leadguru-jobs 0.415.0__py3-none-any.whl → 0.417.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {leadguru_jobs-0.415.0.dist-info → leadguru_jobs-0.417.0.dist-info}/METADATA +10 -5
- leadguru_jobs-0.417.0.dist-info/RECORD +49 -0
- lgt_jobs/__init__.py +4 -4
- lgt_jobs/jobs/analytics.py +1 -1
- lgt_jobs/jobs/archive_leads.py +2 -2
- lgt_jobs/jobs/bot_stats_update.py +9 -9
- lgt_jobs/jobs/chat_history.py +57 -52
- lgt_jobs/jobs/inbox_leads.py +5 -6
- lgt_jobs/jobs/mass_message.py +2 -2
- lgt_jobs/jobs/send_code.py +1 -1
- lgt_jobs/jobs/send_slack_message.py +5 -24
- lgt_jobs/jobs/update_slack_profile.py +12 -14
- lgt_jobs/jobs/user_balance_update.py +5 -5
- lgt_jobs/jobs/workspace_connect.py +7 -5
- lgt_jobs/lgt_common/__init__.py +0 -0
- lgt_jobs/lgt_common/discord_client/__init__.py +0 -0
- lgt_jobs/lgt_common/discord_client/discord_client.py +62 -0
- lgt_jobs/lgt_common/discord_client/methods.py +16 -0
- lgt_jobs/lgt_common/enums/__init__.py +0 -0
- lgt_jobs/lgt_common/enums/slack_errors.py +6 -0
- lgt_jobs/lgt_common/helpers.py +18 -0
- lgt_jobs/lgt_common/lgt_logging.py +15 -0
- lgt_jobs/lgt_common/pubsub/__init__.py +0 -0
- lgt_jobs/lgt_common/pubsub/command.py +14 -0
- lgt_jobs/lgt_common/pubsub/messages.py +37 -0
- lgt_jobs/lgt_common/pubsub/pubsubfactory.py +51 -0
- lgt_jobs/lgt_common/slack_client/__init__.py +0 -0
- lgt_jobs/lgt_common/slack_client/methods.py +46 -0
- lgt_jobs/lgt_common/slack_client/slack_client.py +392 -0
- lgt_jobs/lgt_common/slack_client/web_client.py +167 -0
- lgt_jobs/lgt_data/__init__.py +0 -0
- lgt_jobs/lgt_data/analytics.py +723 -0
- lgt_jobs/lgt_data/engine.py +223 -0
- lgt_jobs/lgt_data/enums.py +68 -0
- lgt_jobs/lgt_data/helpers.py +2 -0
- lgt_jobs/lgt_data/model.py +956 -0
- lgt_jobs/lgt_data/mongo_repository.py +1026 -0
- lgt_jobs/main.py +9 -11
- lgt_jobs/runner.py +6 -9
- lgt_jobs/smtp.py +1 -1
- leadguru_jobs-0.415.0.dist-info/RECORD +0 -26
- {leadguru_jobs-0.415.0.dist-info → leadguru_jobs-0.417.0.dist-info}/WHEEL +0 -0
- {leadguru_jobs-0.415.0.dist-info → leadguru_jobs-0.417.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,723 @@
|
|
1
|
+
import os
|
2
|
+
from typing import Optional, List, Dict, Union
|
3
|
+
from collections import OrderedDict
|
4
|
+
import datetime
|
5
|
+
from datetime import timedelta
|
6
|
+
from bson import ObjectId
|
7
|
+
from dateutil import tz
|
8
|
+
from lgt_jobs.lgt_data.mongo_repository import to_object_id
|
9
|
+
from pymongo import MongoClient
|
10
|
+
|
11
|
+
client = MongoClient(os.environ.get('MONGO_CONNECTION_STRING', 'mongodb://127.0.0.1:27017/'))
|
12
|
+
db = client.lgt_analytics
|
13
|
+
|
14
|
+
|
15
|
+
def _build_date_aggregated_analytics_pipeline(source_id=None,
|
16
|
+
email=None,
|
17
|
+
started_at: datetime.datetime = None,
|
18
|
+
ended_at: datetime.datetime = None,
|
19
|
+
bots_ids: [str] = None):
|
20
|
+
pipeline = [
|
21
|
+
{
|
22
|
+
"$sort": {"created_at": 1}
|
23
|
+
},
|
24
|
+
{
|
25
|
+
"$project": {
|
26
|
+
"created_at": {"$dateToString": {"format": "%Y-%m-%d", "date": "$created_at"}},
