leadguru-jobs 0.403.0__py3-none-any.whl → 0.405.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {leadguru_jobs-0.403.0.dist-info → leadguru_jobs-0.405.0.dist-info}/METADATA +5 -10
- leadguru_jobs-0.405.0.dist-info/RECORD +26 -0
- lgt_jobs/__init__.py +4 -4
- lgt_jobs/jobs/analytics.py +1 -1
- lgt_jobs/jobs/archive_leads.py +2 -2
- lgt_jobs/jobs/bot_stats_update.py +11 -10
- lgt_jobs/jobs/chat_history.py +6 -6
- lgt_jobs/jobs/inbox_leads.py +6 -5
- lgt_jobs/jobs/mass_message.py +2 -2
- lgt_jobs/jobs/send_code.py +1 -1
- lgt_jobs/jobs/send_slack_message.py +5 -5
- lgt_jobs/jobs/update_slack_profile.py +14 -12
- lgt_jobs/jobs/user_balance_update.py +5 -5
- lgt_jobs/jobs/workspace_connect.py +5 -7
- lgt_jobs/main.py +11 -9
- lgt_jobs/runner.py +9 -6
- lgt_jobs/smtp.py +1 -1
- leadguru_jobs-0.403.0.dist-info/RECORD +0 -49
- lgt_jobs/lgt_common/__init__.py +0 -0
- lgt_jobs/lgt_common/discord_client/__init__.py +0 -0
- lgt_jobs/lgt_common/discord_client/discord_client.py +0 -58
- lgt_jobs/lgt_common/discord_client/methods.py +0 -15
- lgt_jobs/lgt_common/enums/__init__.py +0 -0
- lgt_jobs/lgt_common/enums/slack_errors.py +0 -6
- lgt_jobs/lgt_common/helpers.py +0 -18
- lgt_jobs/lgt_common/lgt_logging.py +0 -15
- lgt_jobs/lgt_common/pubsub/__init__.py +0 -0
- lgt_jobs/lgt_common/pubsub/command.py +0 -14
- lgt_jobs/lgt_common/pubsub/messages.py +0 -37
- lgt_jobs/lgt_common/pubsub/pubsubfactory.py +0 -51
- lgt_jobs/lgt_common/slack_client/__init__.py +0 -0
- lgt_jobs/lgt_common/slack_client/methods.py +0 -46
- lgt_jobs/lgt_common/slack_client/slack_client.py +0 -392
- lgt_jobs/lgt_common/slack_client/web_client.py +0 -164
- lgt_jobs/lgt_data/__init__.py +0 -0
- lgt_jobs/lgt_data/analytics.py +0 -723
- lgt_jobs/lgt_data/engine.py +0 -223
- lgt_jobs/lgt_data/enums.py +0 -68
- lgt_jobs/lgt_data/helpers.py +0 -2
- lgt_jobs/lgt_data/model.py +0 -960
- lgt_jobs/lgt_data/mongo_repository.py +0 -980
- {leadguru_jobs-0.403.0.dist-info → leadguru_jobs-0.405.0.dist-info}/WHEEL +0 -0
- {leadguru_jobs-0.403.0.dist-info → leadguru_jobs-0.405.0.dist-info}/top_level.txt +0 -0
lgt_jobs/lgt_data/analytics.py
DELETED
@@ -1,723 +0,0 @@
|
|
1
|
-
import os
|
2
|
-
from typing import Optional, List, Dict, Union
|
3
|
-
from collections import OrderedDict
|
4
|
-
import datetime
|
5
|
-
from datetime import timedelta
|
6
|
-
from bson import ObjectId
|
7
|
-
from dateutil import tz
|
8
|
-
from lgt_jobs.lgt_data.mongo_repository import to_object_id
|
9
|
-
from pymongo import MongoClient
|
10
|
-
|
11
|
-
client = MongoClient(os.environ.get('MONGO_CONNECTION_STRING', 'mongodb://127.0.0.1:27017/'))
|
12
|
-
db = client.lgt_analytics
|
13
|
-
|
14
|
-
|
15
|
-
def _build_date_aggregated_analytics_pipeline(source_id=None,
|
16
|
-
email=None,
|
17
|
-
started_at: datetime.datetime = None,
|
18
|
-
ended_at: datetime.datetime = None,
|
19
|
-
bots_ids: [str] = None):
|
20
|
-
pipeline = [
|
21
|
-
{
|
22
|
-
"$sort": {"created_at": 1}
|
23
|
-
},
|
24
|
-
{
|
25
|
-
"$project": {
|
26
|
-
