learning-loop-node 0.13.0__py3-none-any.whl → 0.13.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of learning-loop-node might be problematic. Click here for more details.

@@ -31,14 +31,15 @@ class DetectorLogic():
31
31
  logging.info('Loading model from %s', GLOBALS.data_folder)
32
32
  model_info = ModelInformation.load_from_disk(f'{GLOBALS.data_folder}/model')
33
33
  if model_info is None:
34
- logging.warning('No model found')
34
+ logging.error('No model found')
35
35
  self._model_info = None
36
- return
36
+ raise Exception('No model found')
37
37
  try:
38
38
  self._model_info = model_info
39
39
  self.init()
40
40
  logging.info('Successfully loaded model %s', self._model_info)
41
41
  except Exception:
42
+ self._model_info = None
42
43
  logging.error('Could not init model %s', model_info)
43
44
  raise
44
45
 
@@ -107,6 +107,8 @@ class DetectorNode(Node):
107
107
 
108
108
  async def set_model_version_mode(self, version_control_mode: str) -> None:
109
109
 
110
+ self.log.info('Setting model version mode to %s', version_control_mode)
111
+
110
112
  if version_control_mode == 'follow_loop':
111
113
  self.version_control = VersionMode.FollowLoop
112
114
  elif version_control_mode == 'pause':
@@ -215,7 +217,8 @@ class DetectorNode(Node):
215
217
  camera_id=data.get('camera-id', None) or data.get('mac', None),
216
218
  tags=data.get('tags', []),
217
219
  source=data.get('source', None),
218
- autoupload=data.get('autoupload', None)
220
+ autoupload=data.get('autoupload', None),
221
+ creation_date=data.get('creation_date', None)
219
222
  )
220
223
  if det is None:
221
224
  return {'error': 'no model loaded'}
@@ -324,13 +327,16 @@ class DetectorNode(Node):
324
327
  with step_into(GLOBALS.data_folder):
325
328
  model_symlink = 'model'
326
329
  target_model_folder = f'models/{self.target_model.version}'
327
- shutil.rmtree(target_model_folder, ignore_errors=True)
328
- os.makedirs(target_model_folder)
329
-
330
- await self.data_exchanger.download_model(target_model_folder,
331
- Context(organization=self.organization,
332
- project=self.project),
333
- self.target_model.id, self.detector_logic.model_format)
330
+ if not os.path.exists(target_model_folder):
331
+ os.makedirs(target_model_folder)
332
+ await self.data_exchanger.download_model(target_model_folder,
333
+ Context(organization=self.organization,
334
+ project=self.project),
335
+ self.target_model.id,
336
+ self.detector_logic.model_format)
337
+ self.log.info('Downloaded model %s', self.target_model.version)
338
+ else:
339
+ self.log.info('No need to download model %s (already exists)', self.target_model.version)
334
340
  try:
335
341
  os.unlink(model_symlink)
336
342
  os.remove(model_symlink)
@@ -339,7 +345,12 @@ class DetectorNode(Node):
339
345
  os.symlink(target_model_folder, model_symlink)
340
346
  self.log.info('Updated symlink for model to %s', os.readlink(model_symlink))
341
347
 
342
- self.detector_logic.load_model()
348
+ try:
349
+ self.detector_logic.load_model()
350
+ except Exception:
351
+ self.log.exception('Could not load model, will retry download on next check')
352
+ shutil.rmtree(target_model_folder, ignore_errors=True)
353
+ return
343
354
  try:
344
355
  await self.sync_status_with_learning_loop()
345
356
  except Exception:
@@ -390,6 +401,7 @@ class DetectorNode(Node):
390
401
 
391
402
  self.log_status_on_change(status.state or 'None', status)
392
403
 
404
+ # NOTE: sending organization and project is no longer required!
393
405
  response = await self.sio_client.call('update_detector', (self.organization, self.project, jsonable_encoder(asdict(status))))
394
406
  if not response:
395
407
  self.socket_connection_broken = True
@@ -1,8 +1,8 @@
1
1
  import os
2
2
  from typing import List, Union
3
3
 
4
- from learning_loop_node.data_classes import (BoxDetection, ClassificationDetection, ImageMetadata, Observation,
5
- PointDetection, SegmentationDetection)
4
+ from ...data_classes import (BoxDetection, ClassificationDetection, ImageMetadata, Observation, PointDetection,
5
+ SegmentationDetection)
6
6
 
7
7
 
8
8
  class CamObservationHistory:
@@ -79,10 +79,10 @@ class Outbox():
79
79
  image_metadata.source = source or 'unknown'
80
80
  os.makedirs(tmp, exist_ok=True)
81
81
 