|
27
|
+
"name": "$name"
|
28
|
+
}
|
29
|
+
},
|
30
|
+
{
|
31
|
+
"$group":
|
32
|
+
{
|
33
|
+
"_id": "$created_at",
|
34
|
+
"count": {"$sum": 1}
|
35
|
+
}
|
36
|
+
},
|
37
|
+
{
|
38
|
+
"$project": {
|
39
|
+
"_id": {"$dateFromString": {"format": "%Y-%m-%d", "dateString": "$_id"}},
|
40
|
+
"count": "$count"
|
41
|
+
}
|
42
|
+
},
|
43
|
+
{
|
44
|
+
"$sort": {"_id": 1}
|
45
|
+
},
|
46
|
+
{"$limit": 1000}
|
47
|
+
]
|
48
|
+
|
49
|
+
if source_id:
|
50
|
+
pipeline.insert(0, {"$match": {"source.source_id": source_id}})
|
51
|
+
|
52
|
+
if email:
|
53
|
+
pipeline.insert(0, {"$match": {"name": email}})
|
54
|
+
|
55
|
+
if started_at:
|
56
|
+
beginning_of_the_day = datetime.datetime(started_at.year, started_at.month, started_at.day, 0, 0, 0, 0)
|
57
|
+
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
58
|
+
|
59
|
+
if ended_at:
|
60
|
+
end_of_the_day = datetime.datetime(ended_at.year, ended_at.month, ended_at.day, 23, 59, 59, 999)
|
61
|
+
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
62
|
+
|
63
|
+
if bots_ids is not None:
|
64
|
+
pipeline.insert(0, {"$match": {'extra_ids': {'$in': bots_ids}}})
|
65
|
+
|
66
|
+
return pipeline
|
67
|
+
|
68
|
+
|
69
|
+
def _create_result_dic(started_at: datetime.datetime = None, ended_at: datetime.datetime = None):
|
70
|
+
analytics_dict = OrderedDict()
|
71
|
+
|
72
|
+
if started_at and ended_at:
|
73
|
+
days_range = range(0, (ended_at - started_at).days + 1)
|
74
|
+
for day in days_range:
|
75
|
+
cur_date = started_at + datetime.timedelta(days=day)
|
76
|
+
str_date = f'{cur_date.year}-{cur_date.month:02d}-{cur_date.day:02d}'
|
77
|
+
analytics_dict[str_date] = 0
|
78
|
+
|
79
|
+
return analytics_dict
|
80
|
+
|
81
|
+
|
82
|
+
def _prepare_date_analytics_doc(doc, ordered_result_dict: Dict[str, int]):
|
83
|
+
for item in doc:
|
84
|
+
str_date = f'{item["_id"].year}-{item["_id"].month:02d}-{item["_id"].day:02d}'
|
85
|
+
ordered_result_dict[str_date] = item["count"]
|
86
|
+
return ordered_result_dict
|
87
|
+
|
88
|
+
|
89
|
+
def get_aggregated_user_leads(user_id: Union[ObjectId, str],
|
90
|
+
from_date: datetime.datetime,
|
91
|
+
to_date: datetime.datetime = None):
|
92
|
+
pipeline = [
|
93
|
+
{
|
94
|
+
'$match': {
|
95
|
+
'created_at': {'$gte': from_date}
|
96
|
+
}
|
97
|
+
}, {
|
98
|
+
'$group': {
|
99
|
+
'_id': {
|
100
|
+
'$dateFromParts': {
|
101
|
+
'day': {
|
102
|
+
'$dayOfMonth': '$created_at'
|
103
|
+
},
|
104
|
+
'month': {
|
105
|
+
'$month': '$created_at'
|
106
|
+
},
|
107
|
+
'year': {
|
108
|
+
'$year': '$created_at'
|
109
|
+
}
|
110
|
+
}
|
111
|
+
},
|
112
|
+
'count': {
|
113
|
+
'$sum': 1
|
114
|
+
},
|
115
|
+
'leads': {
|
116
|
+
'$push': {
|
117
|
+
'id': '$id',
|
118
|
+
'created_at': '$created_at'
|
119
|
+
}
|
120
|
+
}
|
121
|
+
}
|
122
|
+
}, {
|
123
|
+
'$sort': {
|
124
|
+
'_id': 1
|
125
|
+
}
|
126
|
+
}
|
127
|
+
]
|
128
|
+
|
129
|
+
if user_id:
|
130
|
+
pipeline[0]["$match"]["user_id"] = to_object_id(user_id)
|
131
|
+
