lazylabel-gui 1.1.8__py3-none-any.whl → 1.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -3,6 +3,7 @@
3
3
  from .adjustments_widget import AdjustmentsWidget
4
4
  from .border_crop_widget import BorderCropWidget
5
5
  from .channel_threshold_widget import ChannelThresholdWidget
6
+ from .fft_threshold_widget import FFTThresholdWidget
6
7
  from .fragment_threshold_widget import FragmentThresholdWidget
7
8
  from .model_selection_widget import ModelSelectionWidget
8
9
  from .settings_widget import SettingsWidget
@@ -12,6 +13,7 @@ __all__ = [
12
13
  "AdjustmentsWidget",
13
14
  "BorderCropWidget",
14
15
  "ChannelThresholdWidget",
16
+ "FFTThresholdWidget",
15
17
  "FragmentThresholdWidget",
16
18
  "ModelSelectionWidget",
17
19
  "SettingsWidget",
@@ -0,0 +1,392 @@
1
+ """
2
+ FFT Threshold Widget for LazyLabel.
3
+
4
+ This widget provides FFT-based thresholding for single channel images.
5
+ It includes frequency band thresholding and intensity thresholding.
6
+ Users can double-click to add threshold points for both frequency and intensity processing.
7
+ """
8
+
9
+ import numpy as np
10
+ from PyQt6.QtCore import pyqtSignal
11
+ from PyQt6.QtWidgets import (
12
+ QCheckBox,
13
+ QGroupBox,
14
+ QLabel,
15
+ QVBoxLayout,
16
+ QWidget,
17
+ )
18
+ from scipy.fft import fft2, fftshift, ifft2
19
+
20
+ # Import MultiIndicatorSlider from channel threshold widget
21
+ from .channel_threshold_widget import MultiIndicatorSlider
22
+
23
+
24
+ class FFTThresholdSlider(MultiIndicatorSlider):
25
+ """Custom slider for FFT thresholds that allows removing all indicators."""
26
+
27
+ def contextMenuEvent(self, event):
28
+ """Handle right-click to remove indicator (allows removing all indicators)."""
29
+ from PyQt6.QtCore import QRect
30
+
31
+ slider_rect = self.get_slider_rect()
32
+
33
+ # Allow removal of any indicator (no minimum constraint)
34
+ # Check if right-clicking on an indicator
35
+ for i, value in enumerate(self.indicators):
36
+ x = self.value_to_x(value)
37
+ handle_rect = QRect(
38
+ x - 6, slider_rect.top() - 3, 12, slider_rect.height() + 6
39
+ )
40
+
41
+ if handle_rect.contains(event.pos()):
42
+ self.indicators.pop(i)
43
+ self.valueChanged.emit(self.indicators[:])
44
+ self.update()
45
+ return
46
+
47
+
48
+ class FFTThresholdWidget(QWidget):
49
+ """Widget for FFT-based thresholding of single channel images."""
50
+
51
+ fft_threshold_changed = pyqtSignal() # Emitted when FFT threshold changes
52
+ dragStarted = pyqtSignal() # Emitted when slider drag starts
53
+ dragFinished = pyqtSignal() # Emitted when slider drag finishes
54
+
55
+ def __init__(self, parent=None):
56
+ super().__init__(parent)
57
+ self.current_image_channels = (
58
+ 0 # 0 = no image, 1 = grayscale, 3+ = not supported
59
+ )
60
+ self.frequency_thresholds = [] # List of frequency threshold percentages (0-100)
61
+ self.intensity_thresholds = [] # List of intensity threshold percentages (0-100)
62
+ self._setup_ui()
63
+ self._connect_signals()
64
+
65
+ def _setup_ui(self):
66
+ """Setup the UI layout."""
