leap-model-parser 0.1.199.dev2__py3-none-any.whl → 0.1.228__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -47,6 +47,7 @@ class Node:
47
47
  outputs: Dict[str, ConnectionOutput] = field(default_factory=dict)
48
48
  pruning_plan_id: Optional[str] = None
49
49
  wrapper: Optional[WrapperData] = None
50
+ shape: Optional[List[str]] = None
50
51
 
51
52
  def __key(self):
52
53
  return (self.id, self.name)
@@ -5,7 +5,6 @@ from typing import Set, Dict, Any, List, Type, Optional, Tuple
5
5
 
6
6
  import tensorflow as tf # type: ignore
7
7
  from keras.engine.keras_tensor import KerasTensor # type: ignore
8
- from keras.engine.node import Node # type: ignore
9
8
  from keras.engine.node import Node as keras_node # type: ignore
10
9
  from keras.layers import Layer # type: ignore
11
10
  from keras.layers.convolutional.base_conv import Conv # type: ignore
@@ -206,7 +205,7 @@ class KerasJsonModelImport:
206
205
  'serialized_call_kwargs': serialized_call_kwargs})
207
206
 
208
207
  def generate_regular_node(self, layer: Dict[str, Any], layer_metadata: Dict[str, Any], node_key: str,
209
- layer_name_to_inbound_nodes: Dict[str, List[Node]]):
208
+ layer_name_to_inbound_nodes: Dict[str, List[keras_node]]):
210
209
  data = layer['config']
211
210
  if layer['class_name'] in ('TFOpLambda', 'SlicingOpLambda') or layer['class_name'] in self.custom_layers:
212
211
  call_args = layer_name_to_inbound_nodes[layer['config']
@@ -221,11 +220,17 @@ class KerasJsonModelImport:
221
220
 
222
221
  self.layer_data_adjustments(data, layer_metadata)
223
222
  node = Node(id=str(self.id), name=layer_metadata.get(
224
- "class_name", layer["class_name"]), data=data, position=[0, 0])
223
+ "class_name", layer["class_name"]), data=data, position=[0, 0],
224
+ shape=self._convert_layer_shape_to_string(layer['output_shape']))
225
225
  if 'wrapper' in layer:
226
226
  node.wrapper = layer['wrapper']
227
227
  self.nodes_cache[node_key] = node
228
228
 
229
+ @staticmethod
230
+ def _convert_layer_shape_to_string(s: List[Optional[int]]) -> List[str]:
231
+ return [str(dim) if dim is not None else 'dynamic_shape' for dim in s]
232
+
233
+
229
234
  @classmethod
230
235
  def handle_wrapper_layer(cls, layer):
231
236
  wrapped_layer = layer['config']['layer']
@@ -332,7 +337,8 @@ class KerasJsonModelImport:
332
337
  self.connected_inputs.append(input_info)
333
338
  input_copy = {
334
339
  'type': 'Input',
335
- 'output_name': input_name
340
+ 'output_name': input_name,
341
+ 'batch_input_shape_origin': shape
336
342
  }
337
343
  inputNode = Node(
338
344
  id=str(self.id), name='Input', data=input_copy, position=[0, 0])
@@ -31,7 +31,9 @@ class LeapGraphEditor:
31
31
  f"Prediction node with name {prediction_node.name} not found in model graph"
32
32
  prediction_node_id = prediction_mapping_node.id
33
33
  self.model_graph[prediction_node_id].data['prediction_type'] = prediction_labels_name
34
- if node_connection.node.type == NodeMappingType.Visualizer:
34
+ elif 'Input' in node_connection.node.type.value:
35
+ self._find_or_add_input_node(node_connection.node)
36
+ elif node_connection.node.type == NodeMappingType.Visualizer:
35
37
  new_visualizer_node_id = self._add_visualizer_node(
36
38
  node_connection.node.name, node_connection.node.sub_type,
37
39
  node_connection.node.user_unique_name, node_connection.node.arg_names)
@@ -47,6 +49,7 @@ class LeapGraphEditor:
47
49
  self._add_connection_to_node(new_metric_node_id, input_name, input_node_id)
48
50
  elif node_connection.node.type in (NodeMappingType.Loss, NodeMappingType.CustomLoss):
49
51
  new_loss_node_id = self._add_loss_node(node_connection.node.name,
52
+ node_connection.node.user_unique_name,
50
53
  node_connection.node.type == NodeMappingType.CustomLoss,
51
54
  node_connection.node.arg_names)
52
55
  for input_name, node in node_connection.node_inputs.items():
@@ -71,6 +74,8 @@ class LeapGraphEditor:
71
74
 
