lavavu 1.8.84__cp312-cp312-win_amd64.whl → 1.9.5__cp312-cp312-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -22,25 +22,10 @@ uniform vec3 uClipMax;
22
22
  uniform bool uOpaque;
23
23
  uniform vec4 uLight;
24
24
 
25
- #ifdef WEBGL
26
- #define outColour gl_FragColor
27
- #define texture(a,b) texture2D(a,b)
28
-
29
- //Before OpenGL 3+ we need our own isnan function
30
- bool isnan3(vec3 val)
31
- {
32
- if (!(val.x < 0.0 || 0.0 < val.x || val.x == 0.0)) return true;
33
- if (!(val.y < 0.0 || 0.0 < val.y || val.y == 0.0)) return true;
34
- if (!(val.z < 0.0 || 0.0 < val.z || val.z == 0.0)) return true;
35
- return false;
36
- }
37
-
38
- #else
39
25
  #define isnan3(v) any(isnan(v))
40
26
  flat in vec4 vFlatColour;
41
27
  uniform bool uFlat;
42
28
  out vec4 outColour;
43
- #endif
44
29
 
45
30
  uniform bool uCalcNormal;
46
31
 
@@ -69,10 +54,8 @@ void main(void)
69
54
  if (any(lessThan(vVertex, uClipMin)) || any(greaterThan(vVertex, uClipMax))) discard;
70
55
 
71
56
  vec4 fColour = vColour;
72
- #ifndef WEBGL
73
57
  if (uFlat)
74
58
  fColour = vFlatColour;
75
- #endif
76
59
  float alpha = fColour.a;
77
60
  if (uTextured && vTexCoord.x > -1.0) //Null texcoord (-1,-1)
78
61
  {
@@ -2,9 +2,7 @@ in vec3 aVertexPosition;
2
2
  in vec3 aVertexNormal;
3
3
  in vec4 aVertexColour;
4
4
  in vec2 aVertexTexCoord;
5
- #ifndef WEBGL
6
5
  flat out vec4 vFlatColour;
7
- #endif
8
6
 
9
7
  uniform mat4 uMVMatrix;
10
8
  uniform mat4 uPMatrix;
@@ -34,9 +32,7 @@ void main(void)
34
32
  vColour = aVertexColour;
35
33
 
36
34
  vTexCoord = aVertexTexCoord;
37
- #ifndef WEBGL
38
35
  vFlatColour = vColour;
39
- #endif
40
36
  vVertex = aVertexPosition;
41
37
 
42
38
  //Head light, lightPos=(0,0,0) - vPosEye
@@ -6,17 +6,10 @@
6
6
  * https://www.gnu.org/licenses/lgpl.html
7
7
  * (volume shader from sharevol https://github.com/OKaluza/sharevol)
8
8
  */
9
- #ifdef WEBGL
10
- uniform sampler2D uVolume;
11
- #define NO_DEPTH_WRITE
12
- #define outColour gl_FragColor
13
- #define texture(a,b) texture2D(a,b)
14
- #else
15
9
  //Included dynamically before compile in WebGL mode...
16
10
  const int maxSamples = 2048;
17
11
  uniform sampler3D uVolume;
18
12
  out vec4 outColour;
19
- #endif
20
13
 
21
14
  const float depthT = 0.99; //Transmissivity threshold below which depth write applied
22
15
 
@@ -63,63 +56,7 @@ vec3 bbMax;
63
56
  float interpolate_tricubic_fast(vec3 coord);
64
57
  #endif
65
58
 
66
- #ifdef WEBGL
67
-
68
- vec2 islices = vec2(1.0 / slices.x, 1.0 / slices.y);
69
- float maxslice = slices.x * slices.y - 1.0;
70
- //Clamp to a bit before halfway for the edge voxels
71
- vec2 cmin = vec2(0.55/(slices.x*slices.y), 0.55/(slices.x*slices.y));
72
- vec2 cmax = vec2(1.0, 1.0) - cmin;
73
-
74
- float sample(vec3 pos)
75
- {
76
- //Get z slice index and position between two slices
77
- float Z = pos.z * maxslice;
78
- float slice = floor(Z); //Index of first slice
79
- Z = fract(Z);
80
- //Edge case at z min (possible with tricubic filtering)
81
- if (int(slice) < 0)
82
- {
83
- slice = 0.0;
84
- Z = 0.0;
85
- }
86
- //Edge case at z max
87
- else if (int(slice) > int(maxslice)-1)
88
- {
89
- slice = maxslice-1.0;
90
- Z = 1.0;
91
- }
92
- //Only start interpolation with next Z slice 1/3 from edges at first & last z slice
93
- //(this approximates how 3d texture volume is sampled at edges with linear filtering
94
- // due to edge sample being included in weighted average twice)
95
- // - min z slice
96
- else if (int(slice) == 0)
97
- {
98
- Z = max(0.0, (Z-0.33) * 1.5);
99
- }
100
- // - max z slice
101
- else if (int(slice) == int(maxslice)-1)
102
- {
103
- Z = min(1.0, Z*1.5);
104
- }
105
-
106
- //X & Y coords of sample scaled to slice size
107
- //(Clamp range at borders to prevent bleeding between tiles due to linear filtering)
108
- vec2 sampleOffset = clamp(pos.xy, cmin, cmax) * islices;
109
- //Offsets in 2D texture of given slice indices
110
- //(add offsets to scaled position within slice to get sample positions)
111
- float A = slice * islices.x;
112
- float B = (slice+1.0) * islices.x;
113
- vec2 z1offset = vec2(fract(A), floor(A) / slices.y) + sampleOffset;
114
- vec2 z2offset = vec2(fract(B), floor(B) / slices.y) + sampleOffset;
115
-
116
- //Interpolate the final value by position between slices [0,1]
117
- return mix(texture2D(uVolume, z1offset).x, texture2D(uVolume, z2offset).x, Z);
118
- }
119
-
120
- #else
121
59
  #define sample(pos) (texture(uVolume, pos).x)
122
- #endif
123
60
 