|
132
|
+
if to_date:
|
133
|
+
end = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, tzinfo=tz.tzutc())
|
134
|
+
pipeline[0]["$match"]["created_at"]['$lte'] = end
|
135
|
+
|
136
|
+
user_leads_data = list(client.lgt_admin.user_leads.aggregate(pipeline))
|
137
|
+
result = _create_result_dic(from_date, to_date)
|
138
|
+
|
139
|
+
for item in user_leads_data:
|
140
|
+
str_date = f'{item["_id"].year}-{item["_id"].month:02d}-{item["_id"].day:02d}'
|
141
|
+
result[str_date] = item["count"]
|
142
|
+
return result
|
143
|
+
|
144
|
+
|
145
|
+
def get_register_users_analytics(from_date: datetime = None, to_date: datetime = None):
|
146
|
+
pipeline = [
|
147
|
+
{
|
148
|
+
'$addFields': {
|
149
|
+
'created_at_formatted': {
|
150
|
+
'$dateToString': {
|
151
|
+
'format': '%Y-%m-%d',
|
152
|
+
'date': '$created_at'
|
153
|
+
}
|
154
|
+
}
|
155
|
+
}
|
156
|
+
}, {
|
157
|
+
'$group': {
|
158
|
+
'_id': '$created_at_formatted',
|
159
|
+
'count': {
|
160
|
+
'$sum': 1
|
161
|
+
}
|
162
|
+
}
|
163
|
+
}
|
164
|
+
]
|
165
|
+
if from_date:
|
166
|
+
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
167
|
+
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
168
|
+
|
169
|
+
if to_date:
|
170
|
+
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
171
|
+
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
172
|
+
|
173
|
+
users = list(client.lgt_admin.users.aggregate(pipeline))
|
174
|
+
users_dic = OrderedDict()
|
175
|
+
|
176
|
+
for item in users:
|
177
|
+
users_dic[item["_id"]] = item["count"]
|
178
|
+
|
179
|
+
return users_dic
|
180
|
+
|
181
|
+
|
182
|
+
def get_global_saved_leads_analytics(from_date: datetime = None, to_date: datetime = None):
|
183
|
+
pipeline = [
|
184
|
+
{
|
185
|
+
'$addFields': {
|
186
|
+
'created_at_formatted': {
|
187
|
+
'$dateToString': {
|
188
|
+
'format': '%Y-%m-%d',
|
189
|
+
'date': '$created_at'
|
190
|
+
}
|
191
|
+
}
|
192
|
+
}
|
193
|
+
}, {
|
194
|
+
'$group': {
|
195
|
+
'_id': '$created_at_formatted',
|
196
|
+
'count': {
|
197
|
+
'$sum': 1
|
198
|
+
}
|
199
|
+
}
|
200
|
+
}
|
201
|
+
]
|
202
|
+
|
203
|
+
if from_date:
|
204
|
+
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
205
|
+
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
206
|
+
|
207
|
+
if to_date:
|
208
|
+
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
209
|
+
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
210
|
+
|
211
|
+
saved_leads = list(client.lgt_admin.user_leads.aggregate(pipeline))
|
212
|
+
saved_leads_dic = OrderedDict()
|
213
|
+
for item in saved_leads:
|
214
|
+
saved_leads_dic[str(item["_id"])] = item["count"]
|
215
|
+
return saved_leads_dic
|
216
|
+
|
217
|
+
|
218
|
+
def get_global_uniq_leads_analytics(from_date: datetime = None, to_date: datetime = None):
|
219
|
+
pipeline = [
|
220
|
+
{
|
221
|
+
'$addFields': {
|
222
|
+
'created_at_formatted': {
|
223
|
+
'$dateToString': {
|
224
|
+
'format': '%Y-%m-%d',
|
225
|
+
'date': '$created_at'
|
226
|
+
}
|
227
|
+
}
|
228
|
+
}
|
229
|
+
}, {