"created_at": {"$dateToString": {"format": "%Y-%m-%d", "date": "$created_at"}},
|
27
|
-
"name": "$name"
|
28
|
-
}
|
29
|
-
},
|
30
|
-
{
|
31
|
-
"$group":
|
32
|
-
{
|
33
|
-
"_id": "$created_at",
|
34
|
-
"count": {"$sum": 1}
|
35
|
-
}
|
36
|
-
},
|
37
|
-
{
|
38
|
-
"$project": {
|
39
|
-
"_id": {"$dateFromString": {"format": "%Y-%m-%d", "dateString": "$_id"}},
|
40
|
-
"count": "$count"
|
41
|
-
}
|
42
|
-
},
|
43
|
-
{
|
44
|
-
"$sort": {"_id": 1}
|
45
|
-
},
|
46
|
-
{"$limit": 1000}
|
47
|
-
]
|
48
|
-
|
49
|
-
if source_id:
|
50
|
-
pipeline.insert(0, {"$match": {"source.source_id": source_id}})
|
51
|
-
|
52
|
-
if email:
|
53
|
-
pipeline.insert(0, {"$match": {"name": email}})
|
54
|
-
|
55
|
-
if started_at:
|
56
|
-
beginning_of_the_day = datetime.datetime(started_at.year, started_at.month, started_at.day, 0, 0, 0, 0)
|
57
|
-
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
58
|
-
|
59
|
-
if ended_at:
|
60
|
-
end_of_the_day = datetime.datetime(ended_at.year, ended_at.month, ended_at.day, 23, 59, 59, 999)
|
61
|
-
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
62
|
-
|
63
|
-
if bots_ids is not None:
|
64
|
-
pipeline.insert(0, {"$match": {'extra_ids': {'$in': bots_ids}}})
|
65
|
-
|
66
|
-
return pipeline
|
67
|
-
|
68
|
-
|
69
|
-
def _create_result_dic(started_at: datetime.datetime = None, ended_at: datetime.datetime = None):
|
70
|
-
analytics_dict = OrderedDict()
|
71
|
-
|
72
|
-
if started_at and ended_at:
|
73
|
-
days_range = range(0, (ended_at - started_at).days + 1)
|
74
|
-
for day in days_range:
|
75
|
-
cur_date = started_at + datetime.timedelta(days=day)
|
76
|
-
str_date = f'{cur_date.year}-{cur_date.month:02d}-{cur_date.day:02d}'
|
77
|
-
analytics_dict[str_date] = 0
|
78
|
-
|
79
|
-
return analytics_dict
|
80
|
-
|
81
|
-
|
82
|
-
def _prepare_date_analytics_doc(doc, ordered_result_dict: Dict[str, int]):
|
83
|
-
for item in doc:
|
84
|
-
str_date = f'{item["_id"].year}-{item["_id"].month:02d}-{item["_id"].day:02d}'
|
85
|
-
ordered_result_dict[str_date] = item["count"]
|
86
|
-
return ordered_result_dict
|
87
|
-
|
88
|
-
|
89
|
-
def get_aggregated_user_leads(user_id: Union[ObjectId, str],
|
90
|
-
from_date: datetime.datetime,
|
91
|
-
to_date: datetime.datetime = None):
|
92
|
-
pipeline = [
|
93
|
-
{
|
94
|
-
'$match': {
|
95
|
-
'created_at': {'$gte': from_date}
|
96
|
-
}
|
97
|
-
}, {
|
98
|
-
'$group': {
|
99
|
-
'_id': {
|
100
|
-
'$dateFromParts': {
|
101
|
-
'day': {
|
102
|
-
'$dayOfMonth': '$created_at'
|
103
|
-
},
|
104
|
-
'month': {
|
105
|
-
'$month': '$created_at'
|
106
|
-
},
|
107
|
-
'year': {
|
108
|
-
'$year': '$created_at'
|
109
|
-
}
|
110
|
-
}
|
111
|
-
},
|
112
|
-
'count': {
|
113
|
-
'$sum': 1
|
114
|
-
},
|
115
|
-
'leads': {
|
116
|
-
'$push': {
|
117
|
-
'id': '$id',
|
118
|
-
'created_at': '$created_at'
|
119
|
-
}
|
120
|
-
}
|
121
|
-
}
|
122
|
-
}, {
|
123
|
-
'$sort': {
|
124
|
-
'_id': 1
|
125
|
-
}
|
126
|
-
}
|
127
|
-
]
|
128
|
-
|
129
|
-
if user_id:
|
130
|
-
pipeline[0]["$match"]["user_id"] = to_object_id(user_id)
|
131
|
-
|
132
|
-