124
61
  float tex3D(vec3 pos)
125
62
  {
lavavu/tracers.py CHANGED
@@ -1,124 +1,194 @@
1
1
  """
2
- Warning! EXPERIMENTAL:
3
- these features and functions are under development, will have bugs,
4
- and may be heavily modified in the future
5
-
6
2
  Tracer particles in a vector field
7
- Uses a KDTree to find nearest vector to advect the particles
8
3
 
9
- - Requires scipy.spatial
4
+ - Requires scipy.interpolate
10
5
  """
11
6
  import numpy
12
7
  import os
13
8
  import sys
14
9
  import random
15
- import math
16
- from scipy import spatial
17
-
18
- #Necessary? for large trees, detect?
19
- #sys.setrecursionlimit(10000)
10
+ from scipy.interpolate import RegularGridInterpolator
20
11
 
21
- class TracerState(object):
22
- def __init__(self, verts, N=5000):
23
- self.tree = spatial.cKDTree(verts)
24
- self.tracers = None
25
- self.steps = [0]*N
26
- self.values = None
27
- self.positions = None
28
- self.velocities = None
29
-
30
- def trace_particles(state, verts, vecs, N=5000, limit=0.5, speed=1.0, noise=0.0, height=None):
12
+ def random_particles(count, lowerbound=[0,0,0], upperbound=[1,1,1], dims=3):
31
13
  """
32
- Take a list of tracer vertices and matching velocity grid points (verts) & vectors (vecs)
33
- For each tracer
34
-
35
- - find the nearest velocity grid point
36
- - if within max dist: Multiply position by velocity vector
37
- - otherwise: Generate a new start position for tracer
38
-
39
- Parameters
40
- ----------
41
- state : TracerState
42
- Object returned from first call, pass None on first pass
43
- verts : array or list
44
- vertices of the vector field
45
- vecs : array or list
46
- vector values of the vector field
47
- N : int
48
- Number of particles to seed
49
- limit : float
50
- Distance limit over which tracers are not connected,
51
- For example if using a periodic boundary, setting limit to
52
- half the bounding box size will prevent tracer lines being
53
- connected when passing through the boundary
54
- speed : float
55
- Speed multiplier, scaling factor for the velocity taken from the vector values
56
- noise : float
57
- A noise factor, if set a random value is generated, multiplied by noise factor
58
- and added to each new position
59
- height : float
60
- A fixed height value, all positions will be given this height as their Z component
61
-
62
- Returns
63
- -------
64
- TracerState
65
- Object to hold the tracer state and track particles
66
- Pass this as first paramter on subsequent calls
14
+ Return an array of *count* 3d vertices of random particle positions
15
+ Minimum and maximum values defined by lowerbound and upperbound
67
16
  """
17
+ p = [None] * dims
18
+ for c in range(dims):
19
+ if lowerbound[c] == upperbound[c]:
20
+ p[c] = numpy.zeros(shape=(count)) + lowerbound[c]
21
+ else:
22
+ p[c] = numpy.random.uniform(low=lowerbound[c], high=upperbound[c], size=count)
23
+
24
+ return numpy.stack(p).T
68
25
 