82
- with open(tmp + '/image.json', 'w') as f:
82
+ with open(tmp + f'/image_{identifier}.json', 'w') as f:
83
83
  json.dump(jsonable_encoder(asdict(image_metadata)), f)
84
84
 
85
- with open(tmp + '/image.jpg', 'wb') as f:
85
+ with open(tmp + f'/image_{identifier}.jpg', 'wb') as f:
86
86
  f.write(image)
87
87
 
88
88
  if os.path.exists(tmp):
@@ -141,8 +141,10 @@ class Outbox():
141
141
  # results in a post failure on the first run of the test in a docker environment (WTF)
142
142
 
143
143
  data: List[Tuple[str, Union[TextIOWrapper, BufferedReader]]] = []
144
- data = [('files', open(f'{item}/image.json', 'r')) for item in items]
145
- data += [('files', open(f'{item}/image.jpg', 'rb')) for item in items]
144
+ for item in items:
145
+ identifier = os.path.basename(item)
146
+ data.append(('files', open(f'{item}/image_{identifier}.json', 'r')))
147
+ data.append(('files', open(f'{item}/image_{identifier}.jpg', 'rb')))
146
148
 
147
149
  try:
148
150
  async with aiohttp.ClientSession() as session:
@@ -158,7 +160,11 @@ class Outbox():
158
160
  if response.status == 200:
159
161
  self.upload_counter += len(items)
160
162
  for item in items:
161
- shutil.rmtree(item, ignore_errors=True)
163
+ try:
164
+ shutil.rmtree(item)
165
+ self.log.debug('Deleted %s', item)
166
+ except Exception:
167
+ self.log.exception('Failed to delete %s', item)
162
168
  self.log.info('Uploaded %s images successfully', len(items))
163
169
 
164
170
  elif response.status == 422:
@@ -36,8 +36,8 @@ async def test_initialized_trainer_node():
36
36
  'model_variant': '',
37
37
  'hyperparameters': {
38
38
  'resolution': 800,
39
- 'flip_rl': False,
40
- 'flip_ud': False}
39
+ 'fliplr': 0.5,
40
+ 'flipud': 0.5}
41
41
  })
42
42
  await node._on_startup()
43
43
  yield node
@@ -59,8 +59,8 @@ async def test_initialized_trainer():
59
59
  'model_variant': '',
60
60
  'hyperparameters': {
61
61
  'resolution': 800,
62
- 'flip_rl': False,
63
- 'flip_ud': False}
62
+ 'fliplr': 0.5,
63
+ 'flipud': 0.5}
64
64
  })
65
65
  yield trainer
66
66
  try:
@@ -402,7 +402,7 @@ class TrainerLogicGeneric(ABC):
402
402
  """
403
403
 
404
404
  files = await self._get_latest_model_files()
405
- if files is None:
405
+ if files is None or len(files) == 0:
406
406
  raise CriticalError('Could not get latest model files. Training might have failed.')
407
407
 
