet.py +2 -4
  22. {learning3d/examples → examples}/train_prnet.py +2 -4
  23. {learning3d/examples → examples}/train_rpmnet.py +2 -4
  24. {learning3d-0.1.0.dist-info → learning3d-0.2.1.dist-info}/METADATA +57 -12
  25. learning3d-0.2.1.dist-info/RECORD +70 -0
  26. {learning3d-0.1.0.dist-info → learning3d-0.2.1.dist-info}/WHEEL +1 -1
  27. learning3d-0.2.1.dist-info/top_level.txt +6 -0
  28. {learning3d/models → models}/__init__.py +7 -1
  29. models/curvenet.py +130 -0
  30. {learning3d/models → models}/dgcnn.py +1 -35
  31. {learning3d/models → models}/prnet.py +5 -39
  32. utils/__init__.py +23 -0
  33. utils/curvenet_util.py +540 -0
  34. utils/model_common_utils.py +156 -0
  35. learning3d/losses/cuda/chamfer_distance/__init__.py +0 -1
  36. learning3d/losses/cuda/chamfer_distance/chamfer_distance.cpp +0 -185
  37. learning3d/losses/cuda/chamfer_distance/chamfer_distance.cu +0 -209
  38. learning3d/losses/cuda/chamfer_distance/chamfer_distance.py +0 -66
  39. learning3d/losses/cuda/emd_torch/pkg/emd_loss_layer.py +0 -41
  40. learning3d/losses/cuda/emd_torch/pkg/include/cuda/emd.cuh +0 -347
  41. learning3d/losses/cuda/emd_torch/pkg/include/cuda_helper.h +0 -18
  42. learning3d/losses/cuda/emd_torch/pkg/include/emd.h +0 -54
  43. learning3d/losses/cuda/emd_torch/pkg/layer/__init__.py +0 -1
  44. learning3d/losses/cuda/emd_torch/pkg/layer/emd_loss_layer.py +0 -40
  45. learning3d/losses/cuda/emd_torch/pkg/src/cuda/emd.cu +0 -70
  46. learning3d/losses/cuda/emd_torch/pkg/src/emd.cpp +0 -1
  47. learning3d/losses/cuda/emd_torch/setup.py +0 -29
  48. learning3d/ops/__init__.py +0 -0
  49. learning3d/utils/__init__.py +0 -4
  50. learning3d-0.1.0.dist-info/RECORD +0 -80
  51. learning3d-0.1.0.dist-info/top_level.txt +0 -1
  52. {learning3d/data_utils → data_utils}/__init__.py +0 -0
  53. {learning3d/data_utils → data_utils}/user_data.py +0 -0
  54. {learning3d-0.1.0.dist-info → learning3d-0.2.1.dist-info}/LICENSE +0 -0
  55. {learning3d/losses → losses}/__init__.py +0 -0
  56. {learning3d/losses → losses}/chamfer_distance.py +0 -0
  57. {learning3d/losses → losses}/classification.py +0 -0
  58. {learning3d/losses → losses}/correspondence_loss.py +0 -0
  59. {learning3d/losses → losses}/emd.py +0 -0
  60. {learning3d/losses → losses}/frobenius_norm.py +0 -0
  61. {learning3d/losses → losses}/rmse_features.py +0 -0
  62. {learning3d/models → models}/classifier.py +0 -0
  63. {learning3d/models → models}/dcp.py +0 -0
  64. {learning3d/models → models}/deepgmr.py +0 -0
  65. {learning3d/models → models}/masknet.py +0 -0
  66. {learning3d/models → models}/masknet2.py +0 -0
  67. {learning3d/models → models}/pcn.py +0 -0
  68. {learning3d/models → models}/pcrnet.py +0 -0
  69. {learning3d/models → models}/pointconv.py +0 -0
  70. {learning3d/models → models}/pointnet.py +0 -0
  71. {learning3d/models → models}/pointnetlk.py +0 -0
  72. {learning3d/models → models}/pooling.py +0 -0
  73. {learning3d/models → models}/ppfnet.py +0 -0
  74. {learning3d/models → models}/rpmnet.py +0 -0
  75. {learning3d/models → models}/segmentation.py +0 -0
  76. {learning3d → ops}/__init__.py +0 -0
  77. {learning3d/ops → ops}/data_utils.py +0 -0
  78. {learning3d/ops → ops}/invmat.py +0 -0
  79. {learning3d/ops → ops}/quaternion.py +0 -0
  80. {learning3d/ops → ops}/se3.py +0 -0
  81. {learning3d/ops → ops}/sinc.py +0 -0
  82. {learning3d/ops → ops}/so3.py +0 -0
  83. {learning3d/ops → ops}/transform_functions.py +0 -0
  84. {learning3d/utils → utils}/pointconv_util.py +0 -0
  85. {learning3d/utils → utils}/ppfnet_util.py +0 -0
  86. {learning3d/utils → utils}/svd.py +0 -0
  87. {learning3d/utils → utils}/transformer.py +0 -0
@@ -16,8 +16,9 @@ from scipy.spatial.distance import minkowski
16
16
  from scipy.spatial import cKDTree
17
17
  from torch.utils.data import Dataset
18
18
 