69
- #KDstate.tree for finding nearest velocity grid point
70
- if state is None:
71
- state = TracerState(verts, N)
72
-
73
- lastid = 0
74
- def rand_vert():
75
- #Get a random velocity grid point
76
- lastid = random.randint(0, len(verts)-1)
77
- pos = verts[lastid]
78
- #Generate some random noise to offset
79
- noise3 = numpy.array((0.,0.,0.))
80
- if noise > 0.0:
81
- noise3 = numpy.random.rand(3) * noise
82
- #Fixed height?
83
- if height:
84
- noise3[2] = height
85
- #Return the sum
86
- return pos + noise3
87
-
88
- if state.positions is None:
89
- state.positions = numpy.zeros(shape=(N,3))
90
- state.velocities = numpy.zeros(shape=(N,3))
91
- state.values = numpy.zeros(shape=(N))
92
- for i in range(N):
93
- state.positions[i] = rand_vert()
94
- state.steps[i] = 0
95
- state.values[i] = numpy.linalg.norm(vecs[lastid])
96
-
97
- #Query all tracer state.positions
98
- q = state.tree.query(state.positions, k=1)
99
- for r in range(len(q[0])):
100
- #print("result, distance, point")
101
- #print(r, q[0][r], state.tree.data[q[1][r]], state.positions[r])
102
-
103
- #Increasing random chance as steps exceed 5 of a new start pos
104
- if random.randint(0,state.steps[r]) > 5:
105
- #Pick a new random grid vertex to start from
106
- #(Must be farther away than distance criteria)
107
- old = numpy.array(state.positions[r])
108
- while True:
109
- state.positions[r] = rand_vert()
110
- if numpy.linalg.norm(state.positions[r]-old) > limit:
111
- break
112
- state.steps[r] = 0
113
- state.values[r] = numpy.linalg.norm(vecs[lastid])
26
+ class Tracers():
27
+ def __init__(self, grid, count=1000, lowerbound=None, upperbound=None, limit=None, age=4, respawn_chance=0.2, speed_multiply=1.0, height=0.0, viewer=None):
28
+ """
29
+ Seed random particles into a vector field and trace their positions
30
+
31
+ Parameters
32
+ ----------
33
+ grid : list of coord arrays for each dimension as expected by RegularGridInterpolator,
34
+ or a numpy array of 2d or 3d vertices, which will be converted before being sent to the interpolator
35
+ Object returned from first call, pass None on first pass
36
+ count : int
37
+ Number of particles to seed and track
38
+ lowerbound : optional minimum vertex point defining particle bounding box,
39
+ if not provided will be taken from grid lower corner
40
+ upperbound : optional maximum vertex point defining particle bounding box,
41
+ if not provided will be taken from grid upper corner
42
+ limit : float
43
+ Distance limit over which tracers are not connected,
44
+ For example if using a periodic boundary, setting limit to
45
+ half the bounding box size will prevent tracer lines being
46
+ connected when passing through the boundary
47
+ age : int
48
+ Minimum particle age in steps after which particle can be deleted and respawned, defaults to 4
49
+ respawn : float
50
+ Probability of respawning, after age reached, default 0.2 ==> 1 in 5 chance of deletion
51
+ speed_multiply : float
52
+ Speed multiplier, scaling factor for the velocity taken from the vector values
53
+ height : float
54
+ A fixed height value, all positions will be given this height as their Z component
55
+ viewer : lavavu.Viewer
56
+ Viewer object for plotting functions
57
+ """
58
+ if len(grid) == 2:
59
+ self.gridx = grid[0]
60
+ self.gridy = grid[1]
61
+ self.gridz = numpy.array((height, height))
62
+ self.dims = 2
63
+ elif len(grid) == 3:
64
+ self.gridx = grid[0]
65
+ self.gridy = grid[1]
66
+ self.gridz = grid[2]
67
+ self.dims = 3
68
+ elif isinstance(grid, numpy.ndarray) and grid.shape[1] == 3:
69
+ self.gridx = grid[::,0]
70
+ self.gridy = grid[::,1]
71
+ self.gridz = grid[::,2]
72
+ self.dims = 3
73
+ elif isinstance(grid, numpy.ndarray) and grid.shape[1] == 2:
74
+ self.gridx = grid[::,0]
75
+ self.gridy = grid[::,1]
76
+ self.gridz = numpy.array((height, height))
77
+ self.dims = 2
114
78
  else:
115
- #Index of nearest grid point is in q[1][r]
116
- #Lookup vector at this index, multiply by position to get delta and add
117
- state.velocities[r] = vecs[q[1][r]] #Store velocity
118
- state.positions[r] += speed * vecs[q[1][r]]
119
- #Increment step tracking
120
- state.steps[r] += 1
121
- state.values[r] = numpy.linalg.norm(vecs[q[1][r]])
122
-
123
- return state
79
+ raise(ValueError('Grid needs to be array of 2d/3d vertices, or arrays of vertex coords (x, y, [z])'))
80
+
81
+ self.count = count
82
+ if lowerbound is None:
83
+ lowerbound = (self.gridx[0], self.gridy[0], self.gridz[0])
84
+ if upperbound is None:
