lattice-sub 1.1.4__py3-none-any.whl → 1.3.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {lattice_sub-1.1.4.dist-info → lattice_sub-1.3.0.dist-info}/METADATA +84 -2
- lattice_sub-1.3.0.dist-info/RECORD +17 -0
- {lattice_sub-1.1.4.dist-info → lattice_sub-1.3.0.dist-info}/WHEEL +1 -1
- lattice_subtraction/__init__.py +1 -1
- lattice_subtraction/batch.py +259 -8
- lattice_subtraction/cli.py +15 -2
- lattice_subtraction/config.py +7 -0
- lattice_subtraction/core.py +14 -4
- lattice_subtraction/visualization.py +178 -9
- lattice_sub-1.1.4.dist-info/RECORD +0 -17
- {lattice_sub-1.1.4.dist-info → lattice_sub-1.3.0.dist-info}/entry_points.txt +0 -0
- {lattice_sub-1.1.4.dist-info → lattice_sub-1.3.0.dist-info}/licenses/LICENSE +0 -0
- {lattice_sub-1.1.4.dist-info → lattice_sub-1.3.0.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: lattice-sub
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.3.0
|
|
4
4
|
Summary: Lattice subtraction for cryo-EM micrographs - removes periodic crystal signals to reveal non-periodic features
|
|
5
5
|
Author-email: George Stephenson <george.stephenson@colorado.edu>, Vignesh Kasinath <vignesh.kasinath@colorado.edu>
|
|
6
6
|
License: MIT
|
|
@@ -94,7 +94,17 @@ lattice-sub batch input_folder/ output_folder/ --pixel-size 0.56
|
|
|
94
94
|
lattice-sub batch input_folder/ output_folder/ --pixel-size 0.56 --vis comparisons/
|
|
95
95
|
```
|
|
96
96
|
|
|
97
|
-
This creates
|
|
97
|
+
This creates 4-panel PNG comparison images for each micrograph showing:
|
|
98
|
+
1. **Original** - Input micrograph
|
|
99
|
+
2. **Subtracted** - Lattice-removed result
|
|
100
|
+
3. **Difference** - What was removed (5x amplified)
|
|
101
|
+
4. **Threshold Curve** - Threshold vs lattice removal efficacy
|
|
102
|
+
|
|
103
|
+
**Limit the number of visualizations:**
|
|
104
|
+
```bash
|
|
105
|
+
# Generate visualizations for first 10 images only
|
|
106
|
+
lattice-sub batch input_folder/ output_folder/ -p 0.56 --vis comparisons/ -n 10
|
|
107
|
+
```
|
|
98
108
|
|
|
99
109
|
---
|
|
100
110
|
|
|
@@ -105,6 +115,8 @@ This creates side-by-side PNG images showing before/after/difference for each mi
|
|
|
105
115
|
| `-p, --pixel-size` | **Required.** Pixel size in Ångstroms |
|
|
106
116
|
| `-o, --output` | Output file path (default: `sub_<input>`) |
|
|
107
117
|
| `-t, --threshold` | Peak detection sensitivity (default: **auto** - optimized per image) |
|
|
118
|
+
| `--vis DIR` | Generate 4-panel comparison PNGs in DIR |
|
|
119
|
+
| `-n, --num-vis N` | Limit visualizations to first N images |
|
|
108
120
|
| `--cpu` | Force CPU processing (GPU is used by default) |
|
|
109
121
|
| `-q, --quiet` | Hide the banner and progress messages |
|
|
110
122
|
| `-v, --verbose` | Show detailed processing information |
|
|
@@ -172,6 +184,76 @@ python -c "import torch; print(torch.cuda.get_device_name(0) if torch.cuda.is_av
|
|
|
172
184
|
|
|
173
185
|
---
|
|
174
186
|
|
|
187
|
+
## Multi-GPU Support
|
|
188
|
+
|
|
189
|
+
When processing batches on systems with multiple GPUs, files are automatically distributed across all available GPUs for faster processing. No extra flags needed!
|
|
190
|
+
|
|
191
|
+
```bash
|
|
192
|
+
# Automatically uses all available GPUs
|
|
193
|
+
lattice-sub batch input_folder/ output_folder/ -p 0.56
|
|
194
|
+
```
|
|
195
|
+
|
|
196
|
+
**Example with 2 GPUs and 100 images:**
|
|
197
|
+
- GPU 0: processes images 1-50
|
|
198
|
+
- GPU 1: processes images 51-100
|
|
199
|
+
- Single progress bar shows combined progress
|
|
200
|
+
|
|
201
|
+
This provides near-linear speedup with additional GPUs.
