learning3d 0.1.0__py3-none-any.whl → 0.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {learning3d/data_utils → data_utils}/dataloaders.py +16 -14
- examples/test_curvenet.py +118 -0
- {learning3d/examples → examples}/test_dcp.py +3 -5
- {learning3d/examples → examples}/test_deepgmr.py +3 -5
- {learning3d/examples → examples}/test_masknet.py +1 -3
- {learning3d/examples → examples}/test_masknet2.py +1 -3
- {learning3d/examples → examples}/test_pcn.py +2 -4
- {learning3d/examples → examples}/test_pcrnet.py +1 -3
- {learning3d/examples → examples}/test_pnlk.py +1 -3
- {learning3d/examples → examples}/test_pointconv.py +1 -3
- {learning3d/examples → examples}/test_pointnet.py +1 -3
- {learning3d/examples → examples}/test_prnet.py +3 -5
- {learning3d/examples → examples}/test_rpmnet.py +1 -3
- {learning3d/examples → examples}/train_PointNetLK.py +2 -4
- {learning3d/examples → examples}/train_dcp.py +2 -4
- {learning3d/examples → examples}/train_deepgmr.py +2 -4
- {learning3d/examples → examples}/train_masknet.py +2 -4
- {learning3d/examples → examples}/train_pcn.py +2 -4
- {learning3d/examples → examples}/train_pcrnet.py +2 -4
- {learning3d/examples → examples}/train_pointconv.py +2 -4
- {learning3d/examples → examples}/train_pointnet.py +2 -4
- {learning3d/examples → examples}/train_prnet.py +2 -4
- {learning3d/examples → examples}/train_rpmnet.py +2 -4
- {learning3d-0.1.0.dist-info → learning3d-0.2.0.dist-info}/METADATA +56 -11
- learning3d-0.2.0.dist-info/RECORD +70 -0
- {learning3d-0.1.0.dist-info → learning3d-0.2.0.dist-info}/WHEEL +1 -1
- learning3d-0.2.0.dist-info/top_level.txt +6 -0
- {learning3d/models → models}/__init__.py +7 -1
- models/curvenet.py +130 -0
- {learning3d/models → models}/dgcnn.py +1 -35
- {learning3d/models → models}/prnet.py +5 -39
- utils/__init__.py +23 -0
- utils/curvenet_util.py +540 -0
- utils/model_common_utils.py +156 -0
- learning3d/losses/cuda/chamfer_distance/__init__.py +0 -1
- learning3d/losses/cuda/chamfer_distance/chamfer_distance.cpp +0 -185
- learning3d/losses/cuda/chamfer_distance/chamfer_distance.cu +0 -209
- learning3d/losses/cuda/chamfer_distance/chamfer_distance.py +0 -66
- learning3d/losses/cuda/emd_torch/pkg/emd_loss_layer.py +0 -41
- learning3d/losses/cuda/emd_torch/pkg/include/cuda/emd.cuh +0 -347
- learning3d/losses/cuda/emd_torch/pkg/include/cuda_helper.h +0 -18
- learning3d/losses/cuda/emd_torch/pkg/include/emd.h +0 -54
- learning3d/losses/cuda/emd_torch/pkg/layer/__init__.py +0 -1
- learning3d/losses/cuda/emd_torch/pkg/layer/emd_loss_layer.py +0 -40
- learning3d/losses/cuda/emd_torch/pkg/src/cuda/emd.cu +0 -70
- learning3d/losses/cuda/emd_torch/pkg/src/emd.cpp +0 -1
- learning3d/losses/cuda/emd_torch/setup.py +0 -29
- learning3d/ops/__init__.py +0 -0
- learning3d/utils/__init__.py +0 -4
- learning3d-0.1.0.dist-info/RECORD +0 -80
- learning3d-0.1.0.dist-info/top_level.txt +0 -1
- {learning3d/data_utils → data_utils}/__init__.py +0 -0
- {learning3d/data_utils → data_utils}/user_data.py +0 -0
- {learning3d-0.1.0.dist-info → learning3d-0.2.0.dist-info}/LICENSE +0 -0
- {learning3d/losses → losses}/__init__.py +0 -0
- {learning3d/losses → losses}/chamfer_distance.py +0 -0
- {learning3d/losses → losses}/classification.py +0 -0
- {learning3d/losses → losses}/correspondence_loss.py +0 -0
- {learning3d/losses → losses}/emd.py +0 -0
- {learning3d/losses → losses}/frobenius_norm.py +0 -0
- {learning3d/losses → losses}/rmse_features.py +0 -0
- {learning3d/models → models}/classifier.py +0 -0
- {learning3d/models → models}/dcp.py +0 -0
- {learning3d/models → models}/deepgmr.py +0 -0
- {learning3d/models → models}/masknet.py +0 -0
- {learning3d/models → models}/masknet2.py +0 -0
- {learning3d/models → models}/pcn.py +0 -0
- {learning3d/models → models}/pcrnet.py +0 -0
- {learning3d/models → models}/pointconv.py +0 -0
- {learning3d/models → models}/pointnet.py +0 -0
- {learning3d/models → models}/pointnetlk.py +0 -0
- {learning3d/models → models}/pooling.py +0 -0
- {learning3d/models → models}/ppfnet.py +0 -0
- {learning3d/models → models}/rpmnet.py +0 -0
- {learning3d/models → models}/segmentation.py +0 -0
- {learning3d → ops}/__init__.py +0 -0
- {learning3d/ops → ops}/data_utils.py +0 -0
- {learning3d/ops → ops}/invmat.py +0 -0
- {learning3d/ops → ops}/quaternion.py +0 -0
- {learning3d/ops → ops}/se3.py +0 -0
- {learning3d/ops → ops}/sinc.py +0 -0
- {learning3d/ops → ops}/so3.py +0 -0
- {learning3d/ops → ops}/transform_functions.py +0 -0
- {learning3d/utils → utils}/pointconv_util.py +0 -0
- {learning3d/utils → utils}/ppfnet_util.py +0 -0
- {learning3d/utils → utils}/svd.py +0 -0
- {learning3d/utils → utils}/transformer.py +0 -0
@@ -146,8 +146,6 @@ def options():
|
|
146
146
|
metavar='DATASET', help='dataset type (default: modelnet)')
|
147
147
|
parser.add_argument('--num_points', default=1024, type=int,
|
148
148
|
metavar='N', help='points in point-cloud (default: 1024)')
|
149
|
-
parser.add_argument('--root_dir', default='./', type=str,
|
150
|
-
help='path of the data where modelnet files are downloaded.')