85
+ upperbound = (self.gridx[-1], self.gridy[-1], self.gridz[-1])
86
+ self.positions = random_particles(self.count, lowerbound, upperbound, self.dims)
87
+ self.old_pos = numpy.zeros_like(self.positions)
88
+ self.lowerbound = lowerbound
89
+ self.upperbound = upperbound
90
+ self.velocities = None
91
+ self.steps = [0]*count
92
+ self.speed = numpy.zeros(shape=(count))
93
+ self.ages = numpy.zeros(shape=(count))
94
+ self.interp = None
95
+ if limit is None:
96
+ limit = 0.1 * (abs(self.gridx[-1] - self.gridx[0]) + abs(self.gridy[-1] - self.gridy[0]))
97
+ self.limit = limit
98
+ self.age = age
99
+ self.respawn_chance = respawn_chance
100
+ self.speed_multiply = speed_multiply
101
+ self.height = height
102
+
103
+ self.lv = viewer
104
+ self.points = None
105
+ self.arrows = None
106
+ self.tracers = None
107
+
108
+
109
+ def respawn(self, r):
110
+ #Dead or out of bounds particle, start at new position
111
+ #Loop until new position further from current position than limit
112
+ old_pos = self.positions[r]
113
+ pos = numpy.array([0.] * self.dims)
114
+ for i in range(10):
115
+ pos = random_particles(1, self.lowerbound, self.upperbound, self.dims)
116
+ dist = numpy.linalg.norm(old_pos - pos)
117
+ if dist > self.limit*1.01:
118
+ break
119
+
120
+ self.ages[r] = 0
121
+ self.positions[r] = pos
122
+
123
+ def update(self, vectors=None):
124
+ #Interpolate velocity at all positions,
125
+ #If vectors not passed, will use previous values
126
+ if vectors is not None:
127
+ if self.dims == 2:
128
+ self.interp = RegularGridInterpolator((self.gridx, self.gridy), vectors, bounds_error=False, fill_value=0.0)
129
+ else:
130
+ self.interp = RegularGridInterpolator((self.gridx, self.gridy, self.gridz), vectors, bounds_error=False, fill_value=0.0)
131
+
132
+ if self.interp is None:
133
+ raise(ValueError("No velocity grid, must pass vectors for first call of update()"))
134
+
135
+ self.velocities = self.interp(self.positions)
136
+ self.old_pos = numpy.copy(self.positions)
137
+
138
+ for r in range(len(self.velocities)):
139
+ #Lookup velocity at this index, multiply by position to get delta and add
140
+ self.speed[r] = numpy.linalg.norm(self.velocities[r])
141
+ if numpy.isnan(self.speed[r]): self.speed[r] = 0.0
142
+ if self.speed[r] == 0.0: #numpy.any(numpy.isinf(self.old_pos[r])) or numpy.any(numpy.isinf(self.positions[r])):
143
+ self.respawn(r)
144
+ else:
145
+ self.positions[r] = self.positions[r] + self.speed_multiply * self.velocities[r]
146
+ self.ages[r] += 1
147
+
148
+ #Bounds checks
149
+ #Chance of killing particle when over age, default 1 in 5 (0.2)
150
+ if (any(self.positions[r] < self.lowerbound[0:self.dims]) or any(self.positions[r] > self.upperbound[0:self.dims])
151
+ or (self.ages[r] > self.age and numpy.random.uniform() <= self.respawn_chance)):
152
+ #if r < 20: print("Kill", r, self.speed[r], numpy.isnan(self.speed[r])) # [0] == numpy.nan)
153
+ #self.positions[r] = numpy.array([numpy.inf] * self.dims)
154
+ #self.positions[r] = numpy.array([numpy.nan] * self.dims)
155
+ self.respawn(r)
156
+ self.velocities[r] = numpy.array([0.0] * self.dims)
157
+ self.speed[r] = 0.0
158
+
159
+ if self.lv:
160
+ positions = self.positions
161
+ if self.dims == 2 and self.height != 0:
162
+ #Convert to 3d and set z coord to height
163
+ shape = list(positions.shape)
164
+ shape[-1] = 3
165
+ positions = numpy.zeros(shape)
166
+ positions[::,0:2] = self.positions
167
+ positions[::,2] = numpy.array([self.height] * shape[0])
168
+ if self.points:
169
+ self.points.vertices(positions)
170
+ if len(self.points["colourmap"]):
171
+ self.points.values(self.speed)
172
+ if self.arrows:
173
+ self.arrows.vectors(self.velocities)
174
+ self.arrows.vertices(positions)
175
+ if len(self.arrows["colourmap"]):
176
+ self.arrows.values(self.speed)
177
+
178
+ if self.tracers:
179
+ self.tracers.vertices(positions)
180
+ if len(self.tracers["colourmap"]):
181
+ self.tracers.values(self.speed)
182
+
183
+ def plot_points(self, **kwargs):
184
+ if self.lv is not None and self.points is None:
185
+ self.points = self.lv.points('tracer_points', **kwargs)
186
+
187
+ def plot_arrows(self, **kwargs):
188
+ if self.lv is not None and self.arrows is None:
189
+ self.arrows = self.lv.vectors('tracer_arrows', **kwargs)
190
+
191
+ def plot_tracers(self, **kwargs):
192
+ if self.lv is not None and self.tracers is None:
193
+ self.tracers = self.lv.tracers('tracers', dims=self.count, limit=self.limit, **kwargs)
124
194
 
