leap-model-parser 0.1.216__py3-none-any.whl → 0.1.232__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- leap_model_parser/contract/graph.py +1 -0
- leap_model_parser/keras_json_model_import.py +10 -4
- leap_model_parser/leap_graph_editor.py +23 -2
- leap_model_parser/model_parser.py +61 -11
- {leap_model_parser-0.1.216.dist-info → leap_model_parser-0.1.232.dist-info}/METADATA +7 -6
- {leap_model_parser-0.1.216.dist-info → leap_model_parser-0.1.232.dist-info}/RECORD +9 -10
- {leap_model_parser-0.1.216.dist-info → leap_model_parser-0.1.232.dist-info}/WHEEL +1 -1
- leap_model_parser-0.1.216.dist-info/LICENSE +0 -21
- {leap_model_parser-0.1.216.dist-info → leap_model_parser-0.1.232.dist-info}/entry_points.txt +0 -0
- /LICENSE → /leap_model_parser-0.1.232.dist-info/licenses/LICENSE +0 -0
|
@@ -5,7 +5,6 @@ from typing import Set, Dict, Any, List, Type, Optional, Tuple
|
|
|
5
5
|
|
|
6
6
|
import tensorflow as tf # type: ignore
|
|
7
7
|
from keras.engine.keras_tensor import KerasTensor # type: ignore
|
|
8
|
-
from keras.engine.node import Node # type: ignore
|
|
9
8
|
from keras.engine.node import Node as keras_node # type: ignore
|
|
10
9
|
from keras.layers import Layer # type: ignore
|
|
11
10
|
from keras.layers.convolutional.base_conv import Conv # type: ignore
|
|
@@ -206,7 +205,7 @@ class KerasJsonModelImport:
|
|
|
206
205
|
'serialized_call_kwargs': serialized_call_kwargs})
|
|
207
206
|
|
|
208
207
|
def generate_regular_node(self, layer: Dict[str, Any], layer_metadata: Dict[str, Any], node_key: str,
|
|
209
|
-
layer_name_to_inbound_nodes: Dict[str, List[
|
|
208
|
+
layer_name_to_inbound_nodes: Dict[str, List[keras_node]]):
|
|
210
209
|
data = layer['config']
|
|
211
210
|
if layer['class_name'] in ('TFOpLambda', 'SlicingOpLambda') or layer['class_name'] in self.custom_layers:
|
|
212
211
|
call_args = layer_name_to_inbound_nodes[layer['config']
|
|
@@ -221,11 +220,17 @@ class KerasJsonModelImport:
|
|
|
221
220
|
|
|
222
221
|
self.layer_data_adjustments(data, layer_metadata)
|
|
223
222
|
node = Node(id=str(self.id), name=layer_metadata.get(
|
|
224
|
-
"class_name", layer["class_name"]), data=data, position=[0, 0]
|
|
223
|
+
"class_name", layer["class_name"]), data=data, position=[0, 0],
|
|
224
|
+
shape=self._convert_layer_shape_to_string(layer['output_shape']))
|
|
225
225
|
if 'wrapper' in layer:
|
|
226
226
|
node.wrapper = layer['wrapper']
|
|
227
227
|
self.nodes_cache[node_key] = node
|
|
228
228
|
|
|
229
|
+
@staticmethod
|
|
230
|
+
def _convert_layer_shape_to_string(s: List[Optional[int]]) -> List[str]:
|
|
231
|
+
return [str(dim) if dim is not None else 'dynamic_shape' for dim in s]
|
|
232
|
+
|
|
233
|
+
|
|
229
234
|
@classmethod
|
|
230
235
|
def handle_wrapper_layer(cls, layer):
|
|
231
236
|
wrapped_layer = layer['config']['layer']
|
|
@@ -332,7 +337,8 @@ class KerasJsonModelImport:
|
|
|
332
337
|
self.connected_inputs.append(input_info)
|
|
333
338
|
input_copy = {
|
|
334
339
|
'type': 'Input',
|
|
335
|
-
'output_name': input_name
|
|
340
|
+
'output_name': input_name,
|
|
341
|
+
'batch_input_shape_origin': shape
|
|
336
342
|
}
|
|
337
343
|