|
230
|
+
'$group': {
|
231
|
+
'_id': {
|
232
|
+
'created_at': '$created_at_formatted',
|
233
|
+
'message': '$message.message_id'
|
234
|
+
},
|
235
|
+
'uniq_leads': {
|
236
|
+
'$addToSet': '$message.message_id'
|
237
|
+
}
|
238
|
+
}
|
239
|
+
}, {
|
240
|
+
'$group': {
|
241
|
+
'_id': '$_id.created_at',
|
242
|
+
'uniq_leads_count': {
|
243
|
+
'$sum': {
|
244
|
+
'$size': '$uniq_leads'
|
245
|
+
}
|
246
|
+
}
|
247
|
+
}
|
248
|
+
}
|
249
|
+
]
|
250
|
+
|
251
|
+
if from_date:
|
252
|
+
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
253
|
+
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
254
|
+
|
255
|
+
if to_date:
|
256
|
+
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
257
|
+
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
258
|
+
|
259
|
+
uniq_leads = list(client.lgt_admin.user_leads.aggregate(pipeline))
|
260
|
+
uniq_leads_dic = OrderedDict()
|
261
|
+
|
262
|
+
for item in uniq_leads:
|
263
|
+
uniq_leads_dic[item["_id"]] = item["uniq_leads_count"]
|
264
|
+
return uniq_leads_dic
|
265
|
+
|
266
|
+
|
267
|
+
def get_bots_global_analytics(from_date: datetime = None, to_date: datetime = None):
|
268
|
+
pipeline = [
|
269
|
+
{
|
270
|
+
'$addFields': {
|
271
|
+
'created_at_formatted': {
|
272
|
+
'$dateToString': {
|
273
|
+
'format': '%Y-%m-%d',
|
274
|
+
'date': '$created_at'
|
275
|
+
}
|
276
|
+
}
|
277
|
+
}
|
278
|
+
},
|
279
|
+
{
|
280
|
+
'$group': {
|
281
|
+
'_id': {
|
282
|
+
'source_id': '$source.source_id',
|
283
|
+
'created_at': '$created_at_formatted'
|
284
|
+
},
|
285
|
+
'count': {
|
286
|
+
'$sum': 1
|
287
|
+
}
|
288
|
+
}
|
289
|
+
}, {
|
290
|
+
'$group': {
|
291
|
+
'_id': '$_id.created_at',
|
292
|
+
'bots': {
|
293
|
+
'$sum': '$count'
|
294
|
+
},
|
295
|
+
'sources': {
|
296
|
+
'$sum': {
|
297
|
+
'$cond': [
|
298
|
+
{
|
299
|
+
'$eq': [
|
300
|
+
'$count', 1
|
301
|
+
]
|
302
|
+
}, 1, 0
|
303
|
+
]
|
304
|
+
}
|
305
|
+
}
|
306
|
+
}
|
307
|
+
}
|
308
|
+
]
|
309
|
+
if from_date:
|
310
|
+
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
311
|
+
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
312
|
+
|
313
|
+
if to_date:
|
314
|
+
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
315
|
+
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
316
|
+
|
317
|
+
bots = list(client.lgt_admin.dedicated_bots.aggregate(pipeline))
|
318
|
+
result = {}
|
319
|
+
for bot in bots:
|
320
|
+
result.update({bot['_id']: {'bots': bot['bots'], 'sources': bot['sources']}})
|
321
|
+
return result
|
322
|
+
|
323
|
+
|
324
|
+
def get_date_aggregated_analytics(source_id=None, started_at: datetime.datetime = None,
|
325
|
+
ended_at: datetime.datetime = None, bots_ids: [str] = None, configs: [str] = None):
|
326
|
+
pipeline: list = _build_date_aggregated_analytics_pipeline(source_id=source_id, started_at=started_at,
|
327
|
+
ended_at=ended_at, bots_ids=bots_ids)
|
328
|
+
|
329
|
+
received_messages = list(db[f'received_messages'].aggregate(pipeline))
|
330
|
+
|
331
|
+
if configs is not None:
