leap-model-parser 0.1.223__py3-none-any.whl → 0.1.225__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -47,6 +47,7 @@ class Node:
47
47
  outputs: Dict[str, ConnectionOutput] = field(default_factory=dict)
48
48
  pruning_plan_id: Optional[str] = None
49
49
  wrapper: Optional[WrapperData] = None
50
+ shape: Optional[List[str]] = None
50
51
 
51
52
  def __key(self):
52
53
  return (self.id, self.name)
@@ -5,7 +5,6 @@ from typing import Set, Dict, Any, List, Type, Optional, Tuple
5
5
 
6
6
  import tensorflow as tf # type: ignore
7
7
  from keras.engine.keras_tensor import KerasTensor # type: ignore
8
- from keras.engine.node import Node # type: ignore
9
8
  from keras.engine.node import Node as keras_node # type: ignore
10
9
  from keras.layers import Layer # type: ignore
11
10
  from keras.layers.convolutional.base_conv import Conv # type: ignore
@@ -206,7 +205,7 @@ class KerasJsonModelImport:
206
205
  'serialized_call_kwargs': serialized_call_kwargs})
207
206
 
208
207
  def generate_regular_node(self, layer: Dict[str, Any], layer_metadata: Dict[str, Any], node_key: str,
209
- layer_name_to_inbound_nodes: Dict[str, List[Node]]):
208
+ layer_name_to_inbound_nodes: Dict[str, List[keras_node]]):
210
209
  data = layer['config']
211
210
  if layer['class_name'] in ('TFOpLambda', 'SlicingOpLambda') or layer['class_name'] in self.custom_layers:
212
211
  call_args = layer_name_to_inbound_nodes[layer['config']
@@ -221,11 +220,17 @@ class KerasJsonModelImport:
221
220
 
222
221
  self.layer_data_adjustments(data, layer_metadata)
223
222
  node = Node(id=str(self.id), name=layer_metadata.get(
224
- "class_name", layer["class_name"]), data=data, position=[0, 0])
223
+ "class_name", layer["class_name"]), data=data, position=[0, 0],
224
+ shape=self._convert_layer_shape_to_string(layer['output_shape']))
225
225
  if 'wrapper' in layer:
226
226
  node.wrapper = layer['wrapper']
227
227
  self.nodes_cache[node_key] = node
228
228
 
229
+ @staticmethod
230
+ def _convert_layer_shape_to_string(s: List[Optional[int]]) -> List[str]:
231
+ return [str(dim) if dim is not None else 'dynamic_shape' for dim in s]
232
+
233
+
229
234
  @classmethod
230
235
  def handle_wrapper_layer(cls, layer):
231
236
  wrapped_layer = layer['config']['layer']
@@ -49,6 +49,7 @@ class LeapGraphEditor:
49
49
  self._add_connection_to_node(new_metric_node_id, input_name, input_node_id)
50
50
  elif node_connection.node.type in (NodeMappingType.Loss, NodeMappingType.CustomLoss):
51
51
  new_loss_node_id = self._add_loss_node(node_connection.node.name,
52
+ node_connection.node.user_unique_name,
52
53
  node_connection.node.type == NodeMappingType.CustomLoss,
53
54
  node_connection.node.arg_names)
54
55
  for input_name, node in node_connection.node_inputs.items():
@@ -159,7 +160,7 @@ class LeapGraphEditor:
159
160
  self.model_graph[new_node_id] = metric_node
160
161
  return new_node_id
161
162
 
162
- def _add_loss_node(self, loss_name: str, is_custom_loss: bool, arg_names: Optional[List[str]]=None) -> str:
163
+ def _add_loss_node(self, loss_name: str, user_unique_name:str, is_custom_loss: bool, arg_names: Optional[List[str]]=None) -> str:
163
164
  new_node_id = self._generate_new_node_id()
164
165
 
165
166
  loss_type = 'CustomLoss' if is_custom_loss else 'Loss'
@@ -169,7 +170,7 @@ class LeapGraphEditor:
169
170
  new_node_id,
170
171
  loss_node_name,
171
172
  position=[0, 0],
172
- data={'type': loss_type, 'selected': loss_name, 'name': loss_name},
173
+ data={'type': loss_type, 'selected': loss_name, 'name': loss_name, 'user_unique_name': user_unique_name},
173
174
  inputs={},
174
175
  outputs={
175
176
  f'{new_node_id}-loss': ConnectionOutput([])
@@ -7,7 +7,6 @@ import tempfile
7
7
  from importlib.util import find_spec
8
8
  from pathlib import Path
9
9
 
10
-
11
10
  import tensorflow as tf # type: ignore
12
11
  from code_loader.contract.mapping import NodeConnection, NodeMapping # type: ignore
13
12
  from keras import Model # type: ignore
@@ -34,6 +33,7 @@ if spec is not None:
34
33
 