if to_date:
|
133
|
-
end = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, tzinfo=tz.tzutc())
|
134
|
-
pipeline[0]["$match"]["created_at"]['$lte'] = end
|
135
|
-
|
136
|
-
user_leads_data = list(client.lgt_admin.user_leads.aggregate(pipeline))
|
137
|
-
result = _create_result_dic(from_date, to_date)
|
138
|
-
|
139
|
-
for item in user_leads_data:
|
140
|
-
str_date = f'{item["_id"].year}-{item["_id"].month:02d}-{item["_id"].day:02d}'
|
141
|
-
result[str_date] = item["count"]
|
142
|
-
return result
|
143
|
-
|
144
|
-
|
145
|
-
def get_register_users_analytics(from_date: datetime = None, to_date: datetime = None):
|
146
|
-
pipeline = [
|
147
|
-
{
|
148
|
-
'$addFields': {
|
149
|
-
'created_at_formatted': {
|
150
|
-
'$dateToString': {
|
151
|
-
'format': '%Y-%m-%d',
|
152
|
-
'date': '$created_at'
|
153
|
-
}
|
154
|
-
}
|
155
|
-
}
|
156
|
-
}, {
|
157
|
-
'$group': {
|
158
|
-
'_id': '$created_at_formatted',
|
159
|
-
'count': {
|
160
|
-
'$sum': 1
|
161
|
-
}
|
162
|
-
}
|
163
|
-
}
|
164
|
-
]
|
165
|
-
if from_date:
|
166
|
-
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
167
|
-
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
168
|
-
|
169
|
-
if to_date:
|
170
|
-
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
171
|
-
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
172
|
-
|
173
|
-
users = list(client.lgt_admin.users.aggregate(pipeline))
|
174
|
-
users_dic = OrderedDict()
|
175
|
-
|
176
|
-
for item in users:
|
177
|
-
users_dic[item["_id"]] = item["count"]
|
178
|
-
|
179
|
-
return users_dic
|
180
|
-
|
181
|
-
|
182
|
-
def get_global_saved_leads_analytics(from_date: datetime = None, to_date: datetime = None):
|
183
|
-
pipeline = [
|
184
|
-
{
|
185
|
-
'$addFields': {
|
186
|
-
'created_at_formatted': {
|
187
|
-
'$dateToString': {
|
188
|
-
'format': '%Y-%m-%d',
|
189
|
-
'date': '$created_at'
|
190
|
-
}
|
191
|
-
}
|
192
|
-
}
|
193
|
-
}, {
|
194
|
-
'$group': {
|
195
|
-
'_id': '$created_at_formatted',
|
196
|
-
'count': {
|
197
|
-
'$sum': 1
|
198
|
-
}
|
199
|
-
}
|
200
|
-
}
|
201
|
-
]
|
202
|
-
|
203
|
-
if from_date:
|
204
|
-
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
205
|
-
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
206
|
-
|
207
|
-
if to_date:
|
208
|
-
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
209
|
-
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
210
|
-
|
211
|
-
saved_leads = list(client.lgt_admin.user_leads.aggregate(pipeline))
|
212
|
-
saved_leads_dic = OrderedDict()
|
213
|
-
for item in saved_leads:
|
214
|
-
saved_leads_dic[str(item["_id"])] = item["count"]
|
215
|
-
return saved_leads_dic
|
216
|
-
|
217
|
-
|
218
|
-
def get_global_uniq_leads_analytics(from_date: datetime = None, to_date: datetime = None):
|
219
|
-
pipeline = [
|
220
|
-
{
|
221
|
-
'$addFields': {
|
222
|
-
'created_at_formatted': {
|
223
|
-
'$dateToString': {
|
224
|
-
'format': '%Y-%m-%d',
|
225
|
-
'date': '$created_at'
|
226
|
-
}
|
227
|
-
}
|
228
|
-
}
|
229
|
-
}, {
|
230
|
-
'$group': {
|
231
|
-