67
+ group = QGroupBox("FFT Frequency Band Thresholding")
68
+ layout = QVBoxLayout(group)
69
+ layout.setSpacing(8)
70
+
71
+ # Enable checkbox
72
+ self.enable_checkbox = QCheckBox("Enable FFT Frequency Thresholding")
73
+ self.enable_checkbox.setChecked(False)
74
+ layout.addWidget(self.enable_checkbox)
75
+
76
+ # Status label
77
+ self.status_label = QLabel("Load a single channel (grayscale) image")
78
+ self.status_label.setStyleSheet(
79
+ "color: #888; font-size: 9px; font-style: italic;"
80
+ )
81
+ layout.addWidget(self.status_label)
82
+
83
+ # Frequency threshold slider (percentage-based)
84
+ freq_label = QLabel("Frequency Thresholds (Double-click to add):")
85
+ freq_label.setStyleSheet("font-weight: bold; margin-top: 5px;")
86
+ layout.addWidget(freq_label)
87
+
88
+ self.frequency_slider = FFTThresholdSlider(
89
+ channel_name="Frequency Bands", minimum=0, maximum=100, parent=self
90
+ )
91
+ self.frequency_slider.setEnabled(False)
92
+ self.frequency_slider.setToolTip(
93
+ "Double-click to add frequency cutoff points. Each frequency band gets mapped to a different intensity level."
94
+ )
95
+ layout.addWidget(self.frequency_slider)
96
+
97
+ # Intensity threshold slider (percentage-based)
98
+ intensity_label = QLabel("Intensity Thresholds (Double-click to add):")
99
+ intensity_label.setStyleSheet("font-weight: bold; margin-top: 10px;")
100
+ layout.addWidget(intensity_label)
101
+
102
+ self.intensity_slider = FFTThresholdSlider(
103
+ channel_name="Intensity Levels", minimum=0, maximum=100, parent=self
104
+ )
105
+ self.intensity_slider.setEnabled(False)
106
+ self.intensity_slider.setToolTip(
107
+ "Double-click to add intensity threshold points. Applied after frequency band processing."
108
+ )
109
+ layout.addWidget(self.intensity_slider)
110
+
111
+ # Instructions
112
+ instructions = QLabel(
113
+ "1. Add frequency thresholds to create bands: low freq → dark, high freq → bright.\n"
114
+ "2. Add intensity thresholds to further process the result with quantization levels."
115
+ )
116
+ instructions.setStyleSheet("color: #888; font-size: 9px;")
117
+ instructions.setWordWrap(True)
118
+ layout.addWidget(instructions)
119
+
120
+ # Main layout
121
+ main_layout = QVBoxLayout(self)
122
+ main_layout.setContentsMargins(0, 0, 0, 0)
123
+ main_layout.addWidget(group)
124
+
125
+ def _connect_signals(self):
126
+ """Connect internal signals."""
127
+ # Enable checkbox connection
128
+ self.enable_checkbox.toggled.connect(self._on_enable_checkbox_toggled)
129
+
130
+ # Frequency threshold connections
131
+ self.frequency_slider.valueChanged.connect(self._on_frequency_slider_changed)
132
+ self.frequency_slider.dragStarted.connect(self.dragStarted.emit)
133
+ self.frequency_slider.dragFinished.connect(self.dragFinished.emit)
134
+
135
+ # Intensity threshold connections
136
+ self.intensity_slider.valueChanged.connect(self._on_intensity_slider_changed)
137
+ self.intensity_slider.dragStarted.connect(self.dragStarted.emit)
138
+ self.intensity_slider.dragFinished.connect(self.dragFinished.emit)
139
+
140
+ def _on_enable_checkbox_toggled(self, checked):
141
+ """Handle enable checkbox toggle."""
142
+ # Enable/disable controls based on checkbox state
143
+ self.frequency_slider.setEnabled(checked)
144
+ self.intensity_slider.setEnabled(checked)
145
+
146
+ # If unchecking, optionally reset the thresholds
147
+ if not checked:
148
+ self.frequency_slider.reset() # Clear frequency threshold indicators
149
+ self.intensity_slider.reset() # Clear intensity threshold indicators
150
+ self.frequency_thresholds = [] # Clear stored thresholds
151
+ self.intensity_thresholds = [] # Clear stored thresholds
152
+
153
+ # Always emit change signal when checkbox is toggled (both check and uncheck)
154
+ # This ensures the image refreshes to show/remove thresholding
155
+ self.fft_threshold_changed.emit()
156
+
157
+ def _on_frequency_slider_changed(self, indicators):
158
+ """Handle frequency threshold slider change (receives list of threshold indicators)."""