inputNode = Node(
|
|
338
344
|
id=str(self.id), name='Input', data=input_copy, position=[0, 0])
|
|
@@ -31,6 +31,8 @@ class LeapGraphEditor:
|
|
|
31
31
|
f"Prediction node with name {prediction_node.name} not found in model graph"
|
|
32
32
|
prediction_node_id = prediction_mapping_node.id
|
|
33
33
|
self.model_graph[prediction_node_id].data['prediction_type'] = prediction_labels_name
|
|
34
|
+
elif 'Input' in node_connection.node.type.value:
|
|
35
|
+
self._find_or_add_input_node(node_connection.node)
|
|
34
36
|
elif node_connection.node.type == NodeMappingType.Visualizer:
|
|
35
37
|
new_visualizer_node_id = self._add_visualizer_node(
|
|
36
38
|
node_connection.node.name, node_connection.node.sub_type,
|
|
@@ -47,6 +49,7 @@ class LeapGraphEditor:
|
|
|
47
49
|
self._add_connection_to_node(new_metric_node_id, input_name, input_node_id)
|
|
48
50
|
elif node_connection.node.type in (NodeMappingType.Loss, NodeMappingType.CustomLoss):
|
|
49
51
|
new_loss_node_id = self._add_loss_node(node_connection.node.name,
|
|
52
|
+
node_connection.node.user_unique_name,
|
|
50
53
|
node_connection.node.type == NodeMappingType.CustomLoss,
|
|
51
54
|
node_connection.node.arg_names)
|
|
52
55
|
for input_name, node in node_connection.node_inputs.items():
|
|
@@ -124,6 +127,22 @@ class LeapGraphEditor:
|
|
|
124
127
|
self.model_graph[new_node_id] = ground_truth_node
|
|
125
128
|
return new_node_id
|
|
126
129
|
|
|
130
|
+
def _add_input_encoder_not_connected_to_the_model_node(self, input_name: str) -> str:
|
|
131
|
+
new_node_id = self._generate_new_node_id()
|
|
132
|
+
ground_truth_node = Node(
|
|
133
|
+
new_node_id,
|
|
134
|
+
'Input',
|
|
135
|
+
position=[0, 0],
|
|
136
|
+
data={'name': input_name, 'output_name': input_name,
|
|
137
|
+
'type': 'Input', "selected": input_name},
|
|
138
|
+
inputs={},
|
|
139
|
+
outputs={
|
|
140
|
+
f'{new_node_id}-{input_name}': ConnectionOutput([])
|
|
141
|
+
}
|
|
142
|
+
)
|
|
143
|
+
self.model_graph[new_node_id] = ground_truth_node
|
|
144
|
+
return new_node_id
|
|
145
|
+
|
|
127
146
|
def _add_visualizer_node(self, visualizer_name: str, visualizer_type: str,
|
|
128
147
|
user_unique_name: str, arg_names: List[str]) -> str:
|
|
129
148
|
new_node_id = self._generate_new_node_id()
|
|
@@ -157,7 +176,7 @@ class LeapGraphEditor:
|
|
|
157
176
|
self.model_graph[new_node_id] = metric_node
|
|
158
177
|
return new_node_id
|
|
159
178
|
|
|
160
|
-
def _add_loss_node(self, loss_name: str, is_custom_loss: bool, arg_names: Optional[List[str]]=None) -> str:
|
|
179
|
+
def _add_loss_node(self, loss_name: str, user_unique_name:str, is_custom_loss: bool, arg_names: Optional[List[str]]=None) -> str:
|
|
161
180
|
new_node_id = self._generate_new_node_id()
|
|
162
181
|
|
|
163
182
|
loss_type = 'CustomLoss' if is_custom_loss else 'Loss'
|
|
@@ -167,7 +186,7 @@ class LeapGraphEditor:
|
|
|
167
186
|
new_node_id,
|
|
168
187
|
loss_node_name,
|
|
169
188
|
position=[0, 0],
|
|
170
|
-
data={'type': loss_type, 'selected': loss_name, 'name': loss_name},
|
|
189
|
+
data={'type': loss_type, 'selected': loss_name, 'name': loss_name, 'user_unique_name': user_unique_name},