|
332
|
+
pipeline.insert(0, {"$match": {"attributes": {'$in': configs}}})
|
333
|
+
|
334
|
+
filtered_messages = list(db[f'filtered_messages'].aggregate(pipeline))
|
335
|
+
|
336
|
+
received_messages_dic = _create_result_dic(started_at, ended_at)
|
337
|
+
filtered_messages_dic = _create_result_dic(started_at, ended_at)
|
338
|
+
|
339
|
+
return (_prepare_date_analytics_doc(received_messages, received_messages_dic),
|
340
|
+
_prepare_date_analytics_doc(filtered_messages, filtered_messages_dic))
|
341
|
+
|
342
|
+
|
343
|
+
def get_leads_aggregated_analytics(from_date: datetime.datetime = None, to_date: datetime.datetime = None):
|
344
|
+
pipeline = [
|
345
|
+
{
|
346
|
+
'$unwind': {
|
347
|
+
'path': '$message.configs',
|
348
|
+
'preserveNullAndEmptyArrays': False
|
349
|
+
}
|
350
|
+
},
|
351
|
+
{
|
352
|
+
'$group': {
|
353
|
+
'_id': '$message.configs.id',
|
354
|
+
'count': {
|
355
|
+
'$sum': 1
|
356
|
+
}
|
357
|
+
}
|
358
|
+
}
|
359
|
+
]
|
360
|
+
|
361
|
+
if from_date:
|
362
|
+
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
363
|
+
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
364
|
+
|
365
|
+
if to_date:
|
366
|
+
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
367
|
+
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
368
|
+
|
369
|
+
filtered_messages = list(client.lgt_admin.general_leads.aggregate(pipeline))
|
370
|
+
filtered_messages_dic = OrderedDict()
|
371
|
+
|
372
|
+
for item in filtered_messages:
|
373
|
+
filtered_messages_dic[str(item["_id"])] = item["count"]
|
374
|
+
|
375
|
+
return filtered_messages_dic
|
376
|
+
|
377
|
+
|
378
|
+
def get_contacts_aggregated_analytics(from_date: datetime.datetime = None, to_date: datetime.datetime = None):
|
379
|
+
pipeline = [
|
380
|
+
{
|
381
|
+
'$group': {
|
382
|
+
'_id': {
|
383
|
+
'user_id': '$user_id',
|
384
|
+
'sender_id': '$message.sender_id'
|
385
|
+
},
|
386
|
+
'count': {
|
387
|
+
'$sum': 1
|
388
|
+
}
|
389
|
+
}
|
390
|
+
}, {
|
391
|
+
'$project': {
|
392
|
+
'user_id': '$_id.user_id',
|
393
|
+
'sender_id': '$_id.sender_id',
|
394
|
+
'count': 1,
|
395
|
+
'_id': 0
|
396
|
+
}
|
397
|
+
}, {
|
398
|
+
'$group': {
|
399
|
+
'_id': '$user_id',
|
400
|
+
'contacts_count': {
|
401
|
+
'$sum': 1
|
402
|
+
}
|
403
|
+
}
|
404
|
+
}
|
405
|
+
]
|
406
|
+
|
407
|
+
if from_date:
|
408
|
+
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
409
|
+
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
410
|
+
|
411
|
+
if to_date:
|
412
|
+
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
413
|
+
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
414
|
+
|
415
|
+
contact_saved = list(client.lgt_admin.user_leads.aggregate(pipeline))
|
416
|
+
contact_saved_dic = OrderedDict()
|
417
|
+
for item in contact_saved:
|
418
|
+
contact_saved_dic[str(item["_id"])] = item["contacts_count"]
|
419
|
+
|
420
|
+
return contact_saved_dic
|
421
|
+
|
422
|
+
|
423
|
+
def get_total_active_bots_global_analytics(from_date: datetime.datetime = None, to_date: datetime.datetime = None):