72
75
  def _find_input_node_by_origin_name(self, origin_name: str) -> Optional[Node]:
73
76
  for node in self.model_graph.values():
77
+ if node.data.get('original_output_name') == origin_name:
78
+ return node
74
79
  if node.data.get('output_name') == origin_name:
75
80
  return node
76
81
  return None
@@ -122,6 +127,22 @@ class LeapGraphEditor:
122
127
  self.model_graph[new_node_id] = ground_truth_node
123
128
  return new_node_id
124
129
 
130
+ def _add_input_encoder_not_connected_to_the_model_node(self, input_name: str) -> str:
131
+ new_node_id = self._generate_new_node_id()
132
+ ground_truth_node = Node(
133
+ new_node_id,
134
+ 'Input',
135
+ position=[0, 0],
136
+ data={'name': input_name, 'output_name': input_name,
137
+ 'type': 'Input', "selected": input_name},
138
+ inputs={},
139
+ outputs={
140
+ f'{new_node_id}-{input_name}': ConnectionOutput([])
141
+ }
142
+ )
143
+ self.model_graph[new_node_id] = ground_truth_node
144
+ return new_node_id
145
+
125
146
  def _add_visualizer_node(self, visualizer_name: str, visualizer_type: str,
126
147
  user_unique_name: str, arg_names: List[str]) -> str:
127
148
  new_node_id = self._generate_new_node_id()
@@ -155,7 +176,7 @@ class LeapGraphEditor:
155
176
  self.model_graph[new_node_id] = metric_node
156
177
  return new_node_id
157
178
 
158
- def _add_loss_node(self, loss_name: str, is_custom_loss: bool, arg_names: Optional[List[str]]=None) -> str:
179
+ def _add_loss_node(self, loss_name: str, user_unique_name:str, is_custom_loss: bool, arg_names: Optional[List[str]]=None) -> str:
159
180
  new_node_id = self._generate_new_node_id()
160
181
 
161
182
  loss_type = 'CustomLoss' if is_custom_loss else 'Loss'
@@ -165,7 +186,7 @@ class LeapGraphEditor:
165
186
  new_node_id,
166
187
  loss_node_name,
167
188
  position=[0, 0],
168
- data={'type': loss_type, 'selected': loss_name, 'name': loss_name},
189
+ data={'type': loss_type, 'selected': loss_name, 'name': loss_name, 'user_unique_name': user_unique_name},
169
190
  inputs={},
170
191
  outputs={
171
192
  f'{new_node_id}-loss': ConnectionOutput([])
@@ -210,7 +231,10 @@ class LeapGraphEditor:
210
231
  input_node_by_origin = self._find_input_node_by_origin_name(origin_name)
211
232
  assert input_node_by_origin is not None, f"Input node with origin name {origin_name} not found in model graph"
212
233
  input_node_id = input_node_by_origin.id
234
+ if 'original_output_name' not in self.model_graph[input_node_id].data:
235
+ self.model_graph[input_node_id].data['original_output_name'] = self.model_graph[input_node_id].data['output_name']
213
236
  self.model_graph[input_node_id].data['output_name'] = input_node.name
237
+
214
238
  output_keys = list(self.model_graph[input_node_id].outputs.keys())
215
239
  for output_key in output_keys:
216
240
  new_output_key = f'{input_node_id}-{input_node.name}'
@@ -232,6 +256,8 @@ class LeapGraphEditor:
232
256
  if input_node_id is None:
233
257
  if input_node.type == NodeMappingType.GroundTruth:
234
258
  input_node_id = self._add_ground_truth_node(input_node.name)
259
+ elif input_node.type == NodeMappingType.Input:
260
+ input_node_id = self._add_input_encoder_not_connected_to_the_model_node(input_node.name)
235
261
  else:
236
262
  raise Exception(f'Couldnt find input node name {input_node.name}')
237
263
  elif 'Input' in input_node.type.value:
@@ -1,3 +1,5 @@
1
+ # mypy: ignore-errors
2
+
1
3
  import glob
2
4
  import json
3
5
  import ntpath
@@ -6,9 +8,8 @@ import tempfile
6
8
  from importlib.util import find_spec
7
9
  from pathlib import Path
8
10
 