|
151
149
|
|
152
150
|
# settings for PointNet
|
153
151
|
parser.add_argument('--fine_tune_pointnet', default='tune', type=str, choices=['fixed', 'tune'],
|
@@ -196,8 +194,8 @@ def main():
|
|
196
194
|
textio.cprint(str(args))
|
197
195
|
|
198
196
|
|
199
|
-
trainset = RegistrationData('RPMNet', ModelNet40Data(train=True, num_points=args.num_points, use_normals=True
|
200
|
-
testset = RegistrationData('RPMNet', ModelNet40Data(train=False, num_points=args.num_points, use_normals=True
|
197
|
+
trainset = RegistrationData('RPMNet', ModelNet40Data(train=True, num_points=args.num_points, use_normals=True), partial_source=True, partial_template=True)
|
198
|
+
testset = RegistrationData('RPMNet', ModelNet40Data(train=False, num_points=args.num_points, use_normals=True), partial_source=True, partial_template=True)
|
201
199
|
train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers)
|
202
200
|
test_loader = DataLoader(testset, batch_size=8, shuffle=False, drop_last=False, num_workers=args.workers)
|
203
201
|
|
@@ -1,10 +1,35 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: learning3d
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.2.0
|
4
4
|
Summary: Learning3D: A Modern Library for Deep Learning on 3D Point Clouds Data
|
5
5
|
Author-email: Vinit Sarode <vinitsarode5@gmail.com>
|
6
|
+
Maintainer-email: Vinit Sarode <vinitsarode5@gmail.com>
|
7
|
+
License: The MIT License
|
8
|
+
|
9
|
+
Copyright (c) 2010-2019 Google, Inc. http://angularjs.org
|
10
|
+
|
11
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
12
|
+
of this software and associated documentation files (the "Software"), to deal
|
13
|
+
in the Software without restriction, including without limitation the rights
|
14
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
15
|
+
copies of the Software, and to permit persons to whom the Software is
|
16
|
+
furnished to do so, subject to the following conditions:
|
17
|
+
|
18
|
+
The above copyright notice and this permission notice shall be included in
|
19
|
+
all copies or substantial portions of the Software.
|
20
|
+
|
21
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
22
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
23
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
24
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
25
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
26
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
27
|
+
THE SOFTWARE.
|
6
28
|
Project-URL: Homepage, https://github.com/vinits5/learning3d
|
29
|
+
Project-URL: Repository, https://github.com/vinits5/learning3d
|
7
30
|
Project-URL: Issues, https://github.com/vinits5/learning3d/issues
|
31
|
+
Project-URL: Changelog, https://github.com/vinits5/learning3d/CHANGELOG.md
|
32
|
+
Keywords: Point Clouds,Deep Learning,3D Vision,Point Cloud Registration,Point Cloud Classification,Point Cloud Segmentation
|
8
33
|
Classifier: Programming Language :: Python :: 3
|
9
34
|
Classifier: License :: OSI Approved :: MIT License
|
10
35
|
Classifier: Operating System :: OS Independent
|
@@ -22,6 +47,7 @@ Requires-Dist: scikit-learn ==1.2.2
|
|
22
47
|
Requires-Dist: scipy ==1.10.1
|
23
48
|
Requires-Dist: numpy ==1.24.3
|
24
49
|
Requires-Dist: transforms3d ==0.4.1
|
50
|
+
Requires-Dist: pycuda
|
25
51
|
|
26
52
|
<p align="center">
|
27
53
|
<img src="https://github.com/vinits5/learning3d/blob/master/images/logo.png" height="170">
|
@@ -34,24 +60,40 @@ Requires-Dist: transforms3d ==0.4.1
|
|
34
60
|
Learning3D is an open-source library that supports the development of deep learning algorithms that deal with 3D data. The Learning3D exposes a set of state of art deep neural networks in python. A modular code has been provided for further development. We welcome contributions from the open-source community.
|
35
61
|
|
36
62
|
## Latest News:
|
37
|
-
1. \[
|
38
|
-
2. \[
|
39
|
-
3. \[24
|
40
|
-
4. \[
|
41
|
-
5. \[24 Dec. 2020\]: [
|
42
|
-
6. \[
|
43
|
-
7. \[
|
63
|
+
1. \[28 Feb, 2025\]: [CurveNet](https://github.com/tiangexiang/CurveNet) is now a part of learning3d library.
|
64
|
+
2. \[7 Apr, 2024\]: Now, learning3d is available as pypi package.
|
65
|
+
3. \[24 Oct, 2023\]: [MaskNet++](https://github.com/zhouruqin/MaskNet2) is now a part of learning3d library.
|
66
|
+
4. \[12 May, 2022\]: [ChamferDistance](https://github.com/fwilliams/fml) loss function is incorporated in learning3d. This is a purely pytorch based loss function.