'_id': {
|
232
|
-
'created_at': '$created_at_formatted',
|
233
|
-
'message': '$message.message_id'
|
234
|
-
},
|
235
|
-
'uniq_leads': {
|
236
|
-
'$addToSet': '$message.message_id'
|
237
|
-
}
|
238
|
-
}
|
239
|
-
}, {
|
240
|
-
'$group': {
|
241
|
-
'_id': '$_id.created_at',
|
242
|
-
'uniq_leads_count': {
|
243
|
-
'$sum': {
|
244
|
-
'$size': '$uniq_leads'
|
245
|
-
}
|
246
|
-
}
|
247
|
-
}
|
248
|
-
}
|
249
|
-
]
|
250
|
-
|
251
|
-
if from_date:
|
252
|
-
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
253
|
-
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
254
|
-
|
255
|
-
if to_date:
|
256
|
-
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
257
|
-
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
258
|
-
|
259
|
-
uniq_leads = list(client.lgt_admin.user_leads.aggregate(pipeline))
|
260
|
-
uniq_leads_dic = OrderedDict()
|
261
|
-
|
262
|
-
for item in uniq_leads:
|
263
|
-
uniq_leads_dic[item["_id"]] = item["uniq_leads_count"]
|
264
|
-
return uniq_leads_dic
|
265
|
-
|
266
|
-
|
267
|
-
def get_bots_global_analytics(from_date: datetime = None, to_date: datetime = None):
|
268
|
-
pipeline = [
|
269
|
-
{
|
270
|
-
'$addFields': {
|
271
|
-
'created_at_formatted': {
|
272
|
-
'$dateToString': {
|
273
|
-
'format': '%Y-%m-%d',
|
274
|
-
'date': '$created_at'
|
275
|
-
}
|
276
|
-
}
|
277
|
-
}
|
278
|
-
},
|
279
|
-
{
|
280
|
-
'$group': {
|
281
|
-
'_id': {
|
282
|
-
'source_id': '$source.source_id',
|
283
|
-
'created_at': '$created_at_formatted'
|
284
|
-
},
|
285
|
-
'count': {
|
286
|
-
'$sum': 1
|
287
|
-
}
|
288
|
-
}
|
289
|
-
}, {
|
290
|
-
'$group': {
|
291
|
-
'_id': '$_id.created_at',
|
292
|
-
'bots': {
|
293
|
-
'$sum': '$count'
|
294
|
-
},
|
295
|
-
'sources': {
|
296
|
-
'$sum': {
|
297
|
-
'$cond': [
|
298
|
-
{
|
299
|
-
'$eq': [
|
300
|
-
'$count', 1
|
301
|
-
]
|
302
|
-
}, 1, 0
|
303
|
-
]
|
304
|
-
}
|
305
|
-
}
|
306
|
-
}
|
307
|
-
}
|
308
|
-
]
|
309
|
-
if from_date:
|
310
|
-
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
311
|
-
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
312
|
-
|
313
|
-
if to_date:
|
314
|
-
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
315
|
-
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
316
|
-
|
317
|
-
bots = list(client.lgt_admin.dedicated_bots.aggregate(pipeline))
|
318
|
-
result = {}
|
319
|
-
for bot in bots:
|
320
|
-
result.update({bot['_id']: {'bots': bot['bots'], 'sources': bot['sources']}})
|
321
|
-
return result
|
322
|
-
|
323
|
-
|
324
|
-
def get_date_aggregated_analytics(source_id=None, started_at: datetime.datetime = None,
|
325
|
-
ended_at: datetime.datetime = None, bots_ids: [str] = None, configs: [str] = None):
|
326
|
-
pipeline: list = _build_date_aggregated_analytics_pipeline(source_id=source_id, started_at=started_at,
|
327
|
-
ended_at=ended_at, bots_ids=bots_ids)
|
328
|
-
|
329
|
-
received_messages = list(db[f'received_messages'].aggregate(pipeline))
|
330
|
-
|
331
|
-
if configs is not None:
|
332
|
-
pipeline.insert(0, {"$match": {"attributes": {'$in': configs}}})