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: lavavu
3
- Version: 1.8.84
3
+ Version: 1.9.5
4
4
  Summary: Python interface to LavaVu OpenGL 3D scientific visualisation utilities
5
5
  Author-email: Owen Kaluza <owen@kaluza.id.au>
6
6
  License: ### Licensing
@@ -214,14 +214,17 @@ Description-Content-Type: text/markdown
214
214
  License-File: LICENSE.md
215
215
  Requires-Dist: numpy>=1.18
216
216
  Requires-Dist: aiohttp
217
- Requires-Dist: jupyter-server-proxy
217
+ Requires-Dist: jupyter_server_proxy
218
+ Requires-Dist: matplotlib
219
+ Requires-Dist: numpy-quaternion
220
+ Dynamic: license-file
218
221
 
219
222
  ![# logo](http://owen.kaluza.id.au/Slides/2017-08-15/LavaVu.png)
220
223
 
221
224
  [![Build Status](https://github.com/lavavu/LavaVu/workflows/Test/badge.svg)](https://github.com/lavavu/LavaVu/actions?query=workflow:Test)
222
225
  [![Deploy Status](https://github.com/lavavu/LavaVu/workflows/Deploy/badge.svg?branch=1.7.3)](https://github.com/lavavu/LavaVu/actions?query=workflow:Deploy)
223
226
  [![DOI](https://zenodo.org/badge/45163055.svg)](https://zenodo.org/badge/latestdoi/45163055)
224
- [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/lavavu/LavaVu/1.8.84)
227
+ [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/lavavu/LavaVu/1.9.5)
225
228
 
226
229
  A scientific visualisation tool with a python interface for fast and flexible visual analysis.
227
230
 
@@ -229,11 +232,12 @@ Documentation available here [LavaVu Documentation](https://lavavu.github.io/Doc
229
232
 
230
233
  ![examplevis](http://owen.kaluza.id.au/Slides/2017-08-15/combined.png)
231
234
 
232
- LavaVu development is supported by the [Monash Immersive Visualisation Plaform](http://monash.edu.au/mivp) and the Simulation, Analysis & Modelling component of the [NCRIS AuScope](http://www.auscope.org.au/ncris/) capability.
235
+ LavaVu development is supported by [ACCESS-NRI](https://www.access-nri.org.au/).
236
+ Prior development was funded by the Monash Immersive Visualisation Plaform at [Monash eResearch](https://www.monash.edu/researchinfrastructure/eresearch) and the Simulation, Analysis & Modelling component of the [NCRIS AuScope](http://www.auscope.org.au/ncris/) capability.
233
237
 
234
238
  The acronym stands for: lightweight, automatable visualisation and analysis viewing utility, but "lava" is also a reference to its primary application as a viewer for geophysical simulations. It was also chosen to be unique enough to find the repository with google.
235
239
 
236
- The project started in the gLucifer<sup>1</sup> framework for visualising geodynamics simulations. The OpenGL visualisation module was separated from the simulation and sampling libraries and became a more general purpose visualisation tool. gLucifer continues as a set of sampling tools for Underworld simulations as part of the [Underworld2](https://github.com/underworldcode/underworld2/) code. LavaVu provides the rendering library for creating 2d and 3d visualisations to view this sampled data, inline within interactive IPython notebooks and offline through saved visualisation databases and images/movies.
240
+ The project started as a replacement rendering library for the gLucifer<sup>1</sup> framework, visualising geodynamics simulations. The new OpenGL visualisation code was re-implemented as a more general purpose visualisation tool. gLucifer continues as a set of sampling tools for Underworld simulations as part of the [Underworld2](https://github.com/underworldcode/underworld2/) code. LavaVu provides the rendering library for creating 2d and 3d visualisations to view this sampled data, inline within interactive Jupyter notebooks and offline through saved visualisation databases and images/movies.
237
241
 
238
242
  As a standalone tool it is a scriptable 3D visualisation tool capable of producing publication quality high res images and video output from time varying data sets along with HTML5 3D visualisations in WebGL.
239
243
  Rendering features include correctly and efficiently rendering large numbers of opaque and transparent points and surfaces and volume rendering by GPU ray-marching. There are also features for drawing vector fields and tracers (streamlines).
@@ -241,12 +245,11 @@ Rendering features include correctly and efficiently rendering large numbers of
241
245
  Control is via python and a set of simple verbose scripting commands along with mouse/keyboard interaction.
242
246
  GUI components can be generated for use from a web browser via the python "control" module and a built in web server.
243
247
 
248
+ Widgets for interactive use in the Jupyter notebook environment allow use for remote visualisation, eg: on supercomputing environments.
249
+
244
250
  A native data format called GLDB is used to store and visualisations in a compact single file, using SQLite for storage and fast loading. A small number of other data formats are supported for import (OBJ surfaces, TIFF stacks etc).
245
251
  Further data import formats are supported with python scripts, with the numpy interface allowing rapid loading and manipulation of data.
246
252
 
247
- A CAVE2 virtual reality mode is provided by utilising Omegalib (http://github.com/uic-evl/omegalib) to allow use in Virtual Reality and Immersive Visualisation facilities, such as the CAVE2 at Monash, see (https://github.com/mivp/LavaVR).
248
- Side-by-side and quad buffer stereoscopic 3D support is also provided for other 3D displays.
249
-
250
253
  ### This repository ###
251
254
 