9
-
10
11
  import tensorflow as tf # type: ignore
11
- from code_loader.contract.mapping import NodeConnection # type: ignore
12
+ from code_loader.contract.mapping import NodeConnection, NodeMapping # type: ignore
12
13
  from keras import Model # type: ignore
13
14
  from keras_data_format_converter import convert_channels_first_to_last # type: ignore
14
15
  from leap_model_rebuilder import rebuild_model # type: ignore
@@ -33,6 +34,7 @@ if spec is not None:
33
34
 
34
35
  onnx_imported = True
35
36
 
37
+
36
38
  class ModelParser:
37
39
  def __init__(self, should_transform_inputs_and_outputs=False,
38
40
  custom_layers=None,
@@ -53,8 +55,14 @@ class ModelParser:
53
55
  ImportModelTypeEnum.PB_TF2.value: self.convert_pb_model,
54
56
  }
55
57
 
58
+ @staticmethod
59
+ def _add_output_node_shape_to_model_schema(model_schema: Dict, keras_model: Model):
60
+ for i, layer in enumerate(keras_model.layers):
61
+ model_schema['config']['layers'][i]['output_shape'] = list(layer.output_shape)
62
+
56
63
  def get_keras_model_and_model_graph(
57
- self, model_path: Path, model_type: ImportModelTypeEnum) -> Tuple[Dict[str, Node], List[InputInfo], Optional[Model], Optional[str]]:
64
+ self, model_path: Path, model_type: ImportModelTypeEnum) -> Tuple[
65
+ Dict[str, Node], List[InputInfo], Optional[Model], Optional[str]]:
58
66
  model_to_keras_converter: Optional[Callable[[str], Tuple[Dict[str, Node], Model, Optional[str]]]] = \
59
67
  self._model_types_converter.get(model_type.value)
60
68
  if model_to_keras_converter is None:
@@ -63,6 +71,9 @@ class ModelParser:
63
71
 
64
72
  file_path = str(model_path)
65
73
  model_schema, keras_model_with_weights, error_info = model_to_keras_converter(file_path)
74
+
75
+ self._add_output_node_shape_to_model_schema(model_schema, keras_model_with_weights)
76
+
66
77
  model_generator = KerasJsonModelImport(self.custom_layers)
67
78
 
68
79
  keras_model = keras_model_with_weights
@@ -82,7 +93,6 @@ class ModelParser:
82
93
 
83
94
  return graph, connected_inputs, keras_model_with_weights, error_info
84
95
 
85
-
86
96
  def _get_k_model_from_pb_path(self, file_path: str):
87
97
  tar_file = tarfile.open(file_path)
88
98
  with tempfile.TemporaryDirectory() as temp_dir:
@@ -97,7 +107,8 @@ class ModelParser:
97
107
  k_model = self._load_keras_model_with_custom_layers(pb_folder_path)
98
108
  return k_model
99
109
 
100
- def generate_model_graph(self, model_path: Path, model_type: ImportModelTypeEnum) -> Tuple[Dict[str, Node], List[InputInfo]]:
110
+ def generate_model_graph(self, model_path: Path, model_type: ImportModelTypeEnum) -> Tuple[
111
+ Dict[str, Node], List[InputInfo]]:
101
112
  model_graph, connected_inputs, _, error_info = self.get_keras_model_and_model_graph(
102
113
  model_path, model_type)
103
114
  return model_graph, connected_inputs
@@ -122,23 +133,56 @@ class ModelParser:
122
133
  node.name for node in onnx_model.graph.initializer]
123
134
  input_names = list(set(input_all) - set(input_initializer))
124
135
  converted_response: ConvertedResponse = onnx_to_keras(onnx_model, input_names=input_names,
125
- name_policy='attach_weights_name', allow_partial_compilation=False)
136
+ name_policy='attach_weights_name',
137
+ allow_partial_compilation=False)
126
138
  return self.convert_to_keras_model(converted_response.converted_model, converted_response.error_info)
127
139
 