|
333
|
-
|
334
|
-
filtered_messages = list(db[f'filtered_messages'].aggregate(pipeline))
|
335
|
-
|
336
|
-
received_messages_dic = _create_result_dic(started_at, ended_at)
|
337
|
-
filtered_messages_dic = _create_result_dic(started_at, ended_at)
|
338
|
-
|
339
|
-
return (_prepare_date_analytics_doc(received_messages, received_messages_dic),
|
340
|
-
_prepare_date_analytics_doc(filtered_messages, filtered_messages_dic))
|
341
|
-
|
342
|
-
|
343
|
-
def get_leads_aggregated_analytics(from_date: datetime.datetime = None, to_date: datetime.datetime = None):
|
344
|
-
pipeline = [
|
345
|
-
{
|
346
|
-
'$unwind': {
|
347
|
-
'path': '$message.configs',
|
348
|
-
'preserveNullAndEmptyArrays': False
|
349
|
-
}
|
350
|
-
},
|
351
|
-
{
|
352
|
-
'$group': {
|
353
|
-
'_id': '$message.configs.id',
|
354
|
-
'count': {
|
355
|
-
'$sum': 1
|
356
|
-
}
|
357
|
-
}
|
358
|
-
}
|
359
|
-
]
|
360
|
-
|
361
|
-
if from_date:
|
362
|
-
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
363
|
-
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
364
|
-
|
365
|
-
if to_date:
|
366
|
-
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
367
|
-
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
368
|
-
|
369
|
-
filtered_messages = list(client.lgt_admin.general_leads.aggregate(pipeline))
|
370
|
-
filtered_messages_dic = OrderedDict()
|
371
|
-
|
372
|
-
for item in filtered_messages:
|
373
|
-
filtered_messages_dic[str(item["_id"])] = item["count"]
|
374
|
-
|
375
|
-
return filtered_messages_dic
|
376
|
-
|
377
|
-
|
378
|
-
def get_contacts_aggregated_analytics(from_date: datetime.datetime = None, to_date: datetime.datetime = None):
|
379
|
-
pipeline = [
|
380
|
-
{
|
381
|
-
'$group': {
|
382
|
-
'_id': {
|
383
|
-
'user_id': '$user_id',
|
384
|
-
'sender_id': '$message.sender_id'
|
385
|
-
},
|
386
|
-
'count': {
|
387
|
-
'$sum': 1
|
388
|
-
}
|
389
|
-
}
|
390
|
-
}, {
|
391
|
-
'$project': {
|
392
|
-
'user_id': '$_id.user_id',
|
393
|
-
'sender_id': '$_id.sender_id',
|
394
|
-
'count': 1,
|
395
|
-
'_id': 0
|
396
|
-
}
|
397
|
-
}, {
|
398
|
-
'$group': {
|
399
|
-
'_id': '$user_id',
|
400
|
-
'contacts_count': {
|
401
|
-
'$sum': 1
|
402
|
-
}
|
403
|
-
}
|
404
|
-
}
|
405
|
-
]
|
406
|
-
|
407
|
-
if from_date:
|
408
|
-
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
409
|
-
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
410
|
-
|
411
|
-
if to_date:
|
412
|
-
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
413
|
-
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
414
|
-
|
415
|
-
contact_saved = list(client.lgt_admin.user_leads.aggregate(pipeline))
|
416
|
-
contact_saved_dic = OrderedDict()
|
417
|
-
for item in contact_saved:
|
418
|
-
contact_saved_dic[str(item["_id"])] = item["contacts_count"]
|
419
|
-
|
420
|
-
return contact_saved_dic
|
421
|
-
|
422
|
-
|
423
|
-
def get_total_active_bots_global_analytics(from_date: datetime.datetime = None, to_date: datetime.datetime = None):
|
424
|
-
active_bot_dates = []
|
425
|
-