|
67
|
+
5. \[24 Dec. 2020\]: [MaskNet](https://arxiv.org/pdf/2010.09185.pdf) is now ready to enhance the performance of registration algorithms in learning3d for occluded point clouds.
|
68
|
+
6. \[24 Dec. 2020\]: Loss based on the predicted and ground truth correspondences is added in learning3d after consideration of [Correspondence Matrices are Underrated](https://arxiv.org/pdf/2010.16085.pdf) paper.
|
69
|
+
7. \[24 Dec. 2020\]: [PointConv](https://arxiv.org/abs/1811.07246), latent feature estimation using convolutions on point clouds is now available in learning3d.
|
70
|
+
8. \[16 Oct. 2020\]: [DeepGMR](https://wentaoyuan.github.io/deepgmr/), registration using gaussian mixture models is now available in learning3d
|
71
|
+
9. \[14 Oct. 2020\]: Now, use your own data in learning3d. (Check out [UserData](https://github.com/vinits5/learning3d#use-your-own-data) functionality!)
|
72
|
+
|
73
|
+
## PyPI package setup
|
74
|
+
### Setup from pypi server
|
75
|
+
```
|
76
|
+
pip install learning3d
|
77
|
+
```
|
78
|
+
|
79
|
+
### Setup using code
|
80
|
+
```
|
81
|
+
git clone https://github.com/vinits5/learning3d.git
|
82
|
+
cd learning3d
|
83
|
+
git checkout pypi_v0.1.0
|
84
|
+
python3 -m pip install .
|
85
|
+
```
|
44
86
|
|
45
87
|
## Available Computer Vision Algorithms in Learning3D
|
46
88
|
|
47
89
|
| Sr. No. | Tasks | Algorithms |
|
48
90
|
|:-------------:|:----------:|:-----|
|
49
|
-
| 1 | [Classification](https://github.com/vinits5/learning3d#use-of-classification--segmentation-network) | PointNet, DGCNN, PPFNet, [PointConv](https://github.com/vinits5/learning3d#use-of-pointconv) |
|
91
|
+
| 1 | [Classification](https://github.com/vinits5/learning3d#use-of-classification--segmentation-network) | PointNet, DGCNN, PPFNet, [PointConv](https://github.com/vinits5/learning3d#use-of-pointconv), [CurveNet](https://github.com/tiangexiang/CurveNet) |
|
50
92
|
| 2 | [Segmentation](https://github.com/vinits5/learning3d#use-of-classification--segmentation-network) | PointNet, DGCNN |
|
51
93
|
| 3 | [Reconstruction](https://github.com/vinits5/learning3d#use-of-point-completion-network) | Point Completion Network (PCN) |
|
52
94
|
| 4 | [Registration](https://github.com/vinits5/learning3d#use-of-registration-networks) | PointNetLK, PCRNet, DCP, PRNet, RPM-Net, DeepGMR |
|
53
95
|
| 5 | [Flow Estimation](https://github.com/vinits5/learning3d#use-of-flow-estimation-network) | FlowNet3D |
|
54
|
-
| 6 | [Inlier Estimation](https://github.com/vinits5/learning3d#use-of-inlier-estimation-network-masknet) | MaskNet, MaskNet++ |
|
96
|
+
| 6 | [Inlier Estimation](https://github.com/vinits5/learning3d#use-of-inlier-estimation-network-masknet) | MaskNet, [MaskNet++](https://github.com/zhouruqin/MaskNet2) |
|
55
97
|
|
56
98
|
## Available Pretrained Models
|
57
99
|
1. PointNet
|
@@ -66,6 +108,7 @@ Learning3D is an open-source library that supports the development of deep learn
|
|
66
108
|
10. PointConv (Download from this [link](https://github.com/DylanWusee/pointconv_pytorch/blob/master/checkpoints/checkpoint.pth))
|
67
109
|
11. MaskNet
|
68
110
|
12. MaskNet++ / MaskNet2
|
111
|
+
13. CurveNet
|
69
112
|
|
70
113
|
## Available Datasets
|
71
114
|
1. ModelNet40
|
@@ -81,7 +124,8 @@ Learning3D is an open-source library that supports the development of deep learn
|
|
81
124
|
1. Ubuntu 16.04
|
82
125
|
2. Ubuntu 18.04
|
83
126
|
3. Ubuntu 20.04.6
|
84
|
-
|
127
|
+
4. Linux Mint
|
128
|
+
5. macOS Sequoia 15.3.1
|
85
129
|
|
86
130
|
### Requirements
|
87
131
|
1. CUDA 10.0 or higher
|