19
- def download_modelnet40(root_dir):
20
- DATA_DIR = os.path.join(root_dir, 'data')
19
+ def download_modelnet40():
20
+ BASE_DIR = os.path.dirname(os.path.abspath(__file__))
21
+ DATA_DIR = os.path.join(BASE_DIR, os.pardir, 'data')
21
22
  if not os.path.exists(DATA_DIR):
22
23
  os.mkdir(DATA_DIR)
23
24
  if not os.path.exists(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048')):
@@ -27,10 +28,11 @@ def download_modelnet40(root_dir):
27
28
  os.system('mv %s %s' % (zipfile[:-4], DATA_DIR))
28
29
  os.system('rm %s' % (zipfile))
29
30
 
30
- def load_data(root_dir, train, use_normals):
31
+ def load_data(train, use_normals):
31
32
  if train: partition = 'train'
32
33
  else: partition = 'test'
33
- DATA_DIR = os.path.join(root_dir, 'data')
34
+ BASE_DIR = os.path.dirname(os.path.abspath(__file__))
35
+ DATA_DIR = os.path.join(BASE_DIR, os.pardir, 'data')
34
36
  all_data = []
35
37
  all_label = []
36
38
  for h5_name in glob.glob(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048', 'ply_data_%s*.h5' % partition)):
@@ -184,15 +186,13 @@ class ModelNet40Data(Dataset):
184
186
  self,
185
187
  train=True,
186
188
  num_points=1024,
187
- download=False,
188
- root_dir='./',
189
+ download=True,
189
190
  randomize_data=False,
190
191
  use_normals=False
191
192
  ):
192
193
  super(ModelNet40Data, self).__init__()
193
- self.root_dir = root_dir
194
- if download: download_modelnet40(root_dir=root_dir)
195
- self.data, self.labels = load_data(root_dir, train, use_normals)
194
+ if download: download_modelnet40()
195
+ self.data, self.labels = load_data(train, use_normals)
196
196
  if not train: self.shapes = self.read_classes_ModelNet40()
197
197
  self.num_points = num_points
198
198
  self.randomize_data = randomize_data
@@ -218,7 +218,8 @@ class ModelNet40Data(Dataset):
218
218
  return self.shapes[label]
219
219
 
220
220
  def read_classes_ModelNet40(self):
221
- DATA_DIR = os.path.join(self.root_dir, 'data')
221
+ BASE_DIR = os.path.dirname(os.path.abspath(__file__))
222
+ DATA_DIR = os.path.join(BASE_DIR, os.pardir, 'data')
222
223
  file = open(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048', 'shape_names.txt'), 'r')
223
224
  shape_names = file.read()
224
225
  shape_names = np.array(shape_names.split('\n')[:-1])
@@ -226,7 +227,7 @@ class ModelNet40Data(Dataset):
226
227
 
227
228
 
228
229
  class ClassificationData(Dataset):
229
- def __init__(self, data_class):
230
+ def __init__(self, data_class=ModelNet40Data()):
230
231
  super(ClassificationData, self).__init__()
231
232
  self.set_class(data_class)
232
233
 
@@ -247,7 +248,7 @@ class ClassificationData(Dataset):
247
248
 
248
249
 
249
250
  class RegistrationData(Dataset):
250
- def __init__(self, algorithm, data_class, partial_source=False, partial_template=False, noise=False, additional_params={}):
251
+ def __init__(self, algorithm, data_class=ModelNet40Data(), partial_source=False, partial_template=False, noise=False, additional_params={}):
251
252
  super(RegistrationData, self).__init__()
252
253
  available_algorithms = ['PCRNet', 'PointNetLK', 'DCP', 'PRNet', 'iPCRNet', 'RPMNet', 'DeepGMR']
253
254
  if algorithm in available_algorithms: self.algorithm = algorithm
@@ -361,9 +362,10 @@ class FlowData(Dataset):
361
362
 