408
408
  if isinstance(files, List):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: learning-loop-node
3
- Version: 0.13.0
3
+ Version: 0.13.3
4
4
  Summary: Python Library for Nodes which connect to the Zauberzeug Learning Loop
5
5
  Home-page: https://github.com/zauberzeug/learning_loop_node
6
6
  License: MIT
@@ -11,12 +11,12 @@ learning_loop_node/data_classes/socket_response.py,sha256=tIdt-oYf6ULoJIDYQCecNM
11
11
  learning_loop_node/data_classes/training.py,sha256=FFPsr2AA7ynYz39MLZaFJ0sF_9Axll5HHbAA8nnirp0,5726
12
12
  learning_loop_node/data_exchanger.py,sha256=IG5ki3f3IsVuXbyw6q_gUIakgv-GMT6e9nhOhzjKgW4,9055
13
13
  learning_loop_node/detector/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
- learning_loop_node/detector/detector_logic.py,sha256=fAaeLykvkuOeaQx-scuN1pkydK8cPdmNT75P8xqImY0,2130
15
- learning_loop_node/detector/detector_node.py,sha256=ltx2AMdCvq5J-nXl4h6RXxO_bcMfdKCtUR12A--e-zw,24260
14
+ learning_loop_node/detector/detector_logic.py,sha256=FhGbu0mdF0tW0Gg8cr8xM6ZmZzEigGf0IcAWBjoxFrs,2191
15
+ learning_loop_node/detector/detector_node.py,sha256=TMypE1Z0KnuPcJ9wLiflhdvd9oe0t86gAQyK7UvuDpA,25060
16
16
  learning_loop_node/detector/inbox_filter/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
- learning_loop_node/detector/inbox_filter/cam_observation_history.py,sha256=8gzxYPD3t1OS9wBHXfIvNV2xTTMo0B70O1b50iaH2D8,3344
17
+ learning_loop_node/detector/inbox_filter/cam_observation_history.py,sha256=1PHgXRrhSQ34HSFw7mdX8ndRxHf_i1aP5nXXnrZxhAY,3312
18
18
  learning_loop_node/detector/inbox_filter/relevance_filter.py,sha256=NPEmrAtuGjIWCtHS0B3zDmnYWkhVFCLbd_7RUp08_AM,1372
19
- learning_loop_node/detector/outbox.py,sha256=CYuXI6uXQ_mrVPZ0qvNgdSZH1nLarcs7Fj_7Mb3k7MA,8558
19
+ learning_loop_node/detector/outbox.py,sha256=i12X28FJka8HMm4iqE7SCODT1uCEtM53tIBul3uxKFw,8828
20
20
  learning_loop_node/detector/rest/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
21
  learning_loop_node/detector/rest/about.py,sha256=evHJ2svUZY_DFz0FSef5u9c5KW4Uc3GL7EbPinG9-dg,583
22
22
  learning_loop_node/detector/rest/backdoor_controls.py,sha256=ZNaFOvC0OLWNtcLiG-NIqS_y1kkLP4csgk3CHhp8Gis,885
@@ -70,7 +70,7 @@ learning_loop_node/tests/general/test_downloader.py,sha256=y4GcUyR0OAfrwltd6eyQg
70
70
  learning_loop_node/tests/general/test_learning_loop_node.py,sha256=SZd-VChpWnnsPN46pr4E_LL3ZevYx6psU-AWdVeOFpQ,770
71
71
  learning_loop_node/tests/test_helper.py,sha256=Xajn6BWJqeD36YAETwdcJd6awY2NPmaOis3gWgFc97k,2909
72
72
  learning_loop_node/tests/trainer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
73
- learning_loop_node/tests/trainer/conftest.py,sha256=X-Ib-ju-emKomgaPjddwAgMp0zt2Slu59Y3cPfmTipI,3672
73
+ learning_loop_node/tests/trainer/conftest.py,sha256=F8b8cVJeDRG08OufAE4TuG4Dm-ViSyK_PzM2DrHUzJQ,3660
74
74
  learning_loop_node/tests/trainer/pytest.ini,sha256=8QdjmawLy1zAzXrJ88or1kpFDhJw0W5UOnDfGGs_igU,262
75
75
  learning_loop_node/tests/trainer/state_helper.py,sha256=MDe9opeKruip74FoRFff8MSWGiQNFqDpPtIEIbgPnFc,919
76
76
  learning_loop_node/tests/trainer/states/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -94,8 +94,8 @@ learning_loop_node/trainer/rest/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm
94
94
  learning_loop_node/trainer/rest/backdoor_controls.py,sha256=ZnK8ypY5r_q0-YZbtaOxhQThzuZvMsQHM5gJGESd_dE,5131
95
95
  learning_loop_node/trainer/test_executor.py,sha256=6BVGDN_6f5GEMMEvDLSG1yzMybSvgXaP5uYpSfsVPP0,2224
96
96
  learning_loop_node/trainer/trainer_logic.py,sha256=eK-01qZzi10UjLMCQX8vy5eW2FoghPj3rzzDC-s3Si4,8792
97
- learning_loop_node/trainer/trainer_logic_generic.py,sha256=JGH2IClpte8WqO_Pmh7Epa-328Pyl5RYYZlWgOdygvs,26827
97
+ learning_loop_node/trainer/trainer_logic_generic.py,sha256=RQqon8JIVzxaNh0KdEe6tMxebsY0DgZllEohHR-AgqU,26846
98
98
  learning_loop_node/trainer/trainer_node.py,sha256=Dl4ZQAjjXQggibeBjvhXAoFClw1ZX2Kkt3v_fjrJnCI,4508
99
- learning_loop_node-0.13.0.dist-info/METADATA,sha256=sNXOfB7X3QtZ4BW090qPWMtfvwloBhtfdkr3RharFeg,12761
100
- learning_loop_node-0.13.0.dist-info/WHEEL,sha256=WGfLGfLX43Ei_YORXSnT54hxFygu34kMpcQdmgmEwCQ,88
101
- learning_loop_node-0.13.0.dist-info/RECORD,,
99
+ learning_loop_node-0.13.3.dist-info/METADATA,sha256=zB6JXpeyUlyfBVDgEV8kABmdQ2QgqjaCn2U8wib5288,12761
100
+ learning_loop_node-0.13.3.dist-info/WHEEL,sha256=WGfLGfLX43Ei_YORXSnT54hxFygu34kMpcQdmgmEwCQ,88
101
+ learning_loop_node-0.13.3.dist-info/RECORD,,