|
|
171
190
|
inputs={},
|
|
172
191
|
outputs={
|
|
173
192
|
f'{new_node_id}-loss': ConnectionOutput([])
|
|
@@ -237,6 +256,8 @@ class LeapGraphEditor:
|
|
|
237
256
|
if input_node_id is None:
|
|
238
257
|
if input_node.type == NodeMappingType.GroundTruth:
|
|
239
258
|
input_node_id = self._add_ground_truth_node(input_node.name)
|
|
259
|
+
elif input_node.type == NodeMappingType.Input:
|
|
260
|
+
input_node_id = self._add_input_encoder_not_connected_to_the_model_node(input_node.name)
|
|
240
261
|
else:
|
|
241
262
|
raise Exception(f'Couldnt find input node name {input_node.name}')
|
|
242
263
|
elif 'Input' in input_node.type.value:
|
|
@@ -1,13 +1,13 @@
|
|
|
1
|
+
# mypy: ignore-errors
|
|
2
|
+
|
|
1
3
|
import glob
|
|
2
4
|
import json
|
|
3
5
|
import ntpath
|
|
4
|
-
import pickle
|
|
5
6
|
import tarfile
|
|
6
7
|
import tempfile
|
|
7
8
|
from importlib.util import find_spec
|
|
8
9
|
from pathlib import Path
|
|
9
10
|
|
|
10
|
-
|
|
11
11
|
import tensorflow as tf # type: ignore
|
|
12
12
|
from code_loader.contract.mapping import NodeConnection, NodeMapping # type: ignore
|
|
13
13
|
from keras import Model # type: ignore
|
|
@@ -34,6 +34,7 @@ if spec is not None:
|
|
|
34
34
|
|
|
35
35
|
onnx_imported = True
|
|
36
36
|
|
|
37
|
+
|
|
37
38
|
class ModelParser:
|
|
38
39
|
def __init__(self, should_transform_inputs_and_outputs=False,
|
|
39
40
|
custom_layers=None,
|
|
@@ -54,8 +55,14 @@ class ModelParser:
|
|
|
54
55
|
ImportModelTypeEnum.PB_TF2.value: self.convert_pb_model,
|
|
55
56
|
}
|
|
56
57
|
|
|
58
|
+
@staticmethod
|
|
59
|
+
def _add_output_node_shape_to_model_schema(model_schema: Dict, keras_model: Model):
|
|
60
|
+
for i, layer in enumerate(keras_model.layers):
|
|
61
|
+
model_schema['config']['layers'][i]['output_shape'] = list(layer.output_shape)
|
|
62
|
+
|
|
57
63
|
def get_keras_model_and_model_graph(
|
|
58
|
-
self, model_path: Path, model_type: ImportModelTypeEnum) -> Tuple[
|
|
64
|
+
self, model_path: Path, model_type: ImportModelTypeEnum) -> Tuple[
|
|
65
|
+
Dict[str, Node], List[InputInfo], Optional[Model], Optional[str]]:
|
|
59
66
|
model_to_keras_converter: Optional[Callable[[str], Tuple[Dict[str, Node], Model, Optional[str]]]] = \
|
|
60
67
|
self._model_types_converter.get(model_type.value)
|
|
61
68
|
if model_to_keras_converter is None:
|
|
@@ -64,6 +71,9 @@ class ModelParser:
|
|
|
64
71
|
|
|
65
72
|
file_path = str(model_path)
|
|
66
73
|
model_schema, keras_model_with_weights, error_info = model_to_keras_converter(file_path)
|
|
74
|
+
|
|
75
|
+
self._add_output_node_shape_to_model_schema(model_schema, keras_model_with_weights)
|
|
76
|
+
|
|
67
77
|
model_generator = KerasJsonModelImport(self.custom_layers)
|
|
68
78
|
|
|
69
79
|
keras_model = keras_model_with_weights
|
|
@@ -76,13 +86,19 @@ class ModelParser:
|
|
|
76
86
|
|
|
77
87
|
graph, connected_inputs = model_generator.generate_graph(
|
|
78
88
|
model_schema, layer_name_to_inbound_nodes)
|
|
79
|
-
|
|
89
|
+
# make sure input order is kept with original model
|
|
90
|
+
input_list = []
|
|
91
|
+
for inp in keras_model.inputs:
|
|
92
|
+
name = inp.name