362
363
 
363
364
  class SceneflowDataset(Dataset):
364
- def __init__(self, root_dir, npoints=1024, root='', partition='train'):
365
+ def __init__(self, npoints=1024, root='', partition='train'):
365
366
  if root == '':
366
- DATA_DIR = os.path.join(root_dir, 'data')
367
+ BASE_DIR = os.path.dirname(os.path.abspath(__file__))
368
+ DATA_DIR = os.path.join(BASE_DIR, os.pardir, 'data')
367
369
  root = os.path.join(DATA_DIR, 'data_processed_maxcut_35_20k_2k_8192')
368
370
  if not os.path.exists(root):
369
371
  print("To download dataset, click here: https://drive.google.com/file/d/1CMaxdt-Tg1Wct8v8eGNwuT7qRSIyJPY-/view")
@@ -0,0 +1,118 @@
1
+ import open3d as o3d
2
+ import argparse
3
+ import os
4
+ import sys
5
+ import logging
6
+ import numpy
7
+ import numpy as np
8
+ import torch
9
+ import torch.utils.data
10
+ import torchvision
11
+ from torch.utils.data import DataLoader
12
+ from tensorboardX import SummaryWriter
13
+ from tqdm import tqdm
14
+
15
+ # Only if the files are in example folder.
16
+ BASE_DIR = os.path.dirname(os.path.abspath(__file__))
17
+ if BASE_DIR[-8:] == 'examples':
18
+ sys.path.append(os.path.join(BASE_DIR, os.pardir))
19
+ os.chdir(os.path.join(BASE_DIR, os.pardir))
20
+
21
+ from learning3d.models import CurveNet
22
+ from learning3d.data_utils import ClassificationData, ModelNet40Data
23
+
24
+ def display_open3d(template):
25
+ template_ = o3d.geometry.PointCloud()
26
+ template_.points = o3d.utility.Vector3dVector(template)
27
+ # template_.paint_uniform_color([1, 0, 0])
28
+ o3d.visualization.draw_geometries([template_])
29
+
30
+ def test_one_epoch(device, model, test_loader, testset):
31
+ model.eval()
32
+ test_loss = 0.0
33
+ pred = 0.0
34
+ count = 0
35
+ for i, data in enumerate(tqdm(test_loader)):
36
+ points, target = data
37
+ target = target[:,0]
38
+
39
+ points = points.to(device)
40
+ target = target.to(device)
41
+
42
+ output = model(points)
43
+ loss_val = torch.nn.functional.nll_loss(
44
+ torch.nn.functional.log_softmax(output, dim=1), target, size_average=False)
45
+ print("Ground Truth Label: ", testset.get_shape(target[0].item()))
46
+ print("Predicted Label: ", testset.get_shape(torch.argmax(output[0]).item()))
47
+ display_open3d(points.detach().cpu().numpy()[0])
48
+
49
+ test_loss += loss_val.item()
50
+ count += output.size(0)
51
+
52
+ _, pred1 = output.max(dim=1)
53
+ ag = (pred1 == target)
54
+ am = ag.sum()
55
+ pred += am.item()
56
+
57
+ test_loss = float(test_loss)/count
58
+ accuracy = float(pred)/count
59
+ return test_loss, accuracy
60
+
61
+ def test(args, model, test_loader, testset):
62
+ test_loss, test_accuracy = test_one_epoch(args.device, model, test_loader, testset)
63
+ print("Accuracy: ", test_accuracy*100)
64
+
65
+ def options():
66
+ parser = argparse.ArgumentParser(description='Point Cloud Registration')
67
+ parser.add_argument('--dataset_path', type=str, default='ModelNet40',
68
+ metavar='PATH', help='path to the input dataset') # like '/path/to/ModelNet40'
69
+ parser.add_argument('--eval', type=bool, default=False, help='Train or Evaluate the network.')
70
+
71
+ # settings for input data
72
+ parser.add_argument('--dataset_type', default='modelnet', choices=['modelnet', 'shapenet2'],
73
+ metavar='DATASET', help='dataset type (default: modelnet)')
74
+ parser.add_argument('--num_points', default=1024, type=int,
75
+ metavar='N', help='points in point-cloud (default: 1024)')
76
+
77
+ # settings for CurveNet
78
+ parser.add_argument('-j', '--workers', default=4, type=int,
79
+ metavar='N', help='number of data loading workers (default: 4)')
80
+ parser.add_argument('-b', '--batch_size', default=32, type=int,
81
+ metavar='N', help='mini-batch size (default: 32)')
82
+ parser.add_argument('--num_classes', default=40, type=int,
83
+ metavar='K', help='number of classes to be predicted')
84
+
85
+ # settings for on training
86
+ parser.add_argument('--pretrained', default='learning3d/pretrained/exp_curvenet/models/model.t7', type=str,
87
+ metavar='PATH', help='path to pretrained model file (default: null (no-use))')
88
+ parser.add_argument('--device', default='cuda:0', type=str,
89
+ metavar='DEVICE', help='use CUDA if available')
90
+
91
+ args = parser.parse_args()
92
+ return args
93
+
94
+ def main():
95
+ args = options()
96
+ args.dataset_path = os.path.join(os.getcwd(), os.pardir, os.pardir, 'ModelNet40', 'ModelNet40')
97
+
98
+ testset = ClassificationData(ModelNet40Data(train=False))
99
+ test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
100
+
101
+ if not torch.cuda.is_available():
102
+ args.device = 'cpu'
103
+ args.device = torch.device(args.device)
104
+
105
+ # Create PointNet Model.
106
+ model = CurveNet(num_classes=args.num_classes, k=20)
107
+
108
+ if args.pretrained:
109
+ assert os.path.isfile(args.pretrained)
110
+ weights = torch.load(args.pretrained, map_location='cpu')
111
+ weights = {k[7:]: v for k, v in weights.items()}
112
+ model.load_state_dict(weights)
113
+ model.to(args.device)
114
+
115
+ test(args, model, test_loader, testset)
116
+
117
+ if __name__ == '__main__':
118
+ main()
@@ -88,8 +88,6 @@ def options():
88
88
  metavar='DATASET', help='dataset type (default: modelnet)')
89
89
  parser.add_argument('--num_points', default=1024, type=int,
90
90
  metavar='N', help='points in point-cloud (default: 1024)')
91
- parser.add_argument('--root_dir', default='./', type=str,
92
- help='path of the data where modelnet files are downloaded.')
93
91
 