|
|
202
|
+
|
|
203
|
+
---
|
|
204
|
+
|
|
205
|
+
## HPC Example (CU Boulder Alpine)
|
|
206
|
+
|
|
207
|
+
Using [Open OnDemand Core Desktop](https://curc.readthedocs.io/en/latest/open_ondemand/core_desktop.html) with 2× RTX 8000 GPUs:
|
|
208
|
+
|
|
209
|
+
```bash
|
|
210
|
+
# Create environment
|
|
211
|
+
module load anaconda
|
|
212
|
+
conda create -n lattice_test python=3.11 -y
|
|
213
|
+
conda activate lattice_test
|
|
214
|
+
pip install lattice-sub
|
|
215
|
+
|
|
216
|
+
# Process 100 micrographs
|
|
217
|
+
lattice-sub batch input/ output/ -p 0.56
|
|
218
|
+
```
|
|
219
|
+
|
|
220
|
+
**Output:**
|
|
221
|
+
```
|
|
222
|
+
Phase-preserving FFT inpainting for cryo-EM | v1.3.0
|
|
223
|
+
|
|
224
|
+
Configuration
|
|
225
|
+
-------------
|
|
226
|
+
Pixel size: 0.56 A
|
|
227
|
+
Threshold: auto
|
|
228
|
+
Backend: Auto → GPU (Quadro RTX 8000)
|
|
229
|
+
|
|
230
|
+
Batch Processing
|
|
231
|
+
----------------
|
|
232
|
+
Files: 100
|
|
233
|
+
Output: /projects/user/output
|
|
234
|
+
Workers: 1
|
|
235
|
+
|
|
236
|
+
✓ Using 2 GPUs: GPU 0, GPU 1
|
|
237
|
+
|
|
238
|
+
✓ GPU 0: Quadro RTX 8000
|
|
239
|
+
✓ GPU 1: Quadro RTX 8000
|
|
240
|
+
|
|
241
|
+
Processing: 100%|█████████████████████████| 100/100 [05:12<00:00, 3.13s/file]
|
|
242
|
+
|
|
243
|
+
[OK] Batch complete (312.9s)
|
|
244
|
+
```
|
|
245
|
+
|
|
246
|
+
**100 images processed in ~5 minutes** with automatic multi-GPU distribution.
|
|
247
|
+
|
|
248
|
+
For compute-focused workloads, use Alpine's [GPU partitions](https://curc.readthedocs.io/en/latest/clusters/alpine/alpine-hardware.html) (A100, L40, MI100):
|
|
249
|
+
|
|
250
|
+
```bash
|
|
251
|
+
# Request 3 GPUs for 1 hour
|
|
252
|
+
sinteractive --partition=aa100 --gres=gpu:3 --ntasks=16 --nodes=1 --time=01:00:00 --qos=normal
|
|
253
|
+
```
|
|
254
|
+
|
|
255
|
+
---
|
|
256
|
+
|
|
175
257
|
## Python API
|
|
176
258
|
|
|
177
259
|
```python
|
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
lattice_sub-1.3.0.dist-info/licenses/LICENSE,sha256=2kPoH0cbEp0cVEGqMpyF2IQX1npxdtQmWJB__HIRSb0,1101
|
|
2
|
+
lattice_subtraction/__init__.py,sha256=TNaJXvSgCQdvYUYJfS5scn92YjORiGfLot9WadZ8u28,1737
|
|
3
|
+
lattice_subtraction/batch.py,sha256=zJzvUnr8dznvxE8jaPKDLJ7AcJg8Cbfv5nVo0FzZz1I,20891
|
|
4
|
+
lattice_subtraction/cli.py,sha256=W99XQClUMKaaFQxle0W-ILQ6UuYRFXZVJWD4qXpcIj4,24063
|
|
5
|
+
lattice_subtraction/config.py,sha256=uzwKb5Zi3phHUk2ZgoiLsQdwFdN-rTiY8n02U91SObc,8426
|
|
6
|
+