while from_date <= to_date:
|
426
|
-
active_bot_dates.append(from_date)
|
427
|
-
from_date += timedelta(days=1)
|
428
|
-
pipeline = [
|
429
|
-
{
|
430
|
-
'$match': {
|
431
|
-
'created_at': {
|
432
|
-
'$lte': to_date
|
433
|
-
},
|
434
|
-
'deleted': False
|
435
|
-
}
|
436
|
-
}, {
|
437
|
-
'$addFields': {
|
438
|
-
'created_at_formatted': {
|
439
|
-
'$dateToString': {
|
440
|
-
'format': '%Y-%m-%d',
|
441
|
-
'date': '$created_at'
|
442
|
-
}
|
443
|
-
}
|
444
|
-
}
|
445
|
-
}, {
|
446
|
-
'$group': {
|
447
|
-
'_id': {
|
448
|
-
'source': '$source.source_id',
|
449
|
-
'created_at': '$created_at_formatted'
|
450
|
-
},
|
451
|
-
'count': {
|
452
|
-
'$sum': 1
|
453
|
-
}
|
454
|
-
}
|
455
|
-
}, {
|
456
|
-
'$sort': {
|
457
|
-
'_id': 1
|
458
|
-
}
|
459
|
-
}
|
460
|
-
]
|
461
|
-
bots = list(client.lgt_admin.dedicated_bots.aggregate(pipeline))
|
462
|
-
response = {}
|
463
|
-
count = 0
|
464
|
-
name = ""
|
465
|
-
for date in active_bot_dates:
|
466
|
-
for bot in bots:
|
467
|
-
bot_date = datetime.datetime.strptime(bot["_id"]["created_at"], "%Y-%m-%d")
|
468
|
-
if bot_date <= date:
|
469
|
-
if bot["_id"]["source"] == name:
|
470
|
-
continue
|
471
|
-
else:
|
472
|
-
count += 1
|
473
|
-
name = bot["_id"]["source"]
|
474
|
-
response[str(date.date())] = count
|
475
|
-
count = 0
|
476
|
-
|
477
|
-
return response
|
478
|
-
|
479
|
-
|
480
|
-
def get_bots_aggregated_analytics(from_date: datetime.datetime = None,
|
481
|
-
to_date: datetime.datetime = None,
|
482
|
-
bot_ids: Optional[List[str]] = None,
|
483
|
-
configs: Optional[List[str]] = None):
|
484
|
-
pipeline = [
|
485
|
-
{
|
486
|
-
"$group": {
|
487
|
-
"_id": "$source.source_id",
|
488
|
-
"count": {"$sum": 1}
|
489
|
-
}
|
490
|
-
},
|
491
|
-
{"$limit": 1000}
|
492
|
-
]
|
493
|
-
|
494
|
-
if from_date:
|
495
|
-
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
496
|
-
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
497
|
-
|
498
|
-
if to_date:
|
499
|
-
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
500
|
-
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
501
|
-
|
502
|
-
if bot_ids is not None:
|
503
|
-
pipeline.insert(0, {"$match": {"extra_ids": {"$in": bot_ids}}})
|
504
|
-
|
505
|
-
received_messages = list(db[f'received_messages'].aggregate(pipeline))
|
506
|
-
|
507
|
-
if configs is not None:
|
508
|
-
pipeline.insert(0, {"$match": {"attributes": {"$in": configs}}})
|
509
|
-
|
510
|
-
filtered_messages = list(db[f'filtered_messages'].aggregate(pipeline))
|
511
|
-
received_messages_dic = OrderedDict()
|
512
|
-
filtered_messages_dic = OrderedDict()
|
513
|
-
|
514
|
-
for item in received_messages:
|
515
|
-
received_messages_dic[item["_id"]] = item["count"]
|
516
|
-
|
517
|
-
for item in filtered_messages:
|
518
|
-
filtered_messages_dic[item["_id"]] = item["count"]
|
519
|
-
|
520
|
-
return received_messages_dic, filtered_messages_dic
|
521
|
-
|
522
|
-
|
523
|
-
def get_channel_aggregated_analytics(from_date: datetime.datetime = None, to_date: datetime.datetime = None,
|
524
|