252
255
  This is the public source code repository for all development on the project.
@@ -257,13 +260,10 @@ Development happens in the "master" branch with stable releases tagged, so if yo
257
260
  It's now in the python package index, so you can install with *pip*:
258
261
 
259
262
  ```
260
- pip install --user lavavu
263
+ python -m pip install lavavu
261
264
  ```
262
265
 
263
- > If you don't have pip available, you can try `sudo easy_install pip` or just install [Anaconda](https://www.anaconda.com/download), which comes with pip and a whole lot of other useful packages for scientific work with python. Once in anaconda `pip install lavavu` will install the package.
264
-
265
- > Currently no binaries are provided and the installer needs to compile the library, so on Linux you may need some developer tools and headers first, eg: for Ubuntu:
266
- `sudo apt install build-essential libgl1-mesa-dev libx11-dev zlib1g-dev`
266
+ > Currently binary wheels are provided for Linux x86_64, MacOS x86_64 and ARM64 and Windows x86_64.
267
267
 
268
268
  To try it out:
269
269
 
@@ -280,7 +280,12 @@ Alternatively, clone this repository with *git* and build from source:
280
280
  ```
281
281
  git clone https://github.com/lavavu/LavaVu
282
282
  cd LavaVu
283
+ python -m pip install .
284
+ ```
285
+ or
286
+ ```
283
287
  make -j4
288
+
284
289
  ```
285
290
 
286
291
  If all goes well the viewer will be built, try running with:
@@ -289,14 +294,14 @@ If all goes well the viewer will be built, try running with:
289
294
  ### Dependencies ###
290
295
 
291
296
  * OpenGL and Zlib, present on most systems, headers may need to be installed
292
- * To use with python requires python 2.7+ and NumPy
293
- * For video output, requires: libavcodec, libavformat, libavutil, libswscale (from FFmpeg / libav)
297
+ * To use with python requires python 3.6+ and NumPy
298
+ * For video output, requires: PyAV or for built in encoding, libavcodec, libavformat, libavutil, libswscale (from FFmpeg / libav)
294
299
  * To build the python interface from source requires swig (http://www.swig.org/)
295
300
 
296
301
  ### Who do I talk to? ###
297
302
 
298
303
  * Report bugs/issues here on github: https://github.com/lavavu/LavaVu/issues
299
- * Contact developer: Owen Kaluza (at) monash.edu
304
+ * Contact developer: Owen Kaluza (at) anu.edu.au
300
305
 