94
92
  # settings for PointNet
95
93
  parser.add_argument('--pointnet', default='tune', type=str, choices=['fixed', 'tune'],
@@ -116,8 +114,8 @@ def main():
116
114
  args = options()
117
115
  torch.backends.cudnn.deterministic = True
118
116
 
119
- trainset = RegistrationData('DCP', ModelNet40Data(train=True, root_dir=args.root_dir))
120
- testset = RegistrationData('DCP', ModelNet40Data(train=False, root_dir=args.root_dir))
117
+ trainset = RegistrationData('DCP', ModelNet40Data(train=True))
118
+ testset = RegistrationData('DCP', ModelNet40Data(train=False))
121
119
  train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers)
122
120
  test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
123
121
 
@@ -132,7 +130,7 @@ def main():
132
130
 
133
131
  if args.pretrained:
134
132
  assert os.path.isfile(args.pretrained)
135
- model.load_state_dict(torch.load(args.pretrained), strict=False)
133
+ model.load_state_dict(torch.load(args.pretrained, map_location='cpu'), strict=False)
136
134
  model.to(args.device)
137
135
 
138
136
  test(args, model, test_loader)
@@ -103,8 +103,6 @@ def options():
103
103
  metavar='K', help='No of nearest neighbors to be estimated.')
104
104
  parser.add_argument('--use_rri', default=True, type=bool,
105
105
  help='Find nearest neighbors to estimate features from PointNet.')
106
- parser.add_argument('--root_dir', default='./', type=str,
107
- help='path of the data where modelnet files are downloaded.')
108
106
 
109
107
  # settings for on training
110
108
  parser.add_argument('-j', '--workers', default=4, type=int,
@@ -123,8 +121,8 @@ def main():
123
121
  args = options()
124
122
  torch.backends.cudnn.deterministic = True
125
123
 
126
- trainset = RegistrationData('DeepGMR', ModelNet40Data(train=True, root_dir=args.root_dir))
127
- testset = RegistrationData('DeepGMR', ModelNet40Data(train=False, root_dir=args.root_dir))
124
+ trainset = RegistrationData('DeepGMR', ModelNet40Data(train=True))
125
+ testset = RegistrationData('DeepGMR', ModelNet40Data(train=False))
128
126
  train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers)
129
127
  test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
130
128
 
@@ -137,7 +135,7 @@ def main():
137
135
 
138
136
  if args.pretrained:
139
137
  assert os.path.isfile(args.pretrained)
140
- model.load_state_dict(torch.load(args.pretrained), strict=False)
138
+ model.load_state_dict(torch.load(args.pretrained, map_location='cpu'), strict=False)
141
139
  model.to(args.device)
142
140
 
143
141
  test(args, model, test_loader)
@@ -117,8 +117,6 @@ def options():
117
117
  help='Add noise in source point clouds.')
118
118
  parser.add_argument('--outliers', default=False, type=bool,
119
119
  help='Add outliers to template point cloud.')
120
- parser.add_argument('--root_dir', default='./', type=str,
121
- help='path of the data where modelnet files are downloaded.')
122
120
 
123
121
  # settings for on testing
124
122
  parser.add_argument('-j', '--workers', default=1, type=int,
@@ -139,7 +137,7 @@ def main():
139
137
  args = options()
140
138
  torch.backends.cudnn.deterministic = True
141
139
 
142
- testset = RegistrationData('PointNetLK', ModelNet40Data(train=False, num_points=args.num_points, root_dir=args.root_dir),
140
+ testset = RegistrationData('PointNetLK', ModelNet40Data(train=False, num_points=args.num_points),
143
141
  partial_source=args.partial_source, noise=args.noise,
144
142
  additional_params={'use_masknet': True})
145
143
  test_loader = DataLoader(testset, batch_size=args.test_batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
@@ -120,8 +120,6 @@ def options():
120
120
  help='Add noise in source point clouds.')
121
121
  parser.add_argument('--outliers', default=False, type=bool,
122
122
  help='Add outliers to template point cloud.')
123
- parser.add_argument('--root_dir', default='./', type=str,
124
- help='path of the data where modelnet files are downloaded.')
125
123
 