|
424
|
+
active_bot_dates = []
|
425
|
+
while from_date <= to_date:
|
426
|
+
active_bot_dates.append(from_date)
|
427
|
+
from_date += timedelta(days=1)
|
428
|
+
pipeline = [
|
429
|
+
{
|
430
|
+
'$match': {
|
431
|
+
'created_at': {
|
432
|
+
'$lte': to_date
|
433
|
+
},
|
434
|
+
'deleted': False
|
435
|
+
}
|
436
|
+
}, {
|
437
|
+
'$addFields': {
|
438
|
+
'created_at_formatted': {
|
439
|
+
'$dateToString': {
|
440
|
+
'format': '%Y-%m-%d',
|
441
|
+
'date': '$created_at'
|
442
|
+
}
|
443
|
+
}
|
444
|
+
}
|
445
|
+
}, {
|
446
|
+
'$group': {
|
447
|
+
'_id': {
|
448
|
+
'source': '$source.source_id',
|
449
|
+
'created_at': '$created_at_formatted'
|
450
|
+
},
|
451
|
+
'count': {
|
452
|
+
'$sum': 1
|
453
|
+
}
|
454
|
+
}
|
455
|
+
}, {
|
456
|
+
'$sort': {
|
457
|
+
'_id': 1
|
458
|
+
}
|
459
|
+
}
|
460
|
+
]
|
461
|
+
bots = list(client.lgt_admin.dedicated_bots.aggregate(pipeline))
|
462
|
+
response = {}
|
463
|
+
count = 0
|
464
|
+
name = ""
|
465
|
+
for date in active_bot_dates:
|
466
|
+
for bot in bots:
|
467
|
+
bot_date = datetime.datetime.strptime(bot["_id"]["created_at"], "%Y-%m-%d")
|
468
|
+
if bot_date <= date:
|
469
|
+
if bot["_id"]["source"] == name:
|
470
|
+
continue
|
471
|
+
else:
|
472
|
+
count += 1
|
473
|
+
name = bot["_id"]["source"]
|
474
|
+
response[str(date.date())] = count
|
475
|
+
count = 0
|
476
|
+
|
477
|
+
return response
|
478
|
+
|
479
|
+
|
480
|
+
def get_bots_aggregated_analytics(from_date: datetime.datetime = None,
|
481
|
+
to_date: datetime.datetime = None,
|
482
|
+
bot_ids: Optional[List[str]] = None,
|
483
|
+
configs: Optional[List[str]] = None):
|
484
|
+
pipeline = [
|
485
|
+
{
|
486
|
+
"$group": {
|
487
|
+
"_id": "$source.source_id",
|
488
|
+
"count": {"$sum": 1}
|
489
|
+
}
|
490
|
+
},
|
491
|
+
{"$limit": 1000}
|
492
|
+
]
|
493
|
+
|
494
|
+
if from_date:
|
495
|
+
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
496
|
+
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
497
|
+
|
498
|
+
if to_date:
|
499
|
+
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
500
|
+
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
501
|
+
|
502
|
+
if bot_ids is not None:
|
503
|
+
pipeline.insert(0, {"$match": {"extra_ids": {"$in": bot_ids}}})
|
504
|
+
|
505
|
+
received_messages = list(db[f'received_messages'].aggregate(pipeline))
|
506
|
+
|
507
|
+
if configs is not None:
|
508
|
+
pipeline.insert(0, {"$match": {"attributes": {"$in": configs}}})
|
509
|
+
|
510
|
+
filtered_messages = list(db[f'filtered_messages'].aggregate(pipeline))
|
511
|
+
received_messages_dic = OrderedDict()
|
512
|
+
filtered_messages_dic = OrderedDict()
|
513
|
+
|
514
|
+
for item in received_messages:
|
515
|
+
received_messages_dic[item["_id"]] = item["count"]
|
516
|
+
|
517
|
+
for item in filtered_messages:
|
518
|
+
filtered_messages_dic[item["_id"]] = item["count"]
|
519
|
+
|
520
|
+
return received_messages_dic, filtered_messages_dic
|
521
|
+
|
522
|
+
|
523
|
+