159
+ # Store the frequency threshold indicators (percentages 0-100)
160
+ self.frequency_thresholds = indicators[:] # Copy the list
161
+ self._emit_change_if_active()
162
+
163
+ def _on_intensity_slider_changed(self, indicators):
164
+ """Handle intensity threshold slider change (receives list of threshold indicators)."""
165
+ # Store the intensity threshold indicators (percentages 0-100)
166
+ self.intensity_thresholds = indicators[:] # Copy the list
167
+ self._emit_change_if_active()
168
+
169
+ def _emit_change_if_active(self):
170
+ """Emit change signal if FFT processing is active."""
171
+ if self.is_active():
172
+ self.fft_threshold_changed.emit()
173
+
174
+ def update_fft_threshold_for_image(self, image_array):
175
+ """Update widget based on loaded image."""
176
+ if image_array is None:
177
+ self.current_image_channels = 0
178
+ self.status_label.setText("Load a single channel (grayscale) image")
179
+ self.status_label.setStyleSheet(
180
+ "color: #888; font-size: 9px; font-style: italic;"
181
+ )
182
+ return
183
+
184
+ # Determine if image is grayscale (single channel or 3-channel with identical values)
185
+ if len(image_array.shape) == 2:
186
+ # True grayscale - supported
187
+ self.current_image_channels = 1
188
+ self.status_label.setText("✓ Grayscale image - FFT processing available")
189
+ self.status_label.setStyleSheet(
190
+ "color: #4CAF50; font-size: 9px; font-style: italic;"
191
+ )
192
+ elif len(image_array.shape) == 3 and image_array.shape[2] == 3:
193
+ # Check if all three channels are identical (grayscale stored as RGB)
194
+ r_channel = image_array[:, :, 0]
195
+ g_channel = image_array[:, :, 1]
196
+ b_channel = image_array[:, :, 2]
197
+ if np.array_equal(r_channel, g_channel) and np.array_equal(
198
+ g_channel, b_channel
199
+ ):
200
+ # Grayscale stored as RGB - supported
201
+ self.current_image_channels = 1
202
+ self.status_label.setText(
203
+ "✓ Grayscale image (RGB format) - FFT processing available"
204
+ )
205
+ self.status_label.setStyleSheet(
206
+ "color: #4CAF50; font-size: 9px; font-style: italic;"
207
+ )
208
+ else:
209
+ # True multi-channel - not supported
210
+ self.current_image_channels = 3
211
+ self.status_label.setText(
212
+ "❌ Multi-channel color image - not supported"
213
+ )
214
+ self.status_label.setStyleSheet(
215
+ "color: #F44336; font-size: 9px; font-style: italic;"
216
+ )
217
+ else:
218
+ # Unknown format
219
+ self.current_image_channels = 0
220
+ self.status_label.setText("❌ Unsupported image format")
221
+ self.status_label.setStyleSheet(
222
+ "color: #F44336; font-size: 9px; font-style: italic;"
223
+ )
224
+
225
+ def is_active(self):
226
+ """Check if FFT processing is active (checkbox enabled and image is grayscale)."""
227
+ return self.enable_checkbox.isChecked() and self.current_image_channels == 1
228
+
229
+ def apply_fft_thresholding(self, image_array):
230
+ """Apply frequency band thresholding to image array and return modified array."""
231
+ if not self.is_active() or image_array is None:
232
+ return image_array
233
+
234
+ # Handle both 2D grayscale and 3D grayscale (stored as RGB) images
235
+ if len(image_array.shape) == 2:
236
+ # True grayscale
237
+ processing_image = image_array
238
+ is_3channel = False
239
+ elif len(image_array.shape) == 3 and image_array.shape[2] == 3:
240
+ # Check if it's grayscale stored as RGB
241
+ r_channel = image_array[:, :, 0]
242
+ g_channel = image_array[:, :, 1]
243
+ b_channel = image_array[:, :, 2]
244
+ if np.array_equal(r_channel, g_channel) and np.array_equal(
245
+ g_channel, b_channel
246
+ ):
247
+ # Convert to 2D for processing
248
+ processing_image = image_array[:, :, 0]
249
+ is_3channel = True
250
+ else:
251
+ return image_array
252
+ else:
253
+ return image_array
254
+
255
+ try:
256
+ result_image = self._apply_frequency_band_thresholding(processing_image)
257
+
258
+ # Convert back to original format if needed
259
+ if is_3channel:
260
+ result = np.stack([result_image, result_image, result_image], axis=2)
261
+ else:
262
+ result = result_image
263
+
264
+ return result
265
+
266
+ except Exception:
267
+ # If FFT processing fails, return original image
268
+ return image_array
269
+
270
+ def _apply_frequency_band_thresholding(self, image_array):
271
+ """Apply frequency band thresholding with multiple frequency cutoffs."""