|
|
93
|
+
name = name.replace(".", "_")
|
|
94
|
+
for inp_graph in connected_inputs:
|
|
95
|
+
if inp_graph.name == name:
|
|
96
|
+
input_list.append(inp_graph)
|
|
80
97
|
if self.mapping_connections is not None:
|
|
81
98
|
leap_graph_editor = LeapGraphEditor(graph, keras_model_with_weights)
|
|
82
99
|
leap_graph_editor.add_connections_to_graph(self.mapping_connections)
|
|
83
100
|
|
|
84
|
-
return graph,
|
|
85
|
-
|
|
101
|
+
return graph, input_list, keras_model_with_weights, error_info
|
|
86
102
|
|
|
87
103
|
def _get_k_model_from_pb_path(self, file_path: str):
|
|
88
104
|
tar_file = tarfile.open(file_path)
|
|
@@ -98,7 +114,8 @@ class ModelParser:
|
|
|
98
114
|
k_model = self._load_keras_model_with_custom_layers(pb_folder_path)
|
|
99
115
|
return k_model
|
|
100
116
|
|
|
101
|
-
def generate_model_graph(self, model_path: Path, model_type: ImportModelTypeEnum) -> Tuple[
|
|
117
|
+
def generate_model_graph(self, model_path: Path, model_type: ImportModelTypeEnum) -> Tuple[
|
|
118
|
+
Dict[str, Node], List[InputInfo]]:
|
|
102
119
|
model_graph, connected_inputs, _, error_info = self.get_keras_model_and_model_graph(
|
|
103
120
|
model_path, model_type)
|
|
104
121
|
return model_graph, connected_inputs
|
|
@@ -121,25 +138,58 @@ class ModelParser:
|
|
|
121
138
|
input_all = [_input.name for _input in onnx_model.graph.input]
|
|
122
139
|
input_initializer = [
|
|
123
140
|
node.name for node in onnx_model.graph.initializer]
|
|
124
|
-
input_names =
|
|
141
|
+
input_names = [name for name in input_all if name not in input_initializer]
|
|
125
142
|
converted_response: ConvertedResponse = onnx_to_keras(onnx_model, input_names=input_names,
|
|
126
|
-
|
|
143
|
+
name_policy='attach_weights_name',
|
|
144
|
+
allow_partial_compilation=False)
|
|
127
145
|
return self.convert_to_keras_model(converted_response.converted_model, converted_response.error_info)
|
|
128
146
|
|
|
129
147
|
def _load_keras_model_with_custom_layers(self, file_path: str):
|
|
130
148
|
custom_objects = {}
|
|
131
149
|
if self.custom_layers is not None:
|
|
132
150
|
custom_objects = self.custom_layers
|
|
133
|
-
|
|
151
|
+
|
|
152
|
+
try:
|
|
153
|
+
return load_model(file_path, custom_objects=custom_objects, compile=False)
|
|
154
|
+
except OSError as e:
|
|
155
|
+
if 'signature' in str(e):
|
|
156
|
+
raise Exception('Unable to open model file. The model might be corrupted or not a valid.')
|
|
157
|
+
else:
|
|
158
|
+
raise e
|
|
159
|
+
|
|
134
160
|
|
|
135
161
|
def convert_h5_model(self, file_path: str) -> Tuple[Dict[str, Node], Model, Optional[str]]:
|
|
136
162
|
imported_model = self._load_keras_model_with_custom_layers(file_path)
|
|
137
163
|
return self.convert_to_keras_model(imported_model)
|
|
138
164
|
|
|
139
|
-
def convert_to_keras_model(self, k_model, error_info: Optional[str] = None) -> Tuple[
|
|
165
|
+
def convert_to_keras_model(self, k_model, error_info: Optional[str] = None) -> Tuple[
|
|
166
|
+
Dict[str, Node], Model, Optional[str]]:
|
|
140
167
|
converted_k_model = convert_channels_first_to_last(
|
|
141
168
|
k_model, self._should_transform_inputs_and_outputs, self.custom_layers)