lattice_subtraction/core.py,sha256=VzcecSZHRuBuHUc2jHGv8LalINL75RH0aTpABI708y8,16265
|
|
7
|
+
lattice_subtraction/io.py,sha256=uHku6rJ0jeCph7w-gOIDJx-xpNoF6PZcLfb5TBTOiw0,4594
|
|
8
|
+
lattice_subtraction/masks.py,sha256=HIamrACmbQDkaCV4kXhnjMDSwIig4OtQFLig9A8PMO8,11741
|
|
9
|
+
lattice_subtraction/processing.py,sha256=tmnj5K4Z9HCQhRpJ-iMd9Bj_uTRuvDEWyUenh8MCWEM,8341
|
|
10
|
+
lattice_subtraction/threshold_optimizer.py,sha256=yEsGM_zt6YjgEulEZqtRy113xOFB69aHJIETm2xSS6k,15398
|
|
11
|
+
lattice_subtraction/ui.py,sha256=Sp_a-yNmBRZJxll8h9T_H5-_KsI13zGYmHcbcpVpbR8,9176
|
|
12
|
+
lattice_subtraction/visualization.py,sha256=hWFz49NBBrS7d6ofO0VyJ6-v8Q6hPG1dijbDtecMOQs,11890
|
|
13
|
+
lattice_sub-1.3.0.dist-info/METADATA,sha256=pKwt8TcftbZGm1gvWZGO1n3iQiI4JB3E_ix3InB-4D0,14901
|
|
14
|
+
lattice_sub-1.3.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
15
|
+
lattice_sub-1.3.0.dist-info/entry_points.txt,sha256=o8PzJR8kFnXlKZufoYGBIHpiosM-P4PZeKZXJjtPS6Y,61
|
|
16
|
+
lattice_sub-1.3.0.dist-info/top_level.txt,sha256=BOuW-sm4G-fQtsWPRdeLzWn0WS8sDYVNKIMj5I3JXew,20
|
|
17
|
+
lattice_sub-1.3.0.dist-info/RECORD,,
|
lattice_subtraction/__init__.py
CHANGED
lattice_subtraction/batch.py
CHANGED
|
@@ -1,12 +1,14 @@
|
|
|
1
1
|
"""
|
|
2
2
|
Batch processing for multiple micrographs.
|
|
3
3
|
|
|
4
|
-
This module provides parallel processing capabilities for large datasets
|
|
4
|
+
This module provides parallel processing capabilities for large datasets,
|
|
5
|
+
including automatic multi-GPU support for systems with multiple CUDA devices.
|
|
5
6
|
"""
|
|
6
7
|
|
|
7
8
|
import os
|
|
9
|
+
import multiprocessing as mp
|
|
8
10
|
from concurrent.futures import ProcessPoolExecutor, as_completed
|
|
9
|
-
from dataclasses import dataclass
|
|
11
|
+
from dataclasses import dataclass, asdict
|
|
10
12
|
from pathlib import Path
|
|
11
13
|
from typing import List, Tuple, Optional, Callable
|
|
12
14
|
import logging
|
|
@@ -63,6 +65,91 @@ def _process_single_file(args: tuple) -> Tuple[Path, Optional[str]]:
|
|
|
63
65
|
return (Path(input_path), str(e))
|
|
64
66
|
|
|
65
67
|
|
|
68
|
+
def _gpu_worker(
|
|
69
|
+
gpu_id: int,
|
|
70
|
+
file_pairs: List[Tuple[str, str]],
|
|
71
|
+
config_dict: dict,
|
|
72
|
+
progress_queue: mp.Queue,
|
|
73
|
+
error_queue: mp.Queue,
|
|
74
|
+
):
|
|
75
|
+
"""
|
|
76
|
+
Worker function for multi-GPU processing.
|
|
77
|
+
|
|
78
|
+
Each worker processes its assigned files on a specific GPU and reports
|
|
79
|
+
progress through a shared queue.