@@ -268,3 +312,4 @@ PointConv variable is a class. Users can use it to create a sub-class to overrid
|
|
268
312
|
14. [CMU:](https://arxiv.org/pdf/2010.16085.pdf) Correspondence Matrices are Underrated
|
269
313
|
15. [MaskNet:](https://arxiv.org/pdf/2010.09185.pdf) A Fully-Convolutional Network to Estimate Inlier Points
|
270
314
|
16. [MaskNet++:](https://www.sciencedirect.com/science/article/abs/pii/S0097849322000085) Inlier/outlier identification for two point clouds
|
315
|
+
17. [CurveNet:](https://github.com/tiangexiang/CurveNet) Walk in the Cloud: Learning Curves for Point Clouds Shape Analysis
|
@@ -0,0 +1,70 @@
|
|
1
|
+
data_utils/__init__.py,sha256=iYAVh0FThnVlG42QIgmDYrC3NGVYuzKX8s1oRqAI1YU,261
|
2
|
+
data_utils/dataloaders.py,sha256=kb0wsLlMN7sB-CS_4BGSprSaZBwkUNYxS5iwUdD6JJM,14871
|
3
|
+
data_utils/user_data.py,sha256=ADDGeCUCr6TcXhcxvAFncIeLO71xoRHYi4H418ktvQs,4828
|
4
|
+
examples/test_curvenet.py,sha256=Ly-Pp7lhS9kWgyOeCRqlfLrLFOerH76jxb4BWtdPGOA,4085
|
5
|
+
examples/test_dcp.py,sha256=-qFgrg5uXdaMR3JF4zxNrmAqZspIgzdKkFFaJPmp-4Y,5626
|
6
|
+
examples/test_deepgmr.py,sha256=ux5BjmhtD2kut4zbSkhi6cIMH7BySuVCRKGHqRusEYw,5617
|
7
|
+
examples/test_masknet.py,sha256=dkqUui9sv2SzHtvtzUzL_PxJxMcBMqCSDPAYg0BWAVU,6405
|
8
|
+
examples/test_masknet2.py,sha256=3_XWBQOwQjK3BCQ__BmPhCvYI_0hZMK3X4C-P2Krw6w,6859
|
9
|
+
examples/test_pcn.py,sha256=4eaosjJVqiFxlqnaUWu-O2Jawt4uU16UJEzitIjP2us,4342
|
10
|
+
examples/test_pcrnet.py,sha256=_x9l55sMBACXUfQHLaH7GJMfz6PWdYWSxjrRxVoY-As,4366
|
11
|
+
examples/test_pnlk.py,sha256=9u7B--PuCpl6TAmObmIKfDvYW6bMj3Jcc3_djTDO-D4,4456
|
12
|
+
examples/test_pointconv.py,sha256=NUcLjkkNJsGZYaUZHug6QGybm8NshZfg2tc8rfksNU8,4673
|
13
|
+
examples/test_pointnet.py,sha256=VKfB5DE8fh2G1iIoY02GvjSgWUJk2jQBmmJs3HC5rVU,4324
|
14
|
+
examples/test_prnet.py,sha256=S8Q7to5NH4Mz39UUzXPmYxaMgiaFZIJBuwlYR2fZByQ,4921
|
15
|
+
examples/test_rpmnet.py,sha256=oy-z7I26IQxr4TD_p0qCRnOn6H8VbQFyiWO83ZSFcDk,4476
|
16
|
+
examples/train_PointNetLK.py,sha256=0GgT2NYKNZl8o02rvW-nYBO_1tlfDNuakuAXtm1V16c,8773
|
17
|
+
examples/train_dcp.py,sha256=SQVrwnZqGmFCZv_X2tzMysBmv-HI9sllZMWw5zsW3NM,9511
|
18
|
+
examples/train_deepgmr.py,sha256=vxdkgfQZPtwuYryR0chegTiLuXOQag8r_ccGJ6qtw7o,9397
|
19
|
+
examples/train_masknet.py,sha256=XzgWsmVAm5Lk21mH9qhvNN0um4pI1fYVfsBAV4deSOM,8889
|
20
|
+
examples/train_pcn.py,sha256=X7MSYVXwgIMExplua1M9pG20eNhZ_0p83yTADSYrAlA,7542
|
21
|
+
examples/train_pcrnet.py,sha256=KQ8MiDUiR46qS9t7tc5POJ3NjMyZFBEPOVQY-7Vszpk,8198
|
22
|
+
examples/train_pointconv.py,sha256=noGT2yGWHAuecObz1X9cEiWl0xjh7NhmRneP88jR8uI,8939
|
23
|
+
examples/train_pointnet.py,sha256=SXheDRP_GHZQQw4BEYS7bfL481D8GcbTekON-GVwOsk,8840
|
24
|
+
examples/train_prnet.py,sha256=2zvd-3cYzZP8L92XJmFL5rTzxpApUhetiEc4u4V0X5g,8373
|
25
|
+
examples/train_rpmnet.py,sha256=PEdFgPXyeME0axvLEd--VbpbqWV6P5i6NnjQnJ_X3Oo,8530
|
26
|
+
losses/__init__.py,sha256=zjjZeA_NvAhZlxiYBbtgjEsvMyLFhFWXlZioitrlGWw,425
|
27
|
+
losses/chamfer_distance.py,sha256=UTZ6x5cGwL3L5hJZOWoC35gTzcKh1S0yCg8vGuGXU1w,2121
|
28
|
+
losses/classification.py,sha256=QgDHC5VgSga6BiuD4Ee70t6vvchlE97BY0KExevhdgk,374
|
29
|
+
losses/correspondence_loss.py,sha256=Tcq2o5eLY7j50pibAuH0vBcUTjwZ-wHNzGZD4H6mAe0,583
|
30
|
+
losses/emd.py,sha256=DqP77dN6lPkpGGgBz10oO6YNYxt889weYbVYj6bZFUM,389
|
31
|
+
losses/frobenius_norm.py,sha256=IuKr0DT9aPBlc5fjIy6lJ082yOh9F8xiNoXF6FvWZtY,682
|
32
|
+
losses/rmse_features.py,sha256=_KMqIWqH9-lH2P6YSeGfSOIbP7plUAwWWBh2Cu7cpXA,453
|
33
|
+
models/__init__.py,sha256=1MosMXTuwQDQ6El5o1vIrnfnfRlDvBSLc0JeMoJMFbw,673
|
34
|