|
|
142
169
|
|
|
170
|
+
from keras.saving.legacy.saved_model import json_utils # type: ignore
|
|
171
|
+
import numpy as np
|
|
172
|
+
|
|
173
|
+
_orig_get_json_type = json_utils.get_json_type
|
|
174
|
+
|
|
175
|
+
|
|
176
|
+
def _patched_get_json_type(obj): # type: ignore
|
|
177
|
+
# Handle numpy dtype explicitly
|
|
178
|
+
if isinstance(obj, np.dtype):
|
|
179
|
+
return obj.name # e.g. "int64"
|
|
180
|
+
# Make sure common numpy scalars/containers are handled robustly
|
|
181
|
+
if isinstance(obj, np.integer):
|
|
182
|
+
return int(obj)
|
|
183
|
+
if isinstance(obj, np.floating):
|
|
184
|
+
return float(obj)
|
|
185
|
+
if isinstance(obj, np.bool_):
|
|
186
|
+
return bool(obj)
|
|
187
|
+
if isinstance(obj, np.ndarray):
|
|
188
|
+
return obj.tolist()
|
|
189
|
+
return _orig_get_json_type(obj)
|
|
190
|
+
|
|
191
|
+
json_utils.get_json_type = _patched_get_json_type
|
|
192
|
+
|
|
143
193
|
model_schema = json.loads(converted_k_model.to_json())
|
|
144
194
|
|
|
145
195
|
return model_schema, converted_k_model, error_info
|
|
@@ -1,9 +1,9 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: leap-model-parser
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.232
|
|
4
4
|
Summary:
|
|
5
|
-
Home-page: https://github.com/tensorleap/leap-model-parser
|
|
6
5
|
License: MIT
|
|
6
|
+
License-File: LICENSE
|
|
7
7
|
Author: idan
|
|
8
8
|
Author-email: idan.yogev@tensorleap.ai
|
|
9
9
|
Requires-Python: >=3.8,<3.11
|
|
@@ -12,15 +12,16 @@ Classifier: Programming Language :: Python :: 3
|
|
|
12
12
|
Classifier: Programming Language :: Python :: 3.8
|
|
13
13
|
Classifier: Programming Language :: Python :: 3.9
|
|
14
14
|
Classifier: Programming Language :: Python :: 3.10
|
|
15
|
-
Requires-Dist: code-loader (>=1.0.
|
|
16
|
-
Requires-Dist: keras-data-format-converter (==0.1.
|
|
15
|
+
Requires-Dist: code-loader (>=1.0.127)
|
|
16
|
+
Requires-Dist: keras-data-format-converter (==0.1.24)
|
|
17
17
|
Requires-Dist: leap-model-rebuilder (==0.1.7)
|
|
18
18
|
Requires-Dist: numpy (>=1.22.3,<2.0.0)
|
|
19
19
|
Requires-Dist: onnx (==1.13.0)
|
|
20
|
-
Requires-Dist: onnx2kerastl (==0.0.
|
|
20
|
+
Requires-Dist: onnx2kerastl (==0.0.180)
|
|
21
21
|
Requires-Dist: tensorflow (==2.12.0) ; platform_machine == "x86_64"
|
|
22
22
|
Requires-Dist: tensorflow-io-gcs-filesystem (==0.34.0)
|
|
23
23
|
Requires-Dist: tensorflow-macos (==2.12.0) ; platform_machine == "arm64"
|
|
24
|
+
Project-URL: Homepage, https://github.com/tensorleap/leap-model-parser
|
|
24
25
|
Project-URL: Repository, https://github.com/tensorleap/leap-model-parser
|
|
25
26
|
Description-Content-Type: text/markdown
|
|
26
27
|
|
|
@@ -1,13 +1,12 @@
|
|
|
1
|
-
LICENSE,sha256=qIwWjdspQeSMTtnFZBC8MuT-95L02FPvzRUdWFxrwJY,1067
|
|
2
1
|
leap_model_parser/__init__.py,sha256=OAU7rFHAVVWUM-cDtQ4Ohum567KN8M-YTkHZp5KiYbo,132
|
|
3
2
|
leap_model_parser/contract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
4
|
-
leap_model_parser/contract/graph.py,sha256=
|
|
3
|
+
leap_model_parser/contract/graph.py,sha256=lbs_IUnlkvoVjiARBMJee-aNbqeNXNPsUeOEwQliKgU,1170
|
|
5
4
|