|
|
80
|
+
|
|
81
|
+
Args:
|
|
82
|
+
gpu_id: CUDA device ID to use
|
|
83
|
+
file_pairs: List of (input_path, output_path) tuples
|
|
84
|
+
config_dict: Configuration dictionary
|
|
85
|
+
progress_queue: Queue to report progress (sends 1 for each completed file)
|
|
86
|
+
error_queue: Queue to report errors (sends (gpu_id, file_path, error_msg))
|
|
87
|
+
"""
|
|
88
|
+
import torch
|
|
89
|
+
|
|
90
|
+
# Set this process to use the specific GPU
|
|
91
|
+
torch.cuda.set_device(gpu_id)
|
|
92
|
+
|
|
93
|
+
# Reconstruct config with the specific device_id and quiet mode
|
|
94
|
+
config_dict = config_dict.copy()
|
|
95
|
+
config_dict['device_id'] = gpu_id
|
|
96
|
+
config_dict['_quiet'] = True # Suppress messages - main process handles this
|
|
97
|
+
config = Config(**config_dict)
|
|
98
|
+
|
|
99
|
+
# Create subtractor (messages suppressed via _quiet flag)
|
|
100
|
+
subtractor = LatticeSubtractor(config)
|
|
101
|
+
|
|
102
|
+
for input_path, output_path in file_pairs:
|
|
103
|
+
try:
|
|
104
|
+
result = subtractor.process(input_path)
|
|
105
|
+
result.save(output_path, pixel_size=config.pixel_ang)
|
|
106
|
+
progress_queue.put(1)
|
|
107
|
+
except Exception as e:
|
|
108
|
+
error_queue.put((gpu_id, input_path, str(e)))
|
|
109
|
+
return # Fail-fast: exit on first error
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
def _check_gpu_memory(device_id: int, image_shape: Tuple[int, int]) -> Tuple[bool, str]:
|
|
113
|
+
"""
|
|
114
|
+
Check if GPU has sufficient memory for processing.
|
|
115
|
+
|
|
116
|
+
Args:
|
|
117
|
+
device_id: CUDA device ID
|
|
118
|
+
image_shape: (height, width) of image
|
|
119
|
+
|
|
120
|
+
Returns:
|
|
121
|
+
(is_ok, message) - True if sufficient memory, False with warning message
|
|
122
|
+
"""
|
|
123
|
+
try:
|
|
124
|
+
import torch
|
|
125
|
+
free_mem, total_mem = torch.cuda.mem_get_info(device_id)
|
|
126
|
+
|
|
127
|
+
# Estimate memory needed: image + FFT (complex) + masks + overhead
|
|
128
|
+
# Roughly 16x image size for safe margin (complex FFT, intermediate buffers)
|
|
129
|
+
image_bytes = image_shape[0] * image_shape[1] * 4 # float32
|
|
130
|
+
estimated_need = image_bytes * 16
|
|
131
|
+
|
|
132
|
+
if free_mem < estimated_need:
|
|
133
|
+
return False, (
|
|
134
|
+
f"GPU {device_id}: {free_mem / 1e9:.1f}GB free, "
|
|
135
|
+
f"need ~{estimated_need / 1e9:.1f}GB"
|
|
136
|
+
)
|
|
137
|
+
return True, ""
|
|
138
|
+
except Exception as e:
|
|
139
|
+
return True, "" # If we can't check, proceed anyway
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
def _get_available_gpus() -> List[int]:
|
|
143
|
+
"""Get list of available CUDA GPU device IDs."""
|
|
144
|
+
try:
|
|
145
|
+
import torch
|
|
146
|
+
if torch.cuda.is_available():
|
|
147
|
+
return list(range(torch.cuda.device_count()))
|
|
148
|
+
return []
|
|
149
|
+
except ImportError:
|
|
150
|
+
return []
|
|
151
|
+
|
|
152
|
+
|
|
66
153
|
class BatchProcessor:
|
|
67
154
|
"""
|
|
68
155
|
Parallel batch processor for micrograph datasets.
|
|
@@ -157,6 +244,9 @@ class BatchProcessor:
|
|
|
157
244
|
"""
|
|
158
245
|
Process a list of input/output file pairs.
|
|
159
246
|
|
|
247
|
+
Automatically uses multi-GPU processing when multiple GPUs are available.
|
|
248
|
+
Files are distributed evenly across GPUs in chunks.