126
124
  # settings for on testing
127
125
  parser.add_argument('-j', '--workers', default=1, type=int,
@@ -142,7 +140,7 @@ def main():
142
140
  args = options()
143
141
  torch.backends.cudnn.deterministic = True
144
142
 
145
- testset = RegistrationData('PointNetLK', ModelNet40Data(train=False, num_points=args.num_points, root_dir=args.root_dir),
143
+ testset = RegistrationData('PointNetLK', ModelNet40Data(train=False, num_points=args.num_points),
146
144
  partial_template=args.partial_template, partial_source=args.partial_source,
147
145
  noise=args.noise, additional_params={'use_masknet': True, 'partial_point_cloud_method': 'planar_crop'})
148
146
  test_loader = DataLoader(testset, batch_size=args.test_batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
@@ -70,8 +70,6 @@ def options():
70
70
  metavar='DATASET', help='dataset type (default: modelnet)')
71
71
  parser.add_argument('--num_points', default=1024, type=int,
72
72
  metavar='N', help='points in point-cloud (default: 1024)')
73
- parser.add_argument('--root_dir', default='./', type=str,
74
- help='path of the data where modelnet files are downloaded.')
75
73
 
76
74
  # settings for PCN
77
75
  parser.add_argument('--emb_dims', default=1024, type=int,
@@ -97,8 +95,8 @@ def main():
97
95
  args = options()
98
96
  args.dataset_path = os.path.join(os.getcwd(), os.pardir, os.pardir, 'ModelNet40', 'ModelNet40')
99
97
 
100
- trainset = ClassificationData(ModelNet40Data(train=True, root_dir=args.root_dir))
101
- testset = ClassificationData(ModelNet40Data(train=False, root_dir=args.root_dir))
98
+ trainset = ClassificationData(ModelNet40Data(train=True))
99
+ testset = ClassificationData(ModelNet40Data(train=False))
102
100
  train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers)
103
101
  test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
104
102
 
@@ -74,8 +74,6 @@ def options():
74
74
  metavar='DATASET', help='dataset type (default: modelnet)')
75
75
  parser.add_argument('--num_points', default=1024, type=int,
76
76
  metavar='N', help='points in point-cloud (default: 1024)')
77
- parser.add_argument('--root_dir', default='./', type=str,
78
- help='path of the data where modelnet files are downloaded.')
79
77
 
80
78
  # settings for PointNet
81
79
  parser.add_argument('--emb_dims', default=1024, type=int,
@@ -99,7 +97,7 @@ def options():
99
97
  def main():
100
98
  args = options()
101
99
 
102
- testset = RegistrationData('PCRNet', ModelNet40Data(train=False, root_dir=args.root_dir))
100
+ testset = RegistrationData('PCRNet', ModelNet40Data(train=False))
103
101
  test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
104
102
 
105
103
  if not torch.cuda.is_available():
@@ -74,8 +74,6 @@ def options():
74
74
  metavar='DATASET', help='dataset type (default: modelnet)')
75
75
  parser.add_argument('--num_points', default=1024, type=int,
76
76
  metavar='N', help='points in point-cloud (default: 1024)')
77
- parser.add_argument('--root_dir', default='./', type=str,
78
- help='path of the data where modelnet files are downloaded.')
79
77
 
80
78
  # settings for PointNet
81
79
  parser.add_argument('--emb_dims', default=1024, type=int,
@@ -100,7 +98,7 @@ def options():
100
98
  def main():
101
99
  args = options()
102
100
 
103
- testset = RegistrationData('PointNetLK', ModelNet40Data(train=False, root_dir=args.root_dir))
101
+ testset = RegistrationData('PointNetLK', ModelNet40Data(train=False))
104
102
  test_loader = DataLoader(testset, batch_size=8, shuffle=False, drop_last=False, num_workers=args.workers)
105
103
 
106
104
  if not torch.cuda.is_available():
@@ -73,8 +73,6 @@ def options():
73
73
  metavar='DATASET', help='dataset type (default: modelnet)')
74
74
  parser.add_argument('--num_points', default=1024, type=int,
75
75
  metavar='N', help='points in point-cloud (default: 1024)')
76
- parser.add_argument('--root_dir', default='./', type=str,
77
- help='path of the data where modelnet files are downloaded.')
78
76
 
79
77
  # settings for PointNet
80
78
  parser.add_argument('--pointnet', default='tune', type=str, choices=['fixed', 'tune'],
@@ -101,7 +99,7 @@ def main():
101
99
  args = options()
102
100
  args.dataset_path = os.path.join(os.getcwd(), os.pardir, os.pardir, 'ModelNet40', 'ModelNet40')
103
101
 
104
- testset = ClassificationData(ModelNet40Data(train=False, root_dir=args.root_dir))
102
+ testset = ClassificationData(ModelNet40Data(train=False))
105
103
  test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
106
104
 