+
models/classifier.py,sha256=_LUNXbLrpKNXmCkO2R1mz64dbwfrze7f_4SYT1Z6SYo,1205
|
35
|
+
models/curvenet.py,sha256=yHGjTwPYkCGMCL1BPZ0t2NPQNh6kxairyJEBbjhjjEk,5461
|
36
|
+
models/dcp.py,sha256=LZFgtk9f9f9s3QvX65nFXGgC33yGIZuy4XjviwH8OGE,3377
|
37
|
+
models/deepgmr.py,sha256=vIxOQrZjvOCHLElJCjZ8EcZ-vm0-v71IKsPGuSF-elE,5298
|
38
|
+
models/dgcnn.py,sha256=Z_5My91H8pcG0HGF75DSI3svbsZ6-ASV-0xx8UrdEt8,1989
|
39
|
+
models/masknet.py,sha256=ElMF3b-JgYmgwSEf1taGQvhA7Xy7_MiHEofzc03VCd8,2705
|
40
|
+
models/masknet2.py,sha256=6lgukurfzUOY-6xdCpMljOYFtvADLSczAXJzRC3Jkh4,9063
|
41
|
+
models/pcn.py,sha256=FvpjLR6t3kFQ1I4Fhpbsaj_P8Ml6S912x36JAZ1dUKs,5346
|
42
|
+
models/pcrnet.py,sha256=6C6iM3XkDNdgihtPIdy09RgFD2KKDCnDzLvFfp6X-Tg,2755
|
43
|
+
models/pointconv.py,sha256=lJ3_3uslE29lO3roZiE5vxr5971AWV5ExeVTzbEl858,5151
|
44
|
+
models/pointnet.py,sha256=qgSWLJ4N5Y7ObAwKiJH29Pcl67jm3sfqbXqi3tQbUQg,3238
|
45
|
+
models/pointnetlk.py,sha256=Zl66LjDX1vLdZRgCdY2oQJnpWpqPEx6BH8GbcVCsw68,5805
|
46
|
+
models/pooling.py,sha256=vOzJMambeG7kf1pnox5p5FE2CVH2iMDGU_DgWRw15WQ,412
|
47
|
+
models/ppfnet.py,sha256=aBzWvtNHFo-eu1kWoZmPI9xJOFHyxYHjdapb6cN2Aso,2894
|
48
|
+
models/prnet.py,sha256=MxhoSM8xPlwL4CSFKhDDJAx08-U1Dfzkoh1T0wHygHg,17493
|
49
|
+
models/rpmnet.py,sha256=eMVqJ6BalY96TSB8VFXjCJIA15J0XAB3BEpMB-6CMdM,11517
|
50
|
+
models/segmentation.py,sha256=CjlINj5M0Y6C-CejrieIu9ZkuwEoCFNjq_hr5SX9umU,1166
|
51
|
+
ops/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
52
|
+
ops/data_utils.py,sha256=qW8FOQWgcHjuuiSaAayJ3nKJnDW_GDv3ujE-uFvWsPE,1764
|
53
|
+
ops/invmat.py,sha256=m1Mm2mQNn4KgQv54w-ek0xLkZuKnfDlF2ooylXeXvAw,4154
|
54
|
+
ops/quaternion.py,sha256=D00IL6VHitYy4CINFAilD0t0kyBjc_JHfKuMrJGJ1Cw,6793
|
55
|
+
ops/se3.py,sha256=x6oLbQzLOXiM0xDJsVUCUE1liZ_TaJzkkHQvIyjqCqI,3957
|
56
|
+
ops/sinc.py,sha256=A_Ffu07RXGx3daZn4zOGdnW10_l06cmhFdAiU4NKhcw,5228
|
57
|
+
ops/so3.py,sha256=b0tX5nHyF2Qtp8V0ejGKaPaHJQ_G38ifQ7gSJzRU1ts,5166
|
58
|
+
ops/transform_functions.py,sha256=hvNjZO-uJodsGYtQwtAtDxtQ6uBpA7Lv9t-_yAg6wxo,12806
|
59
|
+
utils/__init__.py,sha256=QCalqFqrdSWsu2_fZXJoIARv1uI2GiUx8MVtZ8PoiRw,650
|
60
|
+
utils/curvenet_util.py,sha256=dcOreJBJddptH_COJkKGlfQnnoHPAnKlnUdA8sQg3GI,19527
|
61
|
+
utils/model_common_utils.py,sha256=05cWF97LJBat8rKKVbihb5DgaC_mMv5uY5yOVzH4Dx0,5320
|
62
|
+
utils/pointconv_util.py,sha256=kJxGztai7X15YsGuorMOc50SPtj_k1yfkP4XCTzIWdM,14331
|
63
|
+
utils/ppfnet_util.py,sha256=HEoxkgUBlawKZLWspfQm3caWUyAMIrW-ECtStNYbe2Y,7989
|
64
|
+
utils/svd.py,sha256=yCYQt2SKqeIzCBnBEr_8xFR79m4fIoNVFnp77epn1dM,1936
|
65
|
+
utils/transformer.py,sha256=UDgJvnh7ekWyijaAn-a3ckeFeMxlK_chXzWlhAGDiPM,8974
|
66
|
+
learning3d-0.2.0.dist-info/LICENSE,sha256=3qY3_NeQIvalbLlsHFtOfuUKjs_U2k6u7rf6YVx6ac0,1098
|
67
|
+
learning3d-0.2.0.dist-info/METADATA,sha256=QFrlYdTQ9UEEdKwDnAf8mk8kc80qegmwWYbpYaXJXRQ,18079
|
68
|
+
learning3d-0.2.0.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
|
69
|
+
learning3d-0.2.0.dist-info/top_level.txt,sha256=80jcwB70RZ4Xr5DiY8ngxdX9YTRT7b7YvApYsqoGHak,44
|
70
|
+
learning3d-0.2.0.dist-info/RECORD,,
|
@@ -15,4 +15,10 @@ from .rpmnet import RPMNet
|
|
15
15
|
from .pcn import PCN
|
16
16
|
from .deepgmr import DeepGMR
|
17
17
|
from .masknet import MaskNet
|
18
|
-
from .masknet2 import MaskNet2
|
18
|
+
from .masknet2 import MaskNet2
|
19
|
+
from .curvenet import CurveNet
|
20
|
+
|
21
|
+
try:
|
22
|
+
from .flownet3d import FlowNet3D
|
23
|
+
except:
|
24
|
+
print("Error raised in pointnet2 module for FlowNet3D Network!\nEither don't use pointnet2_utils or retry it's setup.")