def get_channel_aggregated_analytics(from_date: datetime.datetime = None, to_date: datetime.datetime = None,
|
524
|
+
bot_id: Optional[str | ObjectId] = None):
|
525
|
+
pipeline = [
|
526
|
+
{
|
527
|
+
'$match': {
|
528
|
+
'extra_ids': {"$in": [str(bot_id)]}
|
529
|
+
}
|
530
|
+
},
|
531
|
+
{
|
532
|
+
"$group": {
|
533
|
+
'_id': {
|
534
|
+
'$arrayElemAt': [
|
535
|
+
'$attributes', 0
|
536
|
+
]
|
537
|
+
},
|
538
|
+
'count': {"$sum": 1}
|
539
|
+
}
|
540
|
+
},
|
541
|
+
{
|
542
|
+
'$limit': 1000
|
543
|
+
}
|
544
|
+
]
|
545
|
+
|
546
|
+
if from_date:
|
547
|
+
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
548
|
+
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
549
|
+
|
550
|
+
if to_date:
|
551
|
+
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
552
|
+
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
553
|
+
|
554
|
+
received_messages = list(db[f'received_messages'].aggregate(pipeline))
|
555
|
+
filtered_messages = list(db[f'filtered_messages'].aggregate(pipeline))
|
556
|
+
|
557
|
+
received_messages_dic = OrderedDict()
|
558
|
+
filtered_messages_dic = OrderedDict()
|
559
|
+
|
560
|
+
for item in received_messages:
|
561
|
+
received_messages_dic[item["_id"]] = item["count"]
|
562
|
+
|
563
|
+
for item in filtered_messages:
|
564
|
+
filtered_messages_dic[item["_id"]] = item["count"]
|
565
|
+
|
566
|
+
return received_messages_dic, filtered_messages_dic
|
567
|
+
|
568
|
+
|
569
|
+
def get_users_aggregated_analytics(event_type: str = 'user-lead-extended',
|
570
|
+
from_date: datetime.datetime = None,
|
571
|
+
to_date: datetime.datetime = None,
|
572
|
+
email: str = None):
|
573
|
+
pipeline = [
|
574
|
+
{
|
575
|
+
"$group": {
|
576
|
+
"_id": "$name",
|
577
|
+
"count": {"$sum": 1}
|
578
|
+
}
|
579
|
+
},
|
580
|
+
{"$limit": 1000}
|
581
|
+
]
|
582
|
+
|
583
|
+
if email:
|
584
|
+
pipeline.insert(0, {"$match": {"name": email}})
|
585
|
+
|
586
|
+
if from_date:
|
587
|
+
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
588
|
+
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
589
|
+
|
590
|
+
if to_date:
|
591
|
+
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
592
|
+
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
593
|
+
|
594
|
+
read_messages = list(db[event_type].aggregate(pipeline))
|
595
|
+
read_messages_dic = OrderedDict()
|
596
|
+
|
597
|
+
for item in read_messages:
|
598
|
+
read_messages_dic[item["_id"]] = item["count"]
|
599
|
+
|
600
|
+
return read_messages_dic
|
601
|
+
|
602
|
+
|
603
|
+
def get_user_date_aggregated_analytics(email=None, event_type: str = 'user-lead-extended',
|
604
|
+
started_at: datetime.datetime = None,
|
605
|
+
ended_at: datetime.datetime = None):
|
606
|
+
pipeline = _build_date_aggregated_analytics_pipeline(email=email, started_at=started_at, ended_at=ended_at)
|
607
|
+
|
608
|
+
messages = list(db[event_type].aggregate(pipeline))
|
609
|
+
messages_dic = _create_result_dic(started_at, ended_at)
|
610
|
+
|
611
|
+
for item in messages:
|
612
|
+