-
bot_id: Optional[str | ObjectId] = None):
|
525
|
-
pipeline = [
|
526
|
-
{
|
527
|
-
'$match': {
|
528
|
-
'extra_ids': {"$in": [str(bot_id)]}
|
529
|
-
}
|
530
|
-
},
|
531
|
-
{
|
532
|
-
"$group": {
|
533
|
-
'_id': {
|
534
|
-
'$arrayElemAt': [
|
535
|
-
'$attributes', 0
|
536
|
-
]
|
537
|
-
},
|
538
|
-
'count': {"$sum": 1}
|
539
|
-
}
|
540
|
-
},
|
541
|
-
{
|
542
|
-
'$limit': 1000
|
543
|
-
}
|
544
|
-
]
|
545
|
-
|
546
|
-
if from_date:
|
547
|
-
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
548
|
-
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
549
|
-
|
550
|
-
if to_date:
|
551
|
-
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
552
|
-
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
553
|
-
|
554
|
-
received_messages = list(db[f'received_messages'].aggregate(pipeline))
|
555
|
-
filtered_messages = list(db[f'filtered_messages'].aggregate(pipeline))
|
556
|
-
|
557
|
-
received_messages_dic = OrderedDict()
|
558
|
-
filtered_messages_dic = OrderedDict()
|
559
|
-
|
560
|
-
for item in received_messages:
|
561
|
-
received_messages_dic[item["_id"]] = item["count"]
|
562
|
-
|
563
|
-
for item in filtered_messages:
|
564
|
-
filtered_messages_dic[item["_id"]] = item["count"]
|
565
|
-
|
566
|
-
return received_messages_dic, filtered_messages_dic
|
567
|
-
|
568
|
-
|
569
|
-
def get_users_aggregated_analytics(event_type: str = 'user-lead-extended',
|
570
|
-
from_date: datetime.datetime = None,
|
571
|
-
to_date: datetime.datetime = None,
|
572
|
-
email: str = None):
|
573
|
-
pipeline = [
|
574
|
-
{
|
575
|
-
"$group": {
|
576
|
-
"_id": "$name",
|
577
|
-
"count": {"$sum": 1}
|
578
|
-
}
|
579
|
-
},
|
580
|
-
{"$limit": 1000}
|
581
|
-
]
|
582
|
-
|
583
|
-
if email:
|
584
|
-
pipeline.insert(0, {"$match": {"name": email}})
|
585
|
-
|
586
|
-
if from_date:
|
587
|
-
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
588
|
-
pipeline.insert(0, {"$match": {"created_at": {"$gte": beginning_of_the_day}}})
|
589
|
-
|
590
|
-
if to_date:
|
591
|
-
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
592
|
-
pipeline.insert(0, {"$match": {"created_at": {"$lte": end_of_the_day}}})
|
593
|
-
|
594
|
-
read_messages = list(db[event_type].aggregate(pipeline))
|
595
|
-
read_messages_dic = OrderedDict()
|
596
|
-
|
597
|
-
for item in read_messages:
|
598
|
-
read_messages_dic[item["_id"]] = item["count"]
|
599
|
-
|
600
|
-
return read_messages_dic
|
601
|
-
|
602
|
-
|
603
|
-
def get_user_date_aggregated_analytics(email=None, event_type: str = 'user-lead-extended',
|
604
|
-
started_at: datetime.datetime = None,
|
605
|
-
ended_at: datetime.datetime = None):
|
606
|
-
pipeline = _build_date_aggregated_analytics_pipeline(email=email, started_at=started_at, ended_at=ended_at)
|
607
|
-
|
608
|
-
messages = list(db[event_type].aggregate(pipeline))
|
609
|
-
messages_dic = _create_result_dic(started_at, ended_at)
|
610
|
-
|
611
|
-
for item in messages:
|
612
|
-
str_date = f'{item["_id"].year}-{item["_id"].month:02d}-{item["_id"].day:02d}'
|
613
|
-