301
306
  For further documentation / examples, see the online documentation
302
307
  * https://lavavu.github.io/Documentation
@@ -1,5 +1,5 @@
1
1
  lavavu/LavaVuPython.py,sha256=uTyBhkTp-Gcg468mS7EXZWxUU4TVtQ0R6D169CnMUZ0,33768
2
- lavavu/_LavaVuPython.cp312-win_amd64.pyd,sha256=jj_6V7_pJQZaNZ1JJR6Aj_WtGElxZfR5rkWZ4B7h1XA,3120640
2
+ lavavu/_LavaVuPython.cp312-win_amd64.pyd,sha256=Uxe4pToSaWez2S1Y4vERb-tGem8Apa6I9JiiiEWiG8Y,3136000
3
3
  lavavu/__init__.py,sha256=ZOkoA9N5M5swxkeLDlrc9NGFQ1PggLWW4GheseTtq8I,206
4
4
  lavavu/__main__.py,sha256=9L7Rfhb_U9Oqkop7MVJ4fi9XUnx4t2vpajOMKNNVunc,247
5
5
  lavavu/amalgamate.py,sha256=goS8OLot2q400zRMMRoksYkaNyBgRJlrpU1UxSKwLmA,601
@@ -9,12 +9,12 @@ lavavu/avdevice-58.dll,sha256=VgLrv5NWSD4u-hlKHkTE5ciLMUNTxlZljLavR9AlTkQ,276019
9
9
  lavavu/avfilter-7.dll,sha256=cKwN6yDGzmf6XB5HXM1QVV4fc_HfhjAd3dBvV5YVdbk,10957312
10
10
  lavavu/avformat-58.dll,sha256=PB5bD4mq62vBBY8tdagrGaYD2AQjaz3Lgc6wpp0UIr0,11094016
11
11
  lavavu/avutil-56.dll,sha256=VsAhkveudbox9BBMuLEjnJ6yzoyJDoy2SzgPnMgMug0,866304
12
- lavavu/control.py,sha256=AyCg1zJQcKbd_FwtfAn_KiJctEVQ-YRwPPFn6jlopAI,68152
12
+ lavavu/control.py,sha256=tucSLYj9KAD2IJoNbiOrGRSytO0xnlulB-jOnqlpOlk,68486
13
13
  lavavu/convert.py,sha256=3F79LHdsi74pvewvDuvnlYR_Zsh5mCc1QI7XZnQSMN8,36404
14
14
  lavavu/dict.json,sha256=1q3o7wF_siDIwmA2Sw1nh8Y1knlfmWJ64EHki21iWRU,55246
15
15
  lavavu/font.bin,sha256=fvi5zkvmq6gh9v3jXedBVuxNJWKmHtbjECzv6eT9wb4,225360
16
16
  lavavu/glfw3.dll,sha256=zI-Qy4RDHQo4mYYgW4QLREz-WZ5l5HCXJzyksyTy0bY,83456
17
- lavavu/lavavu.py,sha256=GBV1gn62IBa1Kd9eRDFwYkh0fiuvU9fRogNxICerEe8,214242
17
+ lavavu/lavavu.py,sha256=BMQM-1j14wOnjakh30SECYLoWej8kHkVPyIkLR4yeGY,224466
18
18
  lavavu/liblzma.dll,sha256=_n95XbzYpeaXq6wB884fmpf8nqs2Ot9gyxUL_CS2TCI,154624
19
19
  lavavu/points.py,sha256=bp5XFMUHShjeRW7XUNgq8uxj3wjk4EE-qnWEJjAn-uM,6062
20
20
  lavavu/postproc-55.dll,sha256=DwfCHwxbuZiEzRcfbh5aa-5Ax3xIsWkxEN0achBvJPU,133120
@@ -23,7 +23,7 @@ lavavu/server.py,sha256=oYVKr51a5wSedl6n25kvAE8lHEb-EX2tUUk8zDuagaM,12811
23
23
  lavavu/swresample-3.dll,sha256=hlz9EYJ8_DjhqGYcevhIDwM_9qSuZFAxK4MgeAetqE4,433664
24
24
  lavavu/swscale-5.dll,sha256=s1IjI1-IaDVYiY3P9TouwS0OQRCG620yF-kLkKMiz70,552960
25
25
  lavavu/tiff.dll,sha256=fz7vpqGN9PbzO-zgiDnOlSicYj8eJBf3lhp-sY_j6uk,646656
26
- lavavu/tracers.py,sha256=hE9vgbMjZEXhnL_Z5ihlD8BEVTWU7jMnkrmfDwJLGdM,4381
26
+ lavavu/tracers.py,sha256=I58vJP4jNGJEE-nujz3FOTfJCZrMwEmtpczuUVVinwU,8682
27
27
  lavavu/vutils.py,sha256=69Aygnjdz7l8-6PVYHKtOmSNFz9bGSKCv79ZI3MHY6M,5648
28
28
  lavavu/zlib.dll,sha256=4tlDhqlDl2vb-ztXfk8WIhbyfNrMRvtmygwk4s9fRQM,84992
29
29
  lavavu/zstd.dll,sha256=NJIIlGtaKrXDSlaIzizhDVEMxjuccfkSqhgy-DSUN80,491008
@@ -46,22 +46,24 @@ lavavu/html/server.js,sha256=WXuAnY6aE4h8vYs4U2sl4Xq5RjrkuDi-mIgM-x3Nkj0,7325
46
46
  lavavu/html/stats.min.js,sha256=q9kZjkwmWu8F8HV-4m2EfZRJXQBzyibceJoz-tDgB94,1970
47
47
  lavavu/html/styles.css,sha256=8JE8l7zcc0PV8CfOQpfDyhM226-Sq9eDLXvTCe-wSgw,3041
48
48
  lavavu/html/webview-template.html,sha256=E5w7pd91z0WL3244PQxDKMNZorWzoRT5G7wuBHXJc6Y,1573
49
- lavavu/html/webview.html,sha256=9F-wQhoSXW_u1kP0eN_VeDy_tYpJDZrZ5hYJ20LRmtY,1565
50
- lavavu/shaders/default.frag,sha256=AlGMo01JdaOsXx6Gq7s1WADi2b-vyX9XMSB91AcJvuA,278
51
- lavavu/shaders/default.vert,sha256=SKC2BkE2axNjJL2j5QYjU2bj6mMXs8Wq02XgMTiOeFo,334