|
|
249
|
+
|
|
160
250
|
Args:
|
|
161
251
|
file_pairs: List of (input_path, output_path) tuples
|
|
162
252
|
show_progress: If True, show progress bar
|
|
@@ -168,8 +258,7 @@ class BatchProcessor:
|
|
|
168
258
|
successful = 0
|
|
169
259
|
failed_files = []
|
|
170
260
|
|
|
171
|
-
# Check if using GPU - if so,
|
|
172
|
-
# With "auto" backend, check if PyTorch + CUDA is actually available
|
|
261
|
+
# Check if using GPU - if so, check for multi-GPU capability
|
|
173
262
|
use_gpu = self.config.backend == "pytorch"
|
|
174
263
|
if self.config.backend == "auto":
|
|
175
264
|
try:
|
|
@@ -179,10 +268,19 @@ class BatchProcessor:
|
|
|
179
268
|
use_gpu = False
|
|
180
269
|
|
|
181
270
|
if use_gpu:
|
|
182
|
-
#
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
)
|
|
271
|
+
# Check how many GPUs are available
|
|
272
|
+
available_gpus = _get_available_gpus()
|
|
273
|
+
|
|
274
|
+
if len(available_gpus) > 1 and total > 1:
|
|
275
|
+
# Multi-GPU processing
|
|
276
|
+
successful, failed_files = self._process_multi_gpu(
|
|
277
|
+
file_pairs, available_gpus, show_progress
|
|
278
|
+
)
|
|
279
|
+
else:
|
|
280
|
+
# Single GPU - sequential processing
|
|
281
|
+
successful, failed_files = self._process_sequential(
|
|
282
|
+
file_pairs, show_progress
|
|
283
|
+
)
|
|
186
284
|
else:
|
|
187
285
|
# Parallel processing for CPU
|
|
188
286
|
successful, failed_files = self._process_parallel(
|
|
@@ -284,6 +382,159 @@ class BatchProcessor:
|
|
|
284
382
|
|
|
285
383
|
return successful, failed_files
|
|
286
384
|
|
|
385
|
+
def _process_multi_gpu(
|
|
386
|
+
self,
|
|
387
|
+
file_pairs: List[Tuple[Path, Path]],
|
|
388
|
+
gpu_ids: List[int],
|
|
389
|
+
show_progress: bool = True,
|
|
390
|
+
) -> Tuple[int, List[Tuple[Path, str]]]:
|
|
391
|
+
"""
|
|
392
|
+
Process files in parallel across multiple GPUs.
|
|
393
|
+
|
|
394
|
+
Files are distributed evenly across GPUs in chunks.
|
|
395
|
+
Uses spawn-based multiprocessing to avoid CUDA fork issues.
|
|
396
|
+
|
|
397
|
+
Args:
|
|
398
|
+
file_pairs: List of (input_path, output_path) tuples
|
|
399
|
+
gpu_ids: List of CUDA device IDs to use
|
|
400
|
+
show_progress: If True, show unified progress bar
|
|
401
|
+
|
|
402
|
+
Returns:
|
|
403
|
+
(successful_count, failed_files_list)
|
|
404
|
+
"""
|
|
405
|
+
import time
|
|
406
|
+
|
|
407
|
+
total = len(file_pairs)
|
|
408
|
+
num_gpus = len(gpu_ids)
|
|
409
|
+
|
|
410
|
+
# Print multi-GPU info with GPU names
|
|
411
|
+
try:
|
|
412
|
+
import torch
|
|
413
|
+
gpu_names = [torch.cuda.get_device_name(i) for i in gpu_ids]
|
|
414
|
+
print(f"✓ Using {num_gpus} GPUs: {', '.join(f'GPU {i}' for i in gpu_ids)}")
|
|
415
|
+
print("")
|
|
416
|
+
for i, name in zip(gpu_ids, gpu_names):
|
|
417
|
+
print(f" ✓ GPU {i}: {name}")
|
|
418
|
+
except Exception:
|
|
419
|
+
print(f"✓ Using {num_gpus} GPUs")
|
|
420
|
+
|
|
421
|
+
# Check GPU memory on first GPU (assume similar for all)
|
|
422
|
+
if file_pairs:
|
|
423
|
+
try:
|
|
424
|
+
sample_image = read_mrc(file_pairs[0][0])
|
|
425
|
+
is_ok, msg = _check_gpu_memory(gpu_ids[0], sample_image.shape)
|
|
426
|
+
if not is_ok:
|
|
427
|
+
print(f"⚠ Memory warning: {msg}")
|
|
428
|
+
except Exception:
|
|
429
|
+
pass # Proceed anyway
|
|
430
|
+
|
|
431
|
+
# Distribute files evenly across GPUs (chunked distribution)
|
|
432
|
+
chunk_size = (total + num_gpus - 1) // num_gpus # Ceiling division
|
|
433
|
+
gpu_file_assignments = []