|
models/curvenet.py
ADDED
@@ -0,0 +1,130 @@
|
|
1
|
+
"""
|
2
|
+
@Author: Tiange Xiang
|
3
|
+
@Contact: txia7609@uni.sydney.edu.au
|
4
|
+
@File: curvenet_cls.py
|
5
|
+
@Time: 2021/01/21 3:10 PM
|
6
|
+
"""
|
7
|
+
|
8
|
+
import torch
|
9
|
+
import torch.nn as nn
|
10
|
+
import torch.nn.functional as F
|
11
|
+
from .. utils import (
|
12
|
+
index_points,
|
13
|
+
farthest_point_sample,
|
14
|
+
query_ball_point,
|
15
|
+
LPFA,
|
16
|
+
CIC
|
17
|
+
)
|
18
|
+
|
19
|
+
def sample_and_group(npoint, radius, nsample, xyz, points, returnfps=False):
|
20
|
+
"""
|
21
|
+
Input:
|
22
|
+
npoint:
|
23
|
+
radius:
|
24
|
+
nsample:
|
25
|
+
xyz: input points position data, [B, N, 3]
|
26
|
+
points: input points data, [B, N, D]
|
27
|
+
Return:
|
28
|
+
new_xyz: sampled points position data, [B, npoint, nsample, 3]
|
29
|
+
new_points: sampled points data, [B, npoint, nsample, 3+D]
|
30
|
+
"""
|
31
|
+
new_xyz = index_points(xyz, farthest_point_sample(xyz, npoint))
|
32
|
+
torch.cuda.empty_cache()
|
33
|
+
|
34
|
+
idx = query_ball_point(radius, nsample, xyz, new_xyz)
|
35
|
+
torch.cuda.empty_cache()
|
36
|
+
|
37
|
+
new_points = index_points(points, idx)
|
38
|
+
torch.cuda.empty_cache()
|
39
|
+
|
40
|
+
if returnfps:
|
41
|
+
return new_xyz, new_points, idx
|
42
|
+
else:
|
43
|
+
return new_xyz, new_points
|
44
|
+
|
45
|
+
curve_config = {
|
46
|
+
'default': [[100, 5], [100, 5], None, None],
|
47
|
+
'long': [[10, 30], None, None, None]
|
48
|
+
}
|
49
|
+
|
50
|
+
class CurveNet(nn.Module):
|
51
|
+
def __init__(self, num_classes=40, k=20, setting='default', input_shape="bnc", emb_dims=2048, classifier=True):
|
52
|
+
super(CurveNet, self).__init__()
|
53
|
+
|
54
|
+
if input_shape not in ["bcn", "bnc"]:
|
55
|
+
raise ValueError("Allowed shapes are 'bcn' (batch * channels * num_in_points), 'bnc' ")
|
56
|
+
|
57
|
+
self.input_shape = input_shape
|
58
|
+
|
59
|
+
assert setting in curve_config
|
60
|
+
|
61
|
+
additional_channel = 32
|
62
|
+
self.classifier = classifier
|
63
|
+
self.lpfa = LPFA(9, additional_channel, k=k, mlp_num=1, initial=True)
|
64
|
+
|
65
|
+
# encoder
|
66
|
+
self.cic11 = CIC(npoint=1024, radius=0.05, k=k, in_channels=additional_channel, output_channels=64, bottleneck_ratio=2, mlp_num=1, curve_config=curve_config[setting][0])
|
67
|
+
self.cic12 = CIC(npoint=1024, radius=0.05, k=k, in_channels=64, output_channels=64, bottleneck_ratio=4, mlp_num=1, curve_config=curve_config[setting][0])
|
68
|
+
|
69
|
+
self.cic21 = CIC(npoint=1024, radius=0.05, k=k, in_channels=64, output_channels=128, bottleneck_ratio=2, mlp_num=1, curve_config=curve_config[setting][1])
|
70
|
+
self.cic22 = CIC(npoint=1024, radius=0.1, k=k, in_channels=128, output_channels=128, bottleneck_ratio=4, mlp_num=1, curve_config=curve_config[setting][1])
|
71
|
+
|
72
|
+
self.cic31 = CIC(npoint=256, radius=0.1, k=k, in_channels=128, output_channels=256, bottleneck_ratio=2, mlp_num=1, curve_config=curve_config[setting][2])
|
73
|
+
self.cic32 = CIC(npoint=256, radius=0.2, k=k, in_channels=256, output_channels=256, bottleneck_ratio=4, mlp_num=1, curve_config=curve_config[setting][2])
|
74
|
+
|
75
|
+
self.cic41 = CIC(npoint=64, radius=0.2, k=k, in_channels=256, output_channels=512, bottleneck_ratio=2, mlp_num=1, curve_config=curve_config[setting][3])
|
76
|
+
self.cic42 = CIC(npoint=64, radius=0.4, k=k, in_channels=512, output_channels=512, bottleneck_ratio=4, mlp_num=1, curve_config=curve_config[setting][3])
|
77
|
+
|
78
|
+
self.conv0 = nn.Sequential(
|
79
|
+
nn.Conv1d(512, emb_dims//2, kernel_size=1, bias=False),
|
80
|
+
nn.BatchNorm1d(emb_dims//2),
|
81
|
+
nn.ReLU(inplace=True))
|
82
|
+
|
83
|
+
if self.classifier:
|
84
|
+
self.conv1 = nn.Linear(emb_dims, 512, bias=False)
|
85
|
+
self.conv2 = nn.Linear(512, num_classes)
|
86
|