107
105
  if not torch.cuda.is_available():
@@ -73,8 +73,6 @@ def options():
73
73
  metavar='DATASET', help='dataset type (default: modelnet)')
74
74
  parser.add_argument('--num_points', default=1024, type=int,
75
75
  metavar='N', help='points in point-cloud (default: 1024)')
76
- parser.add_argument('--root_dir', default='./', type=str,
77
- help='path of the data where modelnet files are downloaded.')
78
76
 
79
77
  # settings for PointNet
80
78
  parser.add_argument('--pointnet', default='tune', type=str, choices=['fixed', 'tune'],
@@ -101,7 +99,7 @@ def main():
101
99
  args = options()
102
100
  args.dataset_path = os.path.join(os.getcwd(), os.pardir, os.pardir, 'ModelNet40', 'ModelNet40')
103
101
 
104
- testset = ClassificationData(ModelNet40Data(train=False, root_dir=args.root_dir))
102
+ testset = ClassificationData(ModelNet40Data(train=False))
105
103
  test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
106
104
 
107
105
  if not torch.cuda.is_available():
@@ -79,8 +79,6 @@ def options():
79
79
  # settings for input data
80
80
  parser.add_argument('--dataset_type', default='modelnet', choices=['modelnet', 'shapenet2'],
81
81
  metavar='DATASET', help='dataset type (default: modelnet)')
82
- parser.add_argument('--root_dir', default='./', type=str,
83
- help='path of the data where modelnet files are downloaded.')
84
82
 
85
83
  # settings for PointNet
86
84
  parser.add_argument('--emb_dims', default=512, type=int,
@@ -104,8 +102,8 @@ def main():
104
102
  args = options()
105
103
  torch.backends.cudnn.deterministic = True
106
104
 
107
- trainset = RegistrationData('PRNet', ModelNet40Data(train=True, root_dir=args.root_dir), partial_source=True, partial_template=True)
108
- testset = RegistrationData('PRNet', ModelNet40Data(train=False, root_dir=args.root_dir), partial_source=True, partial_template=True)
105
+ trainset = RegistrationData('PRNet', ModelNet40Data(train=True), partial_source=True, partial_template=True)
106
+ testset = RegistrationData('PRNet', ModelNet40Data(train=False), partial_source=True, partial_template=True)
109
107
  train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers)
110
108
  test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
111
109
 
@@ -119,7 +117,7 @@ def main():
119
117
 
120
118
  if args.pretrained:
121
119
  assert os.path.isfile(args.pretrained)
122
- model.load_state_dict(torch.load(args.pretrained), strict=False)
120
+ model.load_state_dict(torch.load(args.pretrained, map_location='cpu'), strict=False)
123
121
  model.to(args.device)
124
122
 
125
123
  test(args, model, test_loader)
@@ -74,8 +74,6 @@ def options():
74
74
  metavar='DATASET', help='dataset type (default: modelnet)')
75
75
  parser.add_argument('--num_points', default=1024, type=int,
76
76
  metavar='N', help='points in point-cloud (default: 1024)')
77
- parser.add_argument('--root_dir', default='./', type=str,
78
- help='path of the data where modelnet files are downloaded.')
79
77
 
80
78
  # settings for PointNet
81
79
  parser.add_argument('--emb_dims', default=1024, type=int,
@@ -100,7 +98,7 @@ def options():
100
98
  def main():
101
99
  args = options()
102
100
 
103
- testset = RegistrationData('RPMNet', ModelNet40Data(train=False, num_points=args.num_points, use_normals=True, root_dir=args.root_dir), partial_source=True, partial_template=False)
101
+ testset = RegistrationData('RPMNet', ModelNet40Data(train=False, num_points=args.num_points, use_normals=True), partial_source=True, partial_template=False)
104
102
  test_loader = DataLoader(testset, batch_size=1, shuffle=False, drop_last=False, num_workers=args.workers)
105
103
 
106
104
  if not torch.cuda.is_available():
@@ -147,8 +147,6 @@ def options():
147
147
  metavar='DATASET', help='dataset type (default: modelnet)')
148
148
  parser.add_argument('--num_points', default=1024, type=int,
149
149
  metavar='N', help='points in point-cloud (default: 1024)')
150
- parser.add_argument('--root_dir', default='./', type=str,
151
- help='path of the data where modelnet files are downloaded.')
152
150
 
153
151
  # settings for PointNet
154
152
  parser.add_argument('--fine_tune_pointnet', default='tune', type=str, choices=['fixed', 'tune'],
@@ -197,8 +195,8 @@ def main():
197
195
  textio.cprint(str(args))
198
196
 
199
197
 
200
- trainset = RegistrationData('PointNetLK', ModelNet40Data(train=True, root_dir=args.root_dir))
201
- testset = RegistrationData('PointNetLK', ModelNet40Data(train=False, root_dir=args.root_dir))
198
+ trainset = RegistrationData('PointNetLK', ModelNet40Data(train=True))
199
+ testset = RegistrationData('PointNetLK', ModelNet40Data(train=False))
202
200
  train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers)
203
201
  test_loader = DataLoader(testset, batch_size=8, shuffle=False, drop_last=False, num_workers=args.workers)
204
202
 