str_date = f'{item["_id"].year}-{item["_id"].month:02d}-{item["_id"].day:02d}'
|
613
|
+
messages_dic[str_date] = item["count"]
|
614
|
+
|
615
|
+
return messages_dic
|
616
|
+
|
617
|
+
|
618
|
+
def get_user_read_count(lead_ids: [str]):
|
619
|
+
pipeline = [
|
620
|
+
{
|
621
|
+
"$group":
|
622
|
+
{
|
623
|
+
"_id": "$data",
|
624
|
+
"count": {"$sum": 1}
|
625
|
+
}
|
626
|
+
},
|
627
|
+
{
|
628
|
+
"$match": {
|
629
|
+
"_id": {"$in": lead_ids}
|
630
|
+
}
|
631
|
+
}
|
632
|
+
]
|
633
|
+
messages = list(db['user-lead-extended'].aggregate(pipeline))
|
634
|
+
result = dict()
|
635
|
+
|
636
|
+
for message in messages:
|
637
|
+
result[message['_id']] = message['count']
|
638
|
+
|
639
|
+
return result
|
640
|
+
|
641
|
+
|
642
|
+
def get_events_leads(email, event, from_date, to_date=None):
|
643
|
+
pipeline = {
|
644
|
+
'name': email,
|
645
|
+
'created_at': {'$gte': from_date}
|
646
|
+
}
|
647
|
+
|
648
|
+
if to_date:
|
649
|
+
end = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, tzinfo=tz.tzutc())
|
650
|
+
pipeline['created_at']['$lte'] = end
|
651
|
+
|
652
|
+
return list(db[event].find(pipeline))
|
653
|
+
|
654
|
+
|
655
|
+
def get_leads_aggregation(email, event, from_date, to_date=None):
|
656
|
+
pipeline = get_event_pipeline(email, from_date, to_date)
|
657
|
+
return list(db[event].aggregate(pipeline))
|
658
|
+
|
659
|
+
|
660
|
+
def get_event_pipeline(email, from_date, to_date=None):
|
661
|
+
pipeline = [
|
662
|
+
{
|
663
|
+
"$match": {
|
664
|
+
'name': email,
|
665
|
+
'created_at': {'$gte': from_date}
|
666
|
+
}
|
667
|
+
},
|
668
|
+
{
|
669
|
+
'$group': {
|
670
|
+
'_id': {
|
671
|
+
'$dateFromParts': {
|
672
|
+
'day': {
|
673
|
+
'$dayOfMonth': '$created_at'
|
674
|
+
},
|
675
|
+
'month': {
|
676
|
+
'$month': '$created_at'
|
677
|
+
},
|
678
|
+
'year': {
|
679
|
+
'$year': '$created_at'
|
680
|
+
}
|
681
|
+
}
|
682
|
+
},
|
683
|
+
'count': {
|
684
|
+
'$sum': 1
|
685
|
+
}
|
686
|
+
}
|
687
|
+
},
|
688
|
+
{
|
689
|
+
"$sort": {"_id": 1}
|
690
|
+
}
|
691
|
+
]
|
692
|
+
|
693
|
+
if to_date:
|
694
|
+
end = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, tzinfo=tz.tzutc())
|
695
|
+
pipeline[0]["$match"]["created_at"]['$lte'] = end
|
696
|
+
|
697
|
+
return pipeline
|
698
|
+
|
699
|
+
|
700
|
+
def get_total_analytic_followup_up_date(from_date, to_date=None):
|
701
|
+
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
702
|
+
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
703
|
+
pipeline = [
|
704
|
+
{
|
705
|
+
"$match": {
|
706
|
+
"followup_date": {
|
707
|
+
"$gte": beginning_of_the_day,
|
708
|
+
"$lte": end_of_the_day
|
709
|
+
}
|
710
|
+
}
|
711
|
+
},
|
712
|
+
{
|
713
|
+
"$group": {
|
714
|
+
"_id": "$_id",
|
715
|
+
"count": {"$sum": 1}
|
716
|
+
}
|
717
|
+
}
|
718
|
+
]
|
719
|
+
followup_analytic = list(client.lgt_admin.user_leads.aggregate(pipeline))
|
720
|
+
|
721
|
+
followup_analytic_dic = {item["_id"]: item["count"] for item in followup_analytic}
|
722
|
+
|
723
|
+
return followup_analytic_dic
|