35
34
  onnx_imported = True
36
35
 
36
+
37
37
  class ModelParser:
38
38
  def __init__(self, should_transform_inputs_and_outputs=False,
39
39
  custom_layers=None,
@@ -54,8 +54,14 @@ class ModelParser:
54
54
  ImportModelTypeEnum.PB_TF2.value: self.convert_pb_model,
55
55
  }
56
56
 
57
+ @staticmethod
58
+ def _add_output_node_shape_to_model_schema(model_schema: Dict, keras_model: Model):
59
+ for i, layer in enumerate(keras_model.layers):
60
+ model_schema['config']['layers'][i]['output_shape'] = list(layer.output_shape)
61
+
57
62
  def get_keras_model_and_model_graph(
58
- self, model_path: Path, model_type: ImportModelTypeEnum) -> Tuple[Dict[str, Node], List[InputInfo], Optional[Model], Optional[str]]:
63
+ self, model_path: Path, model_type: ImportModelTypeEnum) -> Tuple[
64
+ Dict[str, Node], List[InputInfo], Optional[Model], Optional[str]]:
59
65
  model_to_keras_converter: Optional[Callable[[str], Tuple[Dict[str, Node], Model, Optional[str]]]] = \
60
66
  self._model_types_converter.get(model_type.value)
61
67
  if model_to_keras_converter is None:
@@ -64,6 +70,9 @@ class ModelParser:
64
70
 
65
71
  file_path = str(model_path)
66
72
  model_schema, keras_model_with_weights, error_info = model_to_keras_converter(file_path)
73
+
74
+ self._add_output_node_shape_to_model_schema(model_schema, keras_model_with_weights)
75
+
67
76
  model_generator = KerasJsonModelImport(self.custom_layers)
68
77
 
69
78
  keras_model = keras_model_with_weights
@@ -83,7 +92,6 @@ class ModelParser:
83
92
 
84
93
  return graph, connected_inputs, keras_model_with_weights, error_info
85
94
 
86
-
87
95
  def _get_k_model_from_pb_path(self, file_path: str):
88
96
  tar_file = tarfile.open(file_path)
89
97
  with tempfile.TemporaryDirectory() as temp_dir:
@@ -98,7 +106,8 @@ class ModelParser:
98
106
  k_model = self._load_keras_model_with_custom_layers(pb_folder_path)
99
107
  return k_model
100
108
 
101
- def generate_model_graph(self, model_path: Path, model_type: ImportModelTypeEnum) -> Tuple[Dict[str, Node], List[InputInfo]]:
109
+ def generate_model_graph(self, model_path: Path, model_type: ImportModelTypeEnum) -> Tuple[
110
+ Dict[str, Node], List[InputInfo]]:
102
111
  model_graph, connected_inputs, _, error_info = self.get_keras_model_and_model_graph(
103
112
  model_path, model_type)
104
113
  return model_graph, connected_inputs
@@ -123,20 +132,30 @@ class ModelParser:
123
132
  node.name for node in onnx_model.graph.initializer]
124
133
  input_names = list(set(input_all) - set(input_initializer))
125
134
  converted_response: ConvertedResponse = onnx_to_keras(onnx_model, input_names=input_names,
126
- name_policy='attach_weights_name', allow_partial_compilation=False)
135
+ name_policy='attach_weights_name',
136
+ allow_partial_compilation=False)
127
137
  return self.convert_to_keras_model(converted_response.converted_model, converted_response.error_info)
128
138
 
129
139
  def _load_keras_model_with_custom_layers(self, file_path: str):
130
140
  custom_objects = {}
131
141
  if self.custom_layers is not None:
132
142
  custom_objects = self.custom_layers
133
- return load_model(file_path, custom_objects=custom_objects, compile=False)
143
+
144
+ try:
145
+ return load_model(file_path, custom_objects=custom_objects, compile=False)
146
+ except OSError as e:
147
+ if 'signature' in str(e):
148
+ raise Exception('Unable to open model file. The model might be corrupted or not a valid.')
149
+ else:
150
+ raise e
151
+
134
152
 
135
153
  def convert_h5_model(self, file_path: str) -> Tuple[Dict[str, Node], Model, Optional[str]]:
136
154
  imported_model = self._load_keras_model_with_custom_layers(file_path)
137
155
  return self.convert_to_keras_model(imported_model)
138
156
 