52
- lavavu/shaders/fontShader.frag,sha256=0GGFFg6S4v0p_1gDTIATDmc19jrCl7xIgH9PpxcXEcE,469
49
+ lavavu/html/webview.html,sha256=3ETCQYGZ8rpSTfE4rIlGQr4E9jRqCbFaSzZ8HJAYtJo,1564
50
+ lavavu/osmesa/LavaVuPython.py,sha256=uTyBhkTp-Gcg468mS7EXZWxUU4TVtQ0R6D169CnMUZ0,33768
51
+ lavavu/osmesa/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
52
+ lavavu/shaders/default.frag,sha256=SHdqowe24zRNKnffZX7XilwD_I0NhVx9_rR04YJlLTE,194
53
+ lavavu/shaders/default.vert,sha256=I3K_YYirw2UaIMj_l-8QD7wdkQeXHN8xNNvIWs6Vnvo,369
54
+ lavavu/shaders/fontShader.frag,sha256=c3U05-GMI5zd2jpQqi7w-D2nHWkVdGI-IXMncJxgVvM,371
53
55
  lavavu/shaders/fontShader.vert,sha256=4C1G47_G_8dNaoARI9hWyftTbGQ3lQnc4dx0u7Q2j-k,308
54
- lavavu/shaders/lineShader.frag,sha256=lK_fAYSim-xrgpqQ9ZI6bQ-unXs_xq8BDEFuh1hKzRg,988
55
- lavavu/shaders/lineShader.vert,sha256=OP_hi3TSUuDkmqEiQKLsKqE_XBHOl5xGQS7iBSV9Rfw,550
56
- lavavu/shaders/pointShader.frag,sha256=2DfYQhhM-b38xaBjUMCAzhIrOGWmqpcyzKUpMCq3qSc,3516
57
- lavavu/shaders/pointShader.vert,sha256=YJMQ35fq4sK_wUwjmkti_awjhKLqGKrbs07gAgiT-N8,1292
58
- lavavu/shaders/triShader.frag,sha256=eVGp_ttGMVgKnDYRwByvx_PN80EYiSz61jeuAD8JJvw,5177
59
- lavavu/shaders/triShader.vert,sha256=tzgJjqbhKDgVngUJvMVL1ehYvwxAMFLQ-WtKEYU3in0,1175
60
- lavavu/shaders/volumeShader.frag,sha256=PLTei6fN_uLxPD35LHbBQVe_S7TanxdBqcW5khslQMI,16583
56
+ lavavu/shaders/lineShader.frag,sha256=CgXGNR7B_Uq-yZQiyOXQEvEzwdqxkyxXEStvU1ptgNg,927
57
+ lavavu/shaders/lineShader.vert,sha256=KpeKdUKStdL3_6WG9H4rCYU3oQ6qY1vWbhTaZnCb_FQ,527
58
+ lavavu/shaders/pointShader.frag,sha256=ua2SDQMU6b9and4aM17TGqLtyEW4FhoqbQNPo41v3AY,3418
59
+ lavavu/shaders/pointShader.vert,sha256=Mbit_gPM2jKiePIgpl2eRLiaY4brSIQ2WTDiJDMabZw,1213
60
+ lavavu/shaders/triShader.frag,sha256=6VhNYBN5encmiE6jM-Y_titqCteTnL4AcefGprVDqxM,4754
61
+ lavavu/shaders/triShader.vert,sha256=haljW2eQwyB24QWR1SURspU1z6ndskdZG7mrILfgXzo,1129
62
+ lavavu/shaders/volumeShader.frag,sha256=6NeP_bgEl0SNOAjMxOWORhU62-TA9KyveDZ93mVtkKE,14594
61
63
  lavavu/shaders/volumeShader.vert,sha256=CroiEfEIe7pP66w14KwmKxfbTuKN6EuXYbZJvt_bfHk,83
62
- lavavu-1.8.84.dist-info/LICENSE.md,sha256=zHOh_qOPkfR76vdrTRP7J-BqPieAIWVDTl2ZP0SN6lQ,8782
63
- lavavu-1.8.84.dist-info/METADATA,sha256=AJGc4e_tLRCUz0jmFTyFKolg_MZ5cRdN3AuepnWh0_Y,18555
64
- lavavu-1.8.84.dist-info/WHEEL,sha256=bkFTgQblV2VuwaX_c6St1wl4KjbN5AW_if3TQfQ0fhI,101
65
- lavavu-1.8.84.dist-info/entry_points.txt,sha256=LC2qXR6EMe45Cb7zGAF99R9HFrAECP6Qkp_YuG6HZB0,44
66
- lavavu-1.8.84.dist-info/top_level.txt,sha256=JptS0k1nlBumjLs_0hITr3_XUJhxqvKBXD2jGho3E3A,7
67
- lavavu-1.8.84.dist-info/RECORD,,
64
+ lavavu-1.9.5.dist-info/licenses/LICENSE.md,sha256=zHOh_qOPkfR76vdrTRP7J-BqPieAIWVDTl2ZP0SN6lQ,8782
65
+ lavavu-1.9.5.dist-info/METADATA,sha256=-TaXvLzsFVh9cmylCSW73maqGMH0QQPzxKIPlhuiFu8,18200
66
+ lavavu-1.9.5.dist-info/WHEEL,sha256=ovhA9_Ei_7ok2fAych90j-feDV4goiAxbO7REePtvw0,101
67
+ lavavu-1.9.5.dist-info/entry_points.txt,sha256=LC2qXR6EMe45Cb7zGAF99R9HFrAECP6Qkp_YuG6HZB0,44
68
+ lavavu-1.9.5.dist-info/top_level.txt,sha256=JptS0k1nlBumjLs_0hITr3_XUJhxqvKBXD2jGho3E3A,7
69
+ lavavu-1.9.5.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.3.0)
2
+ Generator: setuptools (78.1.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp312-cp312-win_amd64
5
5