128
140
  def _load_keras_model_with_custom_layers(self, file_path: str):
129
141
  custom_objects = {}
130
142
  if self.custom_layers is not None:
131
143
  custom_objects = self.custom_layers
132
- return load_model(file_path, custom_objects=custom_objects, compile=False)
144
+
145
+ try:
146
+ return load_model(file_path, custom_objects=custom_objects, compile=False)
147
+ except OSError as e:
148
+ if 'signature' in str(e):
149
+ raise Exception('Unable to open model file. The model might be corrupted or not a valid.')
150
+ else:
151
+ raise e
152
+
133
153
 
134
154
  def convert_h5_model(self, file_path: str) -> Tuple[Dict[str, Node], Model, Optional[str]]:
135
155
  imported_model = self._load_keras_model_with_custom_layers(file_path)
136
156
  return self.convert_to_keras_model(imported_model)
137
157
 
138
- def convert_to_keras_model(self, k_model, error_info: Optional[str] = None) -> Tuple[Dict[str, Node], Model, Optional[str]]:
158
+ def convert_to_keras_model(self, k_model, error_info: Optional[str] = None) -> Tuple[
159
+ Dict[str, Node], Model, Optional[str]]:
139
160
  converted_k_model = convert_channels_first_to_last(
140
161
  k_model, self._should_transform_inputs_and_outputs, self.custom_layers)
141
162
 
163
+ from keras.saving.legacy.saved_model import json_utils # type: ignore
164
+ import numpy as np
165
+
166
+ _orig_get_json_type = json_utils.get_json_type
167
+
168
+
169
+ def _patched_get_json_type(obj): # type: ignore
170
+ # Handle numpy dtype explicitly
171
+ if isinstance(obj, np.dtype):
172
+ return obj.name # e.g. "int64"
173
+ # Make sure common numpy scalars/containers are handled robustly
174
+ if isinstance(obj, np.integer):
175
+ return int(obj)
176
+ if isinstance(obj, np.floating):
177
+ return float(obj)
178
+ if isinstance(obj, np.bool_):
179
+ return bool(obj)
180
+ if isinstance(obj, np.ndarray):
181
+ return obj.tolist()
182
+ return _orig_get_json_type(obj)
183
+
184
+ json_utils.get_json_type = _patched_get_json_type
185
+
142
186
  model_schema = json.loads(converted_k_model.to_json())
143
187
 
