learning-loop-node 0.10.3__py3-none-any.whl → 0.10.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of learning-loop-node might be problematic. Click here for more details.

@@ -43,6 +43,8 @@ class DetectorNode(Node):
43
43
  self.operation_mode: OperationMode = OperationMode.Startup
44
44
  self.connected_clients: List[str] = []
45
45
 
46
+ self.detection_lock = asyncio.Lock()
47
+
46
48
  self.outbox: Outbox = Outbox()
47
49
  self.data_exchanger = DataExchanger(
48
50
  Context(organization=self.organization, project=self.project),
@@ -300,8 +302,9 @@ class DetectorNode(Node):
300
302
  """Note: raw_image is a numpy array of type uint8, but not in the correrct shape!
301
303
  It can be converted e.g. using cv2.imdecode(raw_image, cv2.IMREAD_COLOR)"""
302
304
  loop = asyncio.get_event_loop()
305
+ await self.detection_lock.acquire()
303
306
  detections: Detections = await loop.run_in_executor(None, self.detector_logic.evaluate, raw_image)
304
-
307
+ self.detection_lock.release()
305
308
  for seg_detection in detections.segmentation_detections:
306
309
  if isinstance(seg_detection.shape, Shape):
307
310
  shapes = ','.join([str(value) for p in seg_detection.shape.points for _,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: learning-loop-node
3
- Version: 0.10.3
3
+ Version: 0.10.4
4
4
  Summary: Python Library for Nodes which connect to the Zauberzeug Learning Loop
5
5
  Home-page: https://github.com/zauberzeug/learning_loop_node
6
6
  License: MIT
@@ -13,7 +13,7 @@ learning_loop_node/data_classes/training.py,sha256=hnMHZMk-WNRERyo7U97qL09v1tIdh
13
13
  learning_loop_node/data_exchanger.py,sha256=hxF0zANA35f5EV8tkQ4yjelrKuvafMaKUya0CCjVrK0,8221
14
14
  learning_loop_node/detector/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
15
  learning_loop_node/detector/detector_logic.py,sha256=se0jRFbV7BfTvCuCI3gcUllSYIZ5dxTkvdISe6pPTRg,1660
16
- learning_loop_node/detector/detector_node.py,sha256=Qmj87e5-mmS5SnT_VlfZ1I6vhS6XWzt60H9w82LiZbk,16649
16
+ learning_loop_node/detector/detector_node.py,sha256=k05ZXOK0OiKg4U7IMSFz-N-w1DmLvB3WF5MzMkkByP4,16776
17
17
  learning_loop_node/detector/inbox_filter/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
18
  learning_loop_node/detector/inbox_filter/cam_observation_history.py,sha256=TD346I9ymtIP0_CJXCIKMRuiXbfVVanXNu_iHAwDd7Q,3318
19
19
  learning_loop_node/detector/inbox_filter/relevance_filter.py,sha256=s2FuwZ-tD_5obkSutstjc8pE_hLGbrv9WjrEO9t8rJ8,1011
@@ -80,6 +80,6 @@ learning_loop_node/trainer/tests/testing_trainer_logic.py,sha256=7sQ6okiOhM4IhvR
80
80
  learning_loop_node/trainer/trainer_logic.py,sha256=PJxiO1chPdvpq8UTtzv_nVam9CouCswX9b1FnRwT2Tw,8411
81
81
  learning_loop_node/trainer/trainer_logic_generic.py,sha256=KFDuxgzrGITHQaJoGvhjHxWzhbb4Q7HBxSpks4CeGBg,24801
82
82
  learning_loop_node/trainer/trainer_node.py,sha256=bcyOMeLXrLuLgsPqS8lwEOSZ6vCjGLgT0pLXgaylI1Q,4155
83
- learning_loop_node-0.10.3.dist-info/METADATA,sha256=N15oTcADVQlsqGZ1jt-mTwcUViYKZwjbtmpHfPFPCMc,9287
84
- learning_loop_node-0.10.3.dist-info/WHEEL,sha256=WGfLGfLX43Ei_YORXSnT54hxFygu34kMpcQdmgmEwCQ,88
85
- learning_loop_node-0.10.3.dist-info/RECORD,,
83
+ learning_loop_node-0.10.4.dist-info/METADATA,sha256=bOfPBBjEdohsOEBpAD7grcYOQpo5d7akcNrbxmA3hdY,9287
84
+ learning_loop_node-0.10.4.dist-info/WHEEL,sha256=WGfLGfLX43Ei_YORXSnT54hxFygu34kMpcQdmgmEwCQ,88
85
+ learning_loop_node-0.10.4.dist-info/RECORD,,