leap_model_parser/contract/importmodelresponse.py,sha256=GlvnKS8xrebU2Sj0dxqtEhAOOo3DlOtT7AMJ2BlzH9E,145
|
|
6
5
|
leap_model_parser/contract/nodedata.py,sha256=1_ML0nzp3QUZ0_9mGSLhfO4_hqjYMwi0DWLwymUnWEs,43326
|
|
7
6
|
leap_model_parser/contract/ui_components.json,sha256=0lsxwOLElW1E-imCcdh3zKPWgzFuQ_bApG6aHvYfTvo,410591
|
|
8
|
-
leap_model_parser/keras_json_model_import.py,sha256=
|
|
9
|
-
leap_model_parser/leap_graph_editor.py,sha256=
|
|
10
|
-
leap_model_parser/model_parser.py,sha256=
|
|
7
|
+
leap_model_parser/keras_json_model_import.py,sha256=h9-eb41W67goutRV5c3VkStxvntgb6EmPFdPeshhtsY,17058
|
|
8
|
+
leap_model_parser/leap_graph_editor.py,sha256=s6iVO06xM6LJ8ZjSxkr1srYxsHhGl2KnQjQoc9g4_iE,14329
|
|
9
|
+
leap_model_parser/model_parser.py,sha256=672YTDpQP38439juRr22UbrLG8YQng8HVmMmLVOy1mI,8510
|
|
11
10
|
leap_model_parser/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
12
11
|
leap_model_parser/utils/layerpedia/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
13
12
|
leap_model_parser/utils/layerpedia/layerpedia.py,sha256=1syubfXBTB630TVkgcQ-Ge7Qe9Zbr6EtZRreuqCJnQ8,9292
|
|
@@ -18,8 +17,8 @@ leap_model_parser/utils/uicomponents/generatenodedata.py,sha256=LRaPlO5jJ9pUtkvL
|
|
|
18
17
|
leap_model_parser/utils/uicomponents/tensorflowinscpection.py,sha256=ym613z9iQKPDBpr0RYD35bTABdm1L-Ez86G47BYT7qw,6775
|
|
19
18
|
leap_model_parser/utils/uicomponents/ui_components.json,sha256=0lsxwOLElW1E-imCcdh3zKPWgzFuQ_bApG6aHvYfTvo,410591
|
|
20
19
|
leap_model_parser/utils/uicomponents/ui_components_config.yaml,sha256=cRH8T-c3TAL0nfefRvt9pFsjbTWNEg38NRyHR7RpJsk,19534
|
|
21
|
-
leap_model_parser-0.1.
|
|
22
|
-
leap_model_parser-0.1.
|
|
23
|
-
leap_model_parser-0.1.
|
|
24
|
-
leap_model_parser-0.1.
|
|
25
|
-
leap_model_parser-0.1.
|
|
20
|
+
leap_model_parser-0.1.232.dist-info/METADATA,sha256=3jnqLtGeBomuwwUqg-9mV4mVHvl-h3fOTuaoKTN5EOE,1138
|
|
21
|
+
leap_model_parser-0.1.232.dist-info/WHEEL,sha256=zp0Cn7JsFoX2ATtOhtaFYIiE2rmFAD4OcMhtUki8W3U,88
|
|
22
|
+
leap_model_parser-0.1.232.dist-info/entry_points.txt,sha256=ZvV6EuQt1uAqwapNg5Lo2qjJM9ZG5g2wfzZoLh_Ztyk,77
|
|
23
|
+
leap_model_parser-0.1.232.dist-info/licenses/LICENSE,sha256=qIwWjdspQeSMTtnFZBC8MuT-95L02FPvzRUdWFxrwJY,1067
|
|
24
|
+
leap_model_parser-0.1.232.dist-info/RECORD,,
|
|
@@ -1,21 +0,0 @@
|
|
|
1
|
-
MIT License
|
|
2
|
-
|
|
3
|
-
Copyright (c) 2021 TensorLeap
|
|
4
|
-
|
|
5
|
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
-
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
-
in the Software without restriction, including without limitation the rights
|
|
8
|
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
-
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
-
furnished to do so, subject to the following conditions:
|
|
11
|
-
|
|
12
|
-
The above copyright notice and this permission notice shall be included in all
|
|
13
|
-
copies or substantial portions of the Software.
|
|
14
|
-
|
|
15
|
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
-
SOFTWARE.
|
{leap_model_parser-0.1.216.dist-info → leap_model_parser-0.1.232.dist-info}/entry_points.txt
RENAMED
|
File without changes
|
|
File without changes
|