messages_dic[str_date] = item["count"]
|
614
|
-
|
615
|
-
return messages_dic
|
616
|
-
|
617
|
-
|
618
|
-
def get_user_read_count(lead_ids: [str]):
|
619
|
-
pipeline = [
|
620
|
-
{
|
621
|
-
"$group":
|
622
|
-
{
|
623
|
-
"_id": "$data",
|
624
|
-
"count": {"$sum": 1}
|
625
|
-
}
|
626
|
-
},
|
627
|
-
{
|
628
|
-
"$match": {
|
629
|
-
"_id": {"$in": lead_ids}
|
630
|
-
}
|
631
|
-
}
|
632
|
-
]
|
633
|
-
messages = list(db['user-lead-extended'].aggregate(pipeline))
|
634
|
-
result = dict()
|
635
|
-
|
636
|
-
for message in messages:
|
637
|
-
result[message['_id']] = message['count']
|
638
|
-
|
639
|
-
return result
|
640
|
-
|
641
|
-
|
642
|
-
def get_events_leads(email, event, from_date, to_date=None):
|
643
|
-
pipeline = {
|
644
|
-
'name': email,
|
645
|
-
'created_at': {'$gte': from_date}
|
646
|
-
}
|
647
|
-
|
648
|
-
if to_date:
|
649
|
-
end = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, tzinfo=tz.tzutc())
|
650
|
-
pipeline['created_at']['$lte'] = end
|
651
|
-
|
652
|
-
return list(db[event].find(pipeline))
|
653
|
-
|
654
|
-
|
655
|
-
def get_leads_aggregation(email, event, from_date, to_date=None):
|
656
|
-
pipeline = get_event_pipeline(email, from_date, to_date)
|
657
|
-
return list(db[event].aggregate(pipeline))
|
658
|
-
|
659
|
-
|
660
|
-
def get_event_pipeline(email, from_date, to_date=None):
|
661
|
-
pipeline = [
|
662
|
-
{
|
663
|
-
"$match": {
|
664
|
-
'name': email,
|
665
|
-
'created_at': {'$gte': from_date}
|
666
|
-
}
|
667
|
-
},
|
668
|
-
{
|
669
|
-
'$group': {
|
670
|
-
'_id': {
|
671
|
-
'$dateFromParts': {
|
672
|
-
'day': {
|
673
|
-
'$dayOfMonth': '$created_at'
|
674
|
-
},
|
675
|
-
'month': {
|
676
|
-
'$month': '$created_at'
|
677
|
-
},
|
678
|
-
'year': {
|
679
|
-
'$year': '$created_at'
|
680
|
-
}
|
681
|
-
}
|
682
|
-
},
|
683
|
-
'count': {
|
684
|
-
'$sum': 1
|
685
|
-
}
|
686
|
-
}
|
687
|
-
},
|
688
|
-
{
|
689
|
-
"$sort": {"_id": 1}
|
690
|
-
}
|
691
|
-
]
|
692
|
-
|
693
|
-
if to_date:
|
694
|
-
end = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, tzinfo=tz.tzutc())
|
695
|
-
pipeline[0]["$match"]["created_at"]['$lte'] = end
|
696
|
-
|
697
|
-
return pipeline
|
698
|
-
|
699
|
-
|
700
|
-
def get_total_analytic_followup_up_date(from_date, to_date=None):
|
701
|
-
beginning_of_the_day = datetime.datetime(from_date.year, from_date.month, from_date.day, 0, 0, 0, 0)
|
702
|
-
end_of_the_day = datetime.datetime(to_date.year, to_date.month, to_date.day, 23, 59, 59, 999)
|
703
|
-
pipeline = [
|
704
|
-
{
|
705
|
-
"$match": {
|
706
|
-
"followup_date": {
|
707
|
-
"$gte": beginning_of_the_day,
|
708
|
-
"$lte": end_of_the_day
|
709
|
-
}
|
710
|
-
}
|
711
|
-
},
|
712
|
-
{
|
713
|
-
"$group": {
|
714
|
-
"_id": "$_id",
|
715
|
-
"count": {"$sum": 1}
|
716
|
-
}
|
717
|
-
}
|
718
|
-
]
|
719
|
-
followup_analytic = list(client.lgt_admin.user_leads.aggregate(pipeline))
|
720
|
-
|
721
|
-
followup_analytic_dic = {item["_id"]: item["count"] for item in followup_analytic}
|
722
|
-
|
723
|
-
return followup_analytic_dic
|