139
- def convert_to_keras_model(self, k_model, error_info: Optional[str] = None) -> Tuple[Dict[str, Node], Model, Optional[str]]:
157
+ def convert_to_keras_model(self, k_model, error_info: Optional[str] = None) -> Tuple[
158
+ Dict[str, Node], Model, Optional[str]]:
140
159
  converted_k_model = convert_channels_first_to_last(
141
160
  k_model, self._should_transform_inputs_and_outputs, self.custom_layers)
142
161
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: leap-model-parser
3
- Version: 0.1.223
3
+ Version: 0.1.225
4
4
  Summary:
5
5
  Home-page: https://github.com/tensorleap/leap-model-parser
6
6
  License: MIT
@@ -1,13 +1,13 @@
1
1
  LICENSE,sha256=qIwWjdspQeSMTtnFZBC8MuT-95L02FPvzRUdWFxrwJY,1067
2
2
  leap_model_parser/__init__.py,sha256=OAU7rFHAVVWUM-cDtQ4Ohum567KN8M-YTkHZp5KiYbo,132
3
3
  leap_model_parser/contract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
- leap_model_parser/contract/graph.py,sha256=c5rSlJJQ3JzLhyeniglzrP5GH0fp8UZDQKZw1fcrNe8,1132
4
+ leap_model_parser/contract/graph.py,sha256=lbs_IUnlkvoVjiARBMJee-aNbqeNXNPsUeOEwQliKgU,1170
5
5
  leap_model_parser/contract/importmodelresponse.py,sha256=GlvnKS8xrebU2Sj0dxqtEhAOOo3DlOtT7AMJ2BlzH9E,145
6
6
  leap_model_parser/contract/nodedata.py,sha256=1_ML0nzp3QUZ0_9mGSLhfO4_hqjYMwi0DWLwymUnWEs,43326
7
7
  leap_model_parser/contract/ui_components.json,sha256=0lsxwOLElW1E-imCcdh3zKPWgzFuQ_bApG6aHvYfTvo,410591
8
- leap_model_parser/keras_json_model_import.py,sha256=MD9ksO54VywikEAb2lxaNHq8Nbp8oiJab2Yn8UB-DRI,16841
9
- leap_model_parser/leap_graph_editor.py,sha256=iiAR8-ynfnq--Q0LK8z6aujJvJrVrSTZXtZWGWHXb44,13409
10
- leap_model_parser/model_parser.py,sha256=Je37-FjrNgi8w17rBIt_b71xm-BoiopBAvgW30qfb7o,6614
8
+ leap_model_parser/keras_json_model_import.py,sha256=h9-eb41W67goutRV5c3VkStxvntgb6EmPFdPeshhtsY,17058
9
+ leap_model_parser/leap_graph_editor.py,sha256=0SDHNVkMq94PXWaTqZzMlzJMRLWebOj4uyz64c_KCTQ,13559
10
+ leap_model_parser/model_parser.py,sha256=1nyVFRzOXkmPVY_401epYdnG2ZUw7D_YIK3gYrnCPxw,7314
11
11
  leap_model_parser/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
12
  leap_model_parser/utils/layerpedia/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
13
  leap_model_parser/utils/layerpedia/layerpedia.py,sha256=1syubfXBTB630TVkgcQ-Ge7Qe9Zbr6EtZRreuqCJnQ8,9292
@@ -18,8 +18,8 @@ leap_model_parser/utils/uicomponents/generatenodedata.py,sha256=LRaPlO5jJ9pUtkvL
18
18
  leap_model_parser/utils/uicomponents/tensorflowinscpection.py,sha256=ym613z9iQKPDBpr0RYD35bTABdm1L-Ez86G47BYT7qw,6775
19
19
  leap_model_parser/utils/uicomponents/ui_components.json,sha256=0lsxwOLElW1E-imCcdh3zKPWgzFuQ_bApG6aHvYfTvo,410591
20
20
  leap_model_parser/utils/uicomponents/ui_components_config.yaml,sha256=cRH8T-c3TAL0nfefRvt9pFsjbTWNEg38NRyHR7RpJsk,19534
21
- leap_model_parser-0.1.223.dist-info/LICENSE,sha256=qIwWjdspQeSMTtnFZBC8MuT-95L02FPvzRUdWFxrwJY,1067
22
- leap_model_parser-0.1.223.dist-info/METADATA,sha256=bN_EmO_V9rD2BnFK4dpB4XNOIrSwks7Lc-lMkpgun-c,1104
23
- leap_model_parser-0.1.223.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
24
- leap_model_parser-0.1.223.dist-info/entry_points.txt,sha256=ZvV6EuQt1uAqwapNg5Lo2qjJM9ZG5g2wfzZoLh_Ztyk,77
25
- leap_model_parser-0.1.223.dist-info/RECORD,,
21
+ leap_model_parser-0.1.225.dist-info/LICENSE,sha256=qIwWjdspQeSMTtnFZBC8MuT-95L02FPvzRUdWFxrwJY,1067
22
+ leap_model_parser-0.1.225.dist-info/METADATA,sha256=VZ6TjVvUV8hBKzuB73D2N-OEJRDZFXk2U244WR42Bvw,1104
23
+ leap_model_parser-0.1.225.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
24
+ leap_model_parser-0.1.225.dist-info/entry_points.txt,sha256=ZvV6EuQt1uAqwapNg5Lo2qjJM9ZG5g2wfzZoLh_Ztyk,77
25
+ leap_model_parser-0.1.225.dist-info/RECORD,,