+
self.bn1 = nn.BatchNorm1d(512)
|
87
|
+
self.dp1 = nn.Dropout(p=0.5)
|
88
|
+
|
89
|
+
def forward(self, xyz, get_flatten_curve_idxs=False):
|
90
|
+
flatten_curve_idxs = {}
|
91
|
+
if self.input_shape == 'bnc':
|
92
|
+
xyz = xyz.permute(0, 2, 1)
|
93
|
+
|
94
|
+
l0_points = self.lpfa(xyz, xyz)
|
95
|
+
|
96
|
+
l1_xyz, l1_points, flatten_curve_idxs_11 = self.cic11(xyz, l0_points)
|
97
|
+
flatten_curve_idxs['flatten_curve_idxs_11'] = flatten_curve_idxs_11
|
98
|
+
l1_xyz, l1_points, flatten_curve_idxs_12 = self.cic12(l1_xyz, l1_points)
|
99
|
+
flatten_curve_idxs['flatten_curve_idxs_12'] = flatten_curve_idxs_12
|
100
|
+
|
101
|
+
l2_xyz, l2_points, flatten_curve_idxs_21 = self.cic21(l1_xyz, l1_points)
|
102
|
+
flatten_curve_idxs['flatten_curve_idxs_21'] = flatten_curve_idxs_21
|
103
|
+
l2_xyz, l2_points, flatten_curve_idxs_22 = self.cic22(l2_xyz, l2_points)
|
104
|
+
flatten_curve_idxs['flatten_curve_idxs_22'] = flatten_curve_idxs_22
|
105
|
+
|
106
|
+
l3_xyz, l3_points, flatten_curve_idxs_31 = self.cic31(l2_xyz, l2_points)
|
107
|
+
flatten_curve_idxs['flatten_curve_idxs_31'] = flatten_curve_idxs_31
|
108
|
+
l3_xyz, l3_points, flatten_curve_idxs_32 = self.cic32(l3_xyz, l3_points)
|
109
|
+
flatten_curve_idxs['flatten_curve_idxs_32'] = flatten_curve_idxs_32
|
110
|
+
|
111
|
+
l4_xyz, l4_points, flatten_curve_idxs_41 = self.cic41(l3_xyz, l3_points)
|
112
|
+
flatten_curve_idxs['flatten_curve_idxs_41'] = flatten_curve_idxs_41
|
113
|
+
l4_xyz, l4_points, flatten_curve_idxs_42 = self.cic42(l4_xyz, l4_points)
|
114
|
+
flatten_curve_idxs['flatten_curve_idxs_42'] = flatten_curve_idxs_42
|
115
|
+
|
116
|
+
x = self.conv0(l4_points)
|
117
|
+
x_max = F.adaptive_max_pool1d(x, 1)
|
118
|
+
x_avg = F.adaptive_avg_pool1d(x, 1)
|
119
|
+
|
120
|
+
x = torch.cat((x_max, x_avg), dim=1).squeeze(-1)
|
121
|
+
|
122
|
+
if self.classifier:
|
123
|
+
x = F.relu(self.bn1(self.conv1(x).unsqueeze(-1)), inplace=True).squeeze(-1)
|
124
|
+
x = self.dp1(x)
|
125
|
+
x = self.conv2(x)
|
126
|
+
|
127
|
+
if get_flatten_curve_idxs:
|
128
|
+
return x, flatten_curve_idxs
|
129
|
+
else:
|
130
|
+
return x
|
@@ -1,40 +1,6 @@
|
|
1
1
|
import torch
|
2
2
|
import torch.nn.functional as F
|
3
|
-
|
4
|
-
def knn(x, k):
|
5
|
-
inner = -2 * torch.matmul(x.transpose(2, 1).contiguous(), x)
|
6
|
-
xx = torch.sum(x ** 2, dim=1, keepdim=True)
|
7
|
-
pairwise_distance = -xx - inner - xx.transpose(2, 1).contiguous()
|
8
|
-
|
9
|
-
idx = pairwise_distance.topk(k=k, dim=-1)[1] # (batch_size, num_points, k)
|
10
|
-
return idx
|
11
|
-
|
12
|
-
|
13
|
-
def get_graph_feature(x, k=20):
|
14
|
-
# x = x.squeeze()
|
15
|
-
idx = knn(x, k=k) # (batch_size, num_points, k)
|
16
|
-
batch_size, num_points, _ = idx.size()
|
17
|
-
|
18
|
-
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
19
|
-
|
20
|
-
idx_base = torch.arange(0, batch_size, device=device).view(-1, 1, 1) * num_points
|
21
|
-
|
22
|
-
idx = idx + idx_base
|
23
|
-
|
24
|
-
idx = idx.view(-1)
|
25
|
-
|
26
|
-
_, num_dims, _ = x.size()
|
27
|
-
|
28
|
-
# (batch_size, num_points, num_dims) -> (batch_size*num_points, num_dims) # batch_size * num_points * k + range(0, batch_size*num_points)
|
29
|
-
x = x.transpose(2, 1).contiguous()
|
30
|
-
|
31
|
-
feature = x.view(batch_size * num_points, -1)[idx, :]
|
32
|
-
feature = feature.view(batch_size, num_points, k, num_dims)
|
33
|
-
x = x.view(batch_size, num_points, 1, num_dims).repeat(1, 1, k, 1)
|
34
|
-
|
35
|
-
feature = torch.cat((feature, x), dim=3).permute(0, 3, 1, 2)
|
36
|
-
|
37
|
-
return feature
|
3
|
+
from .. utils import knn, get_graph_feature
|
38
4
|
|
39
5
|
|
40
6
|
class DGCNN(torch.nn.Module):
|
@@ -16,7 +16,7 @@ import torch.nn as nn
|
|
16
16
|
import torch.nn.functional as F
|
17
17
|
|
18
18
|
from .. ops import transform_functions as transform