272
+ # Convert to float for processing
273
+ image_float = image_array.astype(np.float64)
274
+ height, width = image_float.shape
275
+
276
+ # Apply FFT
277
+ fft_image = fft2(image_float)
278
+ fft_shifted = fftshift(fft_image)
279
+
280
+ # Create frequency coordinate arrays (normalized 0-1)
281
+ y_coords, x_coords = np.ogrid[:height, :width]
282
+ center_y, center_x = height // 2, width // 2
283
+
284
+ # Calculate distance from center (frequency magnitude)
285
+ max_freq = np.sqrt((height / 2) ** 2 + (width / 2) ** 2)
286
+ freq_distance = (
287
+ np.sqrt((y_coords - center_y) ** 2 + (x_coords - center_x) ** 2) / max_freq
288
+ )
289
+ freq_distance = np.clip(freq_distance, 0, 1) # Normalize to 0-1
290
+
291
+ if not self.frequency_thresholds:
292
+ # No frequency thresholds - use original FFT
293
+ result_fft = fft_shifted
294
+ else:
295
+ # Create frequency bands based on thresholds
296
+ sorted_thresholds = sorted(self.frequency_thresholds)
297
+ freq_thresholds_normalized = [
298
+ t / 100.0 for t in sorted_thresholds
299
+ ] # Convert to 0-1
300
+
301
+ # Number of bands = number of thresholds + 1
302
+ num_bands = len(freq_thresholds_normalized) + 1
303
+ result_fft = np.zeros_like(fft_shifted, dtype=complex)
304
+
305
+ for band_idx in range(num_bands):
306
+ # Define frequency band
307
+ if band_idx == 0:
308
+ # First band: 0 to first threshold
309
+ band_mask = freq_distance <= freq_thresholds_normalized[0]
310
+ elif band_idx == num_bands - 1:
311
+ # Last band: last threshold to 1
312
+ band_mask = freq_distance > freq_thresholds_normalized[band_idx - 1]
313
+ else:
314
+ # Middle bands: between two thresholds
315
+ band_mask = (
316
+ freq_distance > freq_thresholds_normalized[band_idx - 1]
317
+ ) & (freq_distance <= freq_thresholds_normalized[band_idx])
318
+
319
+ # Band intensity (evenly distributed)
320
+ band_intensity = (band_idx / (num_bands - 1)) if num_bands > 1 else 1.0
321
+
322
+ # Apply band contribution
323
+ result_fft += fft_shifted * band_mask * band_intensity
324
+
325
+ # Inverse FFT
326
+ filtered_fft_unshifted = fftshift(result_fft)
327
+ filtered_image = np.real(ifft2(filtered_fft_unshifted))
328
+
329
+ # Normalize to 0-255 range
330
+ filtered_image = filtered_image - np.min(filtered_image)
331
+ if np.max(filtered_image) > 0:
332
+ filtered_image = filtered_image / np.max(filtered_image) * 255
333
+
334
+ result_image = filtered_image.astype(np.uint8)
335
+
336
+ # Apply intensity thresholding if specified
337
+ if self.intensity_thresholds:
338
+ result_image = self._apply_intensity_thresholding(result_image)
339
+
340
+ return result_image
341
+
342
+ def _apply_intensity_thresholding(self, image_array):
343
+ """Apply intensity thresholding to the image array."""