@@ -168,8 +168,6 @@ def options():
168
168
  metavar='DATASET', help='dataset type (default: modelnet)')
169
169
  parser.add_argument('--num_points', default=1024, type=int,
170
170
  metavar='N', help='points in point-cloud (default: 1024)')
171
- parser.add_argument('--root_dir', default='./', type=str,
172
- help='path of the data where modelnet files are downloaded.')
173
171
 
174
172
  # settings for PointNet
175
173
  parser.add_argument('--pointnet', default='tune', type=str, choices=['fixed', 'tune'],
@@ -216,8 +214,8 @@ def main():
216
214
  textio.cprint(str(args))
217
215
 
218
216
 
219
- trainset = RegistrationData('DCP', ModelNet40Data(train=True, root_dir=args.root_dir))
220
- testset = RegistrationData('DCP', ModelNet40Data(train=False, root_dir=args.root_dir))
217
+ trainset = RegistrationData('DCP', ModelNet40Data(train=True))
218
+ testset = RegistrationData('DCP', ModelNet40Data(train=False))
221
219
  train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers)
222
220
  test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
223
221
 
@@ -165,8 +165,6 @@ def options():
165
165
  metavar='DATASET', help='dataset type (default: modelnet)')
166
166
  parser.add_argument('--num_points', default=1024, type=int,
167
167
  metavar='N', help='points in point-cloud (default: 1024)')
168
- parser.add_argument('--root_dir', default='./', type=str,
169
- help='path of the data where modelnet files are downloaded.')
170
168
 
171
169
  parser.add_argument('--nearest_neighbors', default=20, type=int,
172
170
  metavar='K', help='No of nearest neighbors to be estimated.')
@@ -213,8 +211,8 @@ def main():
213
211
  textio = IOStream('checkpoints/' + args.exp_name + '/run.log')
214
212
  textio.cprint(str(args))
215
213
 
216
- trainset = RegistrationData('DeepGMR', ModelNet40Data(train=True, root_dir=args.root_dir), additional_params={'nearest_neighbors': args.nearest_neighbors})
217
- testset = RegistrationData('DeepGMR', ModelNet40Data(train=False, root_dir=args.root_dir), additional_params={'nearest_neighbors': args.nearest_neighbors})
214
+ trainset = RegistrationData('DeepGMR', ModelNet40Data(train=True), additional_params={'nearest_neighbors': args.nearest_neighbors})
215
+ testset = RegistrationData('DeepGMR', ModelNet40Data(train=False), additional_params={'nearest_neighbors': args.nearest_neighbors})
218
216
  train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers)
219
217
  test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
220
218
 
@@ -160,8 +160,6 @@ def options():
160
160
  help='Add noise in source point clouds.')
161
161
  parser.add_argument('--outliers', default=False, type=bool,
162
162
  help='Add outliers to template point cloud.')
163
- parser.add_argument('--root_dir', default='./', type=str,
164
- help='path of the data where modelnet files are downloaded.')
165
163
 
166
164
  # settings for on training
167
165
  parser.add_argument('--seed', type=int, default=1234)
@@ -204,10 +202,10 @@ def main():
204
202
  textio = IOStream('checkpoints/' + args.exp_name + '/run.log')
205
203
  textio.cprint(str(args))
206
204
 
207
- trainset = RegistrationData(ModelNet40Data(train=True, num_points=args.num_points, unseen=args.unseen, root_dir=args.root_dir),
205
+ trainset = RegistrationData(ModelNet40Data(train=True, num_points=args.num_points, unseen=args.unseen),
208
206
  partial_source=args.partial_source, noise=args.noise, outliers=args.outliers,
209
207
  additional_params={'use_masknet': True})
210
- testset = RegistrationData(ModelNet40Data(train=False, num_points=args.num_points, unseen=args.unseen, root_dir=args.root_dir),
208
+ testset = RegistrationData(ModelNet40Data(train=False, num_points=args.num_points, unseen=args.unseen),
211
209
  partial_source=args.partial_source, noise=args.noise, outliers=args.outliers,
212
210
  additional_params={'use_masknet': True})
213
211
  train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers)
@@ -138,8 +138,6 @@ def options():
138
138
  metavar='DATASET', help='dataset type (default: modelnet)')
139
139
  parser.add_argument('--num_points', default=1024, type=int,
140
140
  metavar='N', help='points in point-cloud (default: 1024)')
141
- parser.add_argument('--root_dir', default='./', type=str,
142
- help='path of the data where modelnet files are downloaded.')
143
141
 
144
142
  # settings for PCN
145
143
  parser.add_argument('--emb_dims', default=1024, type=int,
@@ -185,8 +183,8 @@ def main():
185
183
  textio.cprint(str(args))
186
184
 