|
19
|
-
from .. utils import Transformer, Identity
|
19
|
+
from .. utils import Transformer, Identity, knn, get_graph_feature
|
20
20
|
|
21
21
|
from sklearn.metrics import r2_score
|
22
22
|
|
@@ -30,40 +30,6 @@ def pairwise_distance(src, tgt):
|
|
30
30
|
distances = xx.transpose(2, 1).contiguous() + inner + yy
|
31
31
|
return torch.sqrt(distances)
|
32
32
|
|
33
|
-
|
34
|
-
def knn(x, k):
|
35
|
-
inner = -2 * torch.matmul(x.transpose(2, 1).contiguous(), x)
|
36
|
-
xx = torch.sum(x ** 2, dim=1, keepdim=True)
|
37
|
-
distance = -xx - inner - xx.transpose(2, 1).contiguous()
|
38
|
-
|
39
|
-
idx = distance.topk(k=k, dim=-1)[1] # (batch_size, num_points, k)
|
40
|
-
return idx
|
41
|
-
|
42
|
-
|
43
|
-
def get_graph_feature(x, k=20):
|
44
|
-
# x = x.squeeze()
|
45
|
-
x = x.view(*x.size()[:3])
|
46
|
-
idx = knn(x, k=k) # (batch_size, num_points, k)
|
47
|
-
batch_size, num_points, _ = idx.size()
|
48
|
-
|
49
|
-
idx_base = torch.arange(0, batch_size, device=device).view(-1, 1, 1) * num_points
|
50
|
-
|
51
|
-
idx = idx + idx_base
|
52
|
-
|
53
|
-
idx = idx.view(-1)
|
54
|
-
|
55
|
-
_, num_dims, _ = x.size()
|
56
|
-
|
57
|
-
x = x.transpose(2, 1).contiguous() # (batch_size, num_points, num_dims) -> (batch_size*num_points, num_dims) # batch_size * num_points * k + range(0, batch_size*num_points)
|
58
|
-
feature = x.view(batch_size * num_points, -1)[idx, :]
|
59
|
-
feature = feature.view(batch_size, num_points, k, num_dims)
|
60
|
-
x = x.view(batch_size, num_points, 1, num_dims).repeat(1, 1, k, 1)
|
61
|
-
|
62
|
-
feature = torch.cat((feature, x), dim=3).permute(0, 3, 1, 2)
|
63
|
-
|
64
|
-
return feature
|
65
|
-
|
66
|
-
|
67
33
|
def cycle_consistency(rotation_ab, translation_ab, rotation_ba, translation_ba):
|
68
34
|
batch_size = rotation_ab.size(0)
|
69
35
|
identity = torch.eye(3, device=rotation_ab.device).unsqueeze(0).repeat(batch_size, 1, 1)
|
@@ -109,19 +75,19 @@ class DGCNN(nn.Module):
|
|
109
75
|
|
110
76
|
def forward(self, x):
|
111
77
|
batch_size, num_dims, num_points = x.size()
|
112
|
-
x = get_graph_feature(x)
|
78
|
+
x = get_graph_feature(x, device=device)
|
113
79
|
x = F.leaky_relu(self.bn1(self.conv1(x)), negative_slope=0.2)
|
114
80
|
x1 = x.max(dim=-1, keepdim=True)[0]
|
115
81
|
|
116
|
-
x = get_graph_feature(x1)
|
82
|
+
x = get_graph_feature(x1, device=device)
|
117
83
|
x = F.leaky_relu(self.bn2(self.conv2(x)), negative_slope=0.2)
|
118
84
|
x2 = x.max(dim=-1, keepdim=True)[0]
|
119
85
|
|
120
|
-
x = get_graph_feature(x2)
|
86
|
+
x = get_graph_feature(x2, device=device)
|
121
87
|
x = F.leaky_relu(self.bn3(self.conv3(x)), negative_slope=0.2)
|
122
88
|
x3 = x.max(dim=-1, keepdim=True)[0]
|
123
89
|
|
124
|
-
x = get_graph_feature(x3)
|
90
|
+
x = get_graph_feature(x3, device=device)
|
125
91
|
x = F.leaky_relu(self.bn4(self.conv4(x)), negative_slope=0.2)
|
126
92
|
x4 = x.max(dim=-1, keepdim=True)[0]
|
127
93
|
|
utils/__init__.py
ADDED
@@ -0,0 +1,23 @@
|
|
1
|
+
from .svd import SVDHead
|
2
|
+
from .transformer import Transformer, Identity
|
3
|
+
from .ppfnet_util import angle_difference, square_distance, index_points, farthest_point_sample, query_ball_point, sample_and_group, sample_and_group_multi
|
4
|
+
from .pointconv_util import PointConvDensitySetAbstraction
|
5
|
+
from .model_common_utils import (
|
6
|
+
knn,
|
7
|
+
pc_normalize,
|
8
|
+
square_distance,
|
9
|
+
index_points,
|
10
|
+
farthest_point_sample,
|
11
|
+
knn_point,
|
12
|
+
query_ball_point,
|
13
|
+
get_graph_feature
|
14
|
+
)
|
15
|
+
from .curvenet_util import (
|
16
|
+
LPFA,
|
17
|
+
CIC,
|
18
|
+
)
|
19
|
+
|
20
|
+
try:
|
21
|
+
from .lib import pointnet2_utils
|
22
|
+
except:
|
23
|
+
print("Error raised in pointnet2 module in utils!\nEither don't use pointnet2_utils or retry it's setup.")
|