344
+ sorted_thresholds = sorted(self.intensity_thresholds)
345
+
346
+ # If no thresholds, return original
347
+ if not sorted_thresholds:
348
+ return image_array
349
+
350
+ # Convert thresholds from percentages to intensity values (0-255)
351
+ intensity_thresholds = [t * 255 / 100.0 for t in sorted_thresholds]
352
+
353
+ # Number of levels = number of thresholds + 1
354
+ num_levels = len(intensity_thresholds) + 1
355
+ result_image = np.copy(image_array)
356
+
357
+ for level_idx in range(num_levels):
358
+ # Define intensity range for this level
359
+ if level_idx == 0:
360
+ # First level: 0 to first threshold
361
+ mask = image_array <= intensity_thresholds[0]
362
+ elif level_idx == num_levels - 1:
363
+ # Last level: last threshold to 255
364
+ mask = image_array > intensity_thresholds[level_idx - 1]
365
+ else:
366
+ # Middle levels: between two thresholds
367
+ mask = (image_array > intensity_thresholds[level_idx - 1]) & (
368
+ image_array <= intensity_thresholds[level_idx]
369
+ )
370
+
371
+ # Map to quantized level (evenly distributed)
372
+ level_value = (
373
+ (level_idx / (num_levels - 1)) * 255 if num_levels > 1 else 255
374
+ )
375
+ result_image[mask] = level_value
376
+
377
+ return result_image.astype(np.uint8)
378
+
379
+ def get_settings(self):
380
+ """Get current FFT threshold settings."""
381
+ return {
382
+ "frequency_thresholds": self.frequency_thresholds,
383
+ "intensity_thresholds": self.intensity_thresholds,
384
+ "is_active": self.is_active(),
385
+ }
386
+
387
+ def reset(self):
388
+ """Reset to default values."""
389
+ self.frequency_slider.reset() # Reset the frequency slider
390
+ self.intensity_slider.reset() # Reset the intensity slider
391
+ self.frequency_thresholds = []
392
+ self.intensity_thresholds = []
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: lazylabel-gui
3
- Version: 1.1.8
3
+ Version: 1.2.0
4
4
  Summary: An image segmentation GUI for generating ML ready mask tensors and annotations.
5
5
  Author-email: "Deniz N. Cakan" <deniz.n.cakan@gmail.com>
6
6
  License: MIT License
@@ -57,7 +57,7 @@ Dynamic: license-file
57
57
 
58
58
  **AI-Assisted Image Segmentation Made Simple**
59
59
 
60
- LazyLabel combines Meta's Segment Anything Model (SAM) with intuitive editing tools for fast, precise image labeling. Perfect for machine learning datasets, computer vision research, and annotation workflows.
60
+ LazyLabel combines Meta's Segment Anything Model (SAM) with intuitive editing tools for fast, precise image labeling. Perfect for machine learning datasets and computer vision research.
61
61
 
62
62
  ![LazyLabel Screenshot](https://raw.githubusercontent.com/dnzckn/LazyLabel/main/src/lazylabel/demo_pictures/gui.PNG)
63
63
 
@@ -71,67 +71,57 @@ pip install lazylabel-gui
71
71
  lazylabel-gui
72
72
  ```
73
73
 
74
+ ### Optional: SAM-2 Support
75
+ For advanced SAM-2 models, install manually:
76
+ ```bash
77
+ pip install git+https://github.com/facebookresearch/sam2.git
78
+ ```
79
+ *Note: SAM-2 is optional - LazyLabel works with SAM 1.0 models by default*
80
+
74
81
  ### Usage
75
82
  1. **Open Folder** → Select your image directory
76
83
  2. **Click on image** → AI generates instant masks
77
- 3. **Fine-tune** → Edit polygons, merge segments, adjust classes
84
+ 3. **Fine-tune** → Edit polygons, merge segments
78
85
  4. **Export** → Clean `.npz` files ready for ML training
79
86
 
80
87
  ---
81
88
 
82
89
  ## ✨ Key Features
83
90
 
84
- ### **🧠 AI-Powered Segmentation**
85
- - **One-click masking** with Meta's SAM model
86
- - **Smart prompting** via positive/negative points
87