187
185
 
188
- trainset = ClassificationData(ModelNet40Data(train=True, root_dir=args.root_dir))
189
- testset = ClassificationData(ModelNet40Data(train=False, root_dir=args.root_dir))
186
+ trainset = ClassificationData(ModelNet40Data(train=True))
187
+ testset = ClassificationData(ModelNet40Data(train=False))
190
188
  train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers)
191
189
  test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
192
190
 
@@ -147,8 +147,6 @@ def options():
147
147
  metavar='DATASET', help='dataset type (default: modelnet)')
148
148
  parser.add_argument('--num_points', default=1024, type=int,
149
149
  metavar='N', help='points in point-cloud (default: 1024)')
150
- parser.add_argument('--root_dir', default='./', type=str,
151
- help='path of the data where modelnet files are downloaded.')
152
150
 
153
151
  # settings for PointNet
154
152
  parser.add_argument('--pointnet', default='tune', type=str, choices=['fixed', 'tune'],
@@ -195,8 +193,8 @@ def main():
195
193
  textio.cprint(str(args))
196
194
 
197
195
 
198
- trainset = RegistrationData('PCRNet', ModelNet40Data(train=True, root_dir=args.root_dir))
199
- testset = RegistrationData('PCRNet', ModelNet40Data(train=False, root_dir=args.root_dir))
196
+ trainset = RegistrationData('PCRNet', ModelNet40Data(train=True))
197
+ testset = RegistrationData('PCRNet', ModelNet40Data(train=False))
200
198
  train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers)
201
199
  test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
202
200
 
@@ -163,8 +163,6 @@ def options():
163
163
  metavar='DATASET', help='dataset type (default: modelnet)')
164
164
  parser.add_argument('--num_points', default=1024, type=int,
165
165
  metavar='N', help='points in point-cloud (default: 1024)')
166
- parser.add_argument('--root_dir', default='./', type=str,
167
- help='path of the data where modelnet files are downloaded.')
168
166
 
169
167
  # settings for PointNet
170
168
  parser.add_argument('--pointnet', default='tune', type=str, choices=['fixed', 'tune'],
@@ -212,8 +210,8 @@ def main():
212
210
  textio.cprint(str(args))
213
211
 
214
212
 
215
- trainset = ClassificationData(ModelNet40Data(train=True, root_dir=args.root_dir))
216
- testset = ClassificationData(ModelNet40Data(train=False, root_dir=args.root_dir))
213
+ trainset = ClassificationData(ModelNet40Data(train=True))
214
+ testset = ClassificationData(ModelNet40Data(train=False))
217
215
  train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers)
218
216
  test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
219
217
 
@@ -163,8 +163,6 @@ def options():
163
163
  metavar='DATASET', help='dataset type (default: modelnet)')
164
164
  parser.add_argument('--num_points', default=1024, type=int,
165
165
  metavar='N', help='points in point-cloud (default: 1024)')
166
- parser.add_argument('--root_dir', default='./', type=str,
167
- help='path of the data where modelnet files are downloaded.')
168
166
 
169
167
  # settings for PointNet
170
168
  parser.add_argument('--pointnet', default='tune', type=str, choices=['fixed', 'tune'],
@@ -212,8 +210,8 @@ def main():
212
210
  textio.cprint(str(args))
213
211
 
214
212
 
215
- trainset = ClassificationData(ModelNet40Data(train=True, root_dir=args.root_dir))
216
- testset = ClassificationData(ModelNet40Data(train=False, root_dir=args.root_dir))
213
+ trainset = ClassificationData(ModelNet40Data(train=True))
214
+ testset = ClassificationData(ModelNet40Data(train=False))
217
215
  train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers)
218
216
  test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
219
217
 
@@ -157,8 +157,6 @@ def options():
157
157
  metavar='K', help='dim. of the feature vector (default: 1024)')
158
158
  parser.add_argument('--num_iterations', default=3, type=int,
159
159
  help='Number of Iterations')
160
- parser.add_argument('--root_dir', default='./', type=str,
161
- help='path of the data where modelnet files are downloaded.')
162
160
 
163
161
  # settings for on training
164
162
  parser.add_argument('--seed', type=int, default=1234)
@@ -197,8 +195,8 @@ def main():
197
195
  textio.cprint(str(args))
198
196
 
199
197
 
200
- trainset = RegistrationData('PRNet', ModelNet40Data(train=True, root_dir=args.root_dir), partial_source=True, partial_template=True)
201
- testset = RegistrationData('PRNet', ModelNet40Data(train=False, root_dir=args.root_dir), partial_source=True, partial_template=True)
198
+ trainset = RegistrationData('PRNet', ModelNet40Data(train=True), partial_source=True, partial_template=True)
199
+ testset = RegistrationData('PRNet', ModelNet40Data(train=False), partial_source=True, partial_template=True)
202
200
  train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers)
203
201
  test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers)
204
202