144
188
  return model_schema, converted_k_model, error_info
@@ -1,8 +1,9 @@
1
- Metadata-Version: 2.3
1
+ Metadata-Version: 2.4
2
2
  Name: leap-model-parser
3
- Version: 0.1.199.dev2
3
+ Version: 0.1.228
4
4
  Summary:
5
5
  License: MIT
6
+ License-File: LICENSE
6
7
  Author: idan
7
8
  Author-email: idan.yogev@tensorleap.ai
8
9
  Requires-Python: >=3.8,<3.11
@@ -11,12 +12,12 @@ Classifier: Programming Language :: Python :: 3
11
12
  Classifier: Programming Language :: Python :: 3.8
12
13
  Classifier: Programming Language :: Python :: 3.9
13
14
  Classifier: Programming Language :: Python :: 3.10
14
- Requires-Dist: code-loader (==1.0.92.dev3)
15
+ Requires-Dist: code-loader (>=1.0.127)
15
16
  Requires-Dist: keras-data-format-converter (==0.1.22)
16
17
  Requires-Dist: leap-model-rebuilder (==0.1.7)
17
18
  Requires-Dist: numpy (>=1.22.3,<2.0.0)
18
19
  Requires-Dist: onnx (==1.13.0)
19
- Requires-Dist: onnx2kerastl (==0.0.174)
20
+ Requires-Dist: onnx2kerastl (==0.0.177)
20
21
  Requires-Dist: tensorflow (==2.12.0) ; platform_machine == "x86_64"
21
22
  Requires-Dist: tensorflow-io-gcs-filesystem (==0.34.0)
22
23
  Requires-Dist: tensorflow-macos (==2.12.0) ; platform_machine == "arm64"
@@ -1,12 +1,12 @@
1
1
  leap_model_parser/__init__.py,sha256=OAU7rFHAVVWUM-cDtQ4Ohum567KN8M-YTkHZp5KiYbo,132
2
2
  leap_model_parser/contract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
- leap_model_parser/contract/graph.py,sha256=c5rSlJJQ3JzLhyeniglzrP5GH0fp8UZDQKZw1fcrNe8,1132
3
+ leap_model_parser/contract/graph.py,sha256=lbs_IUnlkvoVjiARBMJee-aNbqeNXNPsUeOEwQliKgU,1170
4
4
  leap_model_parser/contract/importmodelresponse.py,sha256=GlvnKS8xrebU2Sj0dxqtEhAOOo3DlOtT7AMJ2BlzH9E,145
5
5
  leap_model_parser/contract/nodedata.py,sha256=1_ML0nzp3QUZ0_9mGSLhfO4_hqjYMwi0DWLwymUnWEs,43326
6
6
  leap_model_parser/contract/ui_components.json,sha256=0lsxwOLElW1E-imCcdh3zKPWgzFuQ_bApG6aHvYfTvo,410591
7
- leap_model_parser/keras_json_model_import.py,sha256=x7HOH6iaASfzJgwMRHgF5SQS-iFOF5j9yCG0mDC9HEA,16794
8
- leap_model_parser/leap_graph_editor.py,sha256=ToPnBUh31hXrA83BMTo631DLQm36PgFE_uTYB-boFAM,12983
9
- leap_model_parser/model_parser.py,sha256=kodF6aCPXP5FzZR9To2txqu6YdwklmhdJbyQKO_hghM,6587
7
+ leap_model_parser/keras_json_model_import.py,sha256=h9-eb41W67goutRV5c3VkStxvntgb6EmPFdPeshhtsY,17058
8
+ leap_model_parser/leap_graph_editor.py,sha256=s6iVO06xM6LJ8ZjSxkr1srYxsHhGl2KnQjQoc9g4_iE,14329
9
+ leap_model_parser/model_parser.py,sha256=W8FGKCBOBClIl0sdBlTdoSRT8sIdVrlbO8veNMouJ7o,8169
10
10
  leap_model_parser/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  leap_model_parser/utils/layerpedia/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
12
  leap_model_parser/utils/layerpedia/layerpedia.py,sha256=1syubfXBTB630TVkgcQ-Ge7Qe9Zbr6EtZRreuqCJnQ8,9292
@@ -17,8 +17,8 @@ leap_model_parser/utils/uicomponents/generatenodedata.py,sha256=LRaPlO5jJ9pUtkvL
17
17
  leap_model_parser/utils/uicomponents/tensorflowinscpection.py,sha256=ym613z9iQKPDBpr0RYD35bTABdm1L-Ez86G47BYT7qw,6775
18
18
  leap_model_parser/utils/uicomponents/ui_components.json,sha256=0lsxwOLElW1E-imCcdh3zKPWgzFuQ_bApG6aHvYfTvo,410591
19
19
  leap_model_parser/utils/uicomponents/ui_components_config.yaml,sha256=cRH8T-c3TAL0nfefRvt9pFsjbTWNEg38NRyHR7RpJsk,19534
20
- leap_model_parser-0.1.199.dev2.dist-info/LICENSE,sha256=qIwWjdspQeSMTtnFZBC8MuT-95L02FPvzRUdWFxrwJY,1067
21
- leap_model_parser-0.1.199.dev2.dist-info/METADATA,sha256=uN9eAx9NG4bMszvrxtLDlbzzfBPpuB472G72bJt_zkM,1125
22
- leap_model_parser-0.1.199.dev2.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
23
- leap_model_parser-0.1.199.dev2.dist-info/entry_points.txt,sha256=ZvV6EuQt1uAqwapNg5Lo2qjJM9ZG5g2wfzZoLh_Ztyk,77
24
- leap_model_parser-0.1.199.dev2.dist-info/RECORD,,
20
+ leap_model_parser-0.1.228.dist-info/METADATA,sha256=4mXS089Qn_kVo07OcvrVsHvQnbu6clRRnJXircAOEG0,1138
21
+ leap_model_parser-0.1.228.dist-info/WHEEL,sha256=zp0Cn7JsFoX2ATtOhtaFYIiE2rmFAD4OcMhtUki8W3U,88
22
+ leap_model_parser-0.1.228.dist-info/entry_points.txt,sha256=ZvV6EuQt1uAqwapNg5Lo2qjJM9ZG5g2wfzZoLh_Ztyk,77
23
+ leap_model_parser-0.1.228.dist-info/licenses/LICENSE,sha256=qIwWjdspQeSMTtnFZBC8MuT-95L02FPvzRUdWFxrwJY,1067
24
+ leap_model_parser-0.1.228.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 2.1.3
2
+ Generator: poetry-core 2.2.1
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any