- - **Fragment filtering** to remove small artifacts
88
- - **Multiple model support** (VIT-H, VIT-L, VIT-B)
89
-
90
- ### **🎨 Advanced Editing**
91
- - **Polygon drawing** with full vertex control
92
- - **Bounding box** annotation mode
93
- - **Shape merging** and class assignment
94
- - **Edit mode** for precision adjustments
95
-
96
- ### **⚡ Productivity Tools**
97
- - **Image adjustments** (brightness, contrast, gamma)
98
- - **Customizable hotkeys** for all functions
99
- - **Undo/redo** with full history
100
- - **Auto-save** and session persistence
101
-
102
- ### **📊 ML-Ready Outputs**
103
- - **One-hot encoded** `.npz` format
104
- - **Clean class separation** with shape `(H, W, Classes)`
105
- - **Batch processing** support
106
- - **Existing mask loading** for iterative work
91
+ - **🧠 One-click AI segmentation** with Meta's SAM and SAM2 models
92
+ - **🎨 Manual polygon drawing** with full vertex control
93
+ - **⚡ Smart editing tools** - merge segments, adjust class names, and class order
94
+ - **📊 ML-ready exports** - One-hot encoded `.npz` format and `.json` for YOLO format
95
+ - **🔧 Image enhancement** - brightness, contrast, gamma adjustment
96
+ - **🔍 Image viewer** - zoom, pan, brightness, contrast, and gamma adjustment
97
+ - **✂️ Edge cropping** - define custom crop areas to focus on specific regions
98
+ - **🔄 Undo/Redo** - full history of all actions
99
+ - **💾 Auto-saving** - Automatic saving of your labels when navigating between images
100
+ - **🎛️ Advanced filtering** - FFT thresholding and color channel thresholding
101
+ - **⌨️ Customizable hotkeys** for all functions
107
102
 
108
103
  ---
109
104
 
110
- ## ⌨️ Essential Controls
111
-
112
- | Mode | Key | Action |
113
- |------|-----|--------|
114
- | **AI Segmentation** | `1` | Point mode for SAM |
115
- | | `Left Click` | Add positive point |
116
- | | `Right Click` | Add negative point |
117
- | | `Space` | Save segment |
118
- | **Manual Drawing** | `2` | Polygon mode |
119
- | | `Left Click` | Add vertex |
120
- | | `Enter` | Close polygon |
121
- | **Editing** | `E` | Selection mode |
122
- | | `R` | Edit selected shapes |
123
- | | `M` | Merge selected segments |
124
- | **Navigation** | `Q` | Pan mode |
125
- | | `W/A/S/D` | Pan image |
126
- | | `Scroll` | Zoom in/out |
127
-
128
- **💡 All hotkeys are customizable** - Click "Hotkeys" button to personalize shortcuts
105
+ ## ⌨️ Essential Hotkeys
106
+
107
+ | Action | Key | Description |
108
+ |--------|-----|-------------|
109
+ | **AI Mode** | `1` | Point-click segmentation |
110
+ | **Draw Mode** | `2` | Manual polygon drawing |
111
+ | **Edit Mode** | `E` | Select and modify shapes |
112
+ | **Save Segment** | `Space` | Confirm current mask |
113
+ | **Merge** | `M` | Combine selected segments |
114
+ | **Pan** | `Q` + drag | Navigate large images |
115
+ | **Positive Point** | `Left Click` | Add to segment |
116
+ | **Negative Point** | `Right Click` | Remove from segment |
117
+
118
+ 💡 **All hotkeys customizable** - Click "Hotkeys" button to personalize
129
119
 
130
120
  ---
131
121
 
132
122
  ## 📦 Output Format
133
123
 
134
- LazyLabel exports clean, ML-ready data:
124
+ Perfect for ML training - clean, structured data:
135
125
 
136
126
  ```python
137
127
  import numpy as np
@@ -141,41 +131,24 @@ data = np.load('your_image.npz')
141
131
  mask = data['mask'] # Shape: (height, width, num_classes)
142
132
 
143
133
  # Each channel is a binary mask for one class
144
- class_0_mask = mask[:, :, 0] # Binary mask for class 0
145
- class_1_mask = mask[:, :, 1] # Binary mask for class 1
146
- # ... and so on
134
+ class_0_mask = mask[:, :, 0] # Background
135
+ class_1_mask = mask[:, :, 1] # Object type 1
136
+ class_2_mask = mask[:, :, 2] # Object type 2
147
137
  ```
148
138
 
149
- **Perfect for:**
150
- - Semantic segmentation training
151
- - Instance segmentation datasets
139
+
140
+ **Ideal for:**
141
+ - Semantic segmentation datasets
142
+ - Instance segmentation training
152
143
  - Computer vision research
153
144
  - Automated annotation pipelines
154
145
 
155
146
  ---
156
147
 
157
- ## 🛠️ Advanced Features
158
-
159
- ### **Image Enhancement**
160
- - **Brightness/Contrast** adjustment sliders
161
- - **Gamma correction** for better visibility
162
- - **Live preview** of adjustments
163
- - **SAM integration** with adjusted images
164
-
165
- ### **Smart Filtering**
166
- - **Fragment threshold** removes small segments
167
- - **Size-based filtering** (0-100% of largest segment)
168
- - **Quality control** for clean annotations
169
-
170
- ### **Professional Workflow**
171
- - **Class management** with custom aliases
172
- - **Segment organization** with sortable tables
173
- - **Batch export** for large datasets
174
- - **Model switching** without restart
148
+ ## 🛠️ Development
175
149
 
176
- ---
177
-
178
- ## 🏗️ Development
150
+ **Requirements:** Python 3.10+
151
+ **2.5GB** disk space for SAM model (auto-downloaded)
179
152
 
180
153
  ### Installation from Source
181
154
  ```bash
@@ -185,38 +158,26 @@ pip install -e .
185
158
  lazylabel-gui
186
159
  ```
187
160
 
188
- ### Code Quality & Testing
161
+ ### Testing & Quality
189
162
  ```bash
190
- # Linting & formatting
191
- ruff check . && ruff format .
192
-
193
- # Run tests with coverage
163
+ # Run full test suite
194
164
  python -m pytest --cov=lazylabel --cov-report=html
195
165
 
196
- # All tests pass with 60%+ coverage
166
+ # Code formatting & linting
167
+ ruff check . && ruff format .
197
168
  ```
198
169
 
199
170
  ### Architecture
200
- - **Modular design** with clean separation of concerns
201
- - **Signal-based communication** between components
171
+ - **Modular design** with clean component separation
172
+ - **Signal-based communication** between UI elements
202
173
  - **Extensible model system** for new SAM variants
203
- - **Comprehensive test suite** with 95% speed optimization
204
-
205
- ---
206
-
207
- ## 📋 Requirements
208
-
209
- - **Python 3.10+**
210
- - **OpenCV** for image processing
211
- - **PyQt6** for GUI
212
- - **NumPy** for data handling
213
- - **2.5GB** disk space for SAM model (auto-downloaded)
174
+ - **Comprehensive test suite** (150+ tests, 60%+ coverage)
214
175
 
215
176
  ---
216
177
 
217
178
  ## 🤝 Contributing
218
179
 
219
- LazyLabel welcomes contributions! Check out our:
180
+ LazyLabel welcomes contributions! Check out:
220
181
  - [Architecture Guide](src/lazylabel/ARCHITECTURE.md) for technical details
221
182
  - [Hotkey System](src/lazylabel/HOTKEY_FEATURE.md) for customization
222
183
  - Issues page for feature requests and bug reports
@@ -225,9 +186,8 @@ LazyLabel welcomes contributions! Check out our:
225
186
 
226
187
  ## 🙏 Acknowledgments
227
188
 
228
- LazyLabel was inspired by and builds upon the excellent work of:
229
- - [LabelMe](https://github.com/wkentaro/labelme) - The pioneering open-source image annotation tool
230
- - [Segment-Anything-UI](https://github.com/branislavhesko/segment-anything-ui) - Early SAM integration concepts
189
+ - [LabelMe](https://github.com/wkentaro/labelme)
190
+ - [Segment-Anything-UI](https://github.com/branislavhesko/segment-anything-ui)
231
191
 
232
192
  ---
233
193