|
|
434
|
+
|
|
435
|
+
for i, gpu_id in enumerate(gpu_ids):
|
|
436
|
+
start_idx = i * chunk_size
|
|
437
|
+
end_idx = min(start_idx + chunk_size, total)
|
|
438
|
+
if start_idx < total:
|
|
439
|
+
chunk = [(str(inp), str(out)) for inp, out in file_pairs[start_idx:end_idx]]
|
|
440
|
+
gpu_file_assignments.append((gpu_id, chunk))
|
|
441
|
+
|
|
442
|
+
# Create shared queues for progress and errors
|
|
443
|
+
# Use 'spawn' context to avoid CUDA fork issues
|
|
444
|
+
ctx = mp.get_context('spawn')
|
|
445
|
+
progress_queue = ctx.Queue()
|
|
446
|
+
error_queue = ctx.Queue()
|
|
447
|
+
|
|
448
|
+
# Create progress bar (after all GPU info printed)
|
|
449
|
+
if show_progress:
|
|
450
|
+
print() # Blank line for visual separation
|
|
451
|
+
pbar = tqdm(
|
|
452
|
+
total=total,
|
|
453
|
+
desc=" Processing",
|
|
454
|
+
unit="file",
|
|
455
|
+
ncols=80,
|
|
456
|
+
leave=True,
|
|
457
|
+
)
|
|
458
|
+
else:
|
|
459
|
+
pbar = None
|
|
460
|
+
|
|
461
|
+
# Start worker processes
|
|
462
|
+
processes = []
|
|
463
|
+
for gpu_id, file_chunk in gpu_file_assignments:
|
|
464
|
+
p = ctx.Process(
|
|
465
|
+
target=_gpu_worker,
|
|
466
|
+
args=(gpu_id, file_chunk, self._config_dict, progress_queue, error_queue),
|
|
467
|
+
)
|
|
468
|
+
p.start()
|
|
469
|
+
processes.append(p)
|
|
470
|
+
|
|
471
|
+
# Monitor progress and check for errors
|
|
472
|
+
successful = 0
|
|
473
|
+
failed_files = []
|
|
474
|
+
completed = 0
|
|
475
|
+
|
|
476
|
+
while completed < total:
|
|
477
|
+
# Check for progress updates (non-blocking with timeout)
|
|
478
|
+
try:
|
|
479
|
+
while True:
|
|
480
|
+
progress_queue.get(timeout=0.1)
|
|
481
|
+
successful += 1
|
|
482
|
+
completed += 1
|
|
483
|
+
if pbar:
|
|
484
|
+
pbar.update(1)
|
|
485
|
+
except:
|
|
486
|
+
pass # Queue empty, continue
|
|
487
|
+
|
|
488
|
+
# Check for errors (non-blocking)
|
|
489
|
+
try:
|
|
490
|
+
while True:
|
|
491
|
+
gpu_id, file_path, error_msg = error_queue.get_nowait()
|
|
492
|
+
failed_files.append((Path(file_path), error_msg))
|
|
493
|
+
completed += 1
|
|
494
|
+
if pbar:
|
|
495
|
+
pbar.update(1)
|
|
496
|
+
|
|
497
|
+
# Fail-fast: terminate all workers and report
|
|
498
|
+
print(f"\n✗ GPU {gpu_id} failed on {Path(file_path).name}: {error_msg}")
|
|
499
|
+
print(f"\nTip: Try a different configuration:")
|
|
500
|
+
print(f" lattice-sub batch <input> <output> -p {self.config.pixel_ang} --cpu -j 8")
|
|
501
|
+
|
|
502
|
+
# Terminate all processes
|
|
503
|
+
for p in processes:
|
|
504
|
+
if p.is_alive():
|
|
505
|
+
p.terminate()
|
|
506
|
+
|
|
507
|
+
if pbar:
|
|
508
|
+
pbar.close()
|
|
509
|
+
|
|
510
|
+
return successful, failed_files
|
|
511
|
+
except:
|
|
512
|
+
pass # No errors, continue
|
|
513
|
+
|
|
514
|
+
# Check if all processes have finished
|
|
515
|
+
all_done = all(not p.is_alive() for p in processes)
|
|
516
|
+
if all_done:
|
|
517
|
+
# Drain remaining queue items
|
|
518
|
+
try:
|
|
519
|
+
while True:
|
|
520
|
+
progress_queue.get_nowait()
|
|
521
|
+
successful += 1
|
|
522
|
+
completed += 1
|
|
523
|
+
if pbar:
|
|
524
|
+
pbar.update(1)
|
|
525
|
+
except:
|
|
526
|
+
pass
|
|
527
|
+
break
|
|
528
|
+
|
|
529
|
+
# Wait for all processes to finish
|
|
530
|
+
for p in processes:
|
|
531
|
+
p.join(timeout=1.0)
|
|
532
|
+
|
|
533
|
+
if pbar:
|
|
534
|
+
pbar.close()
|
|
535
|
+
|
|
536
|
+
return successful, failed_files
|
|
537
|
+
|
|
287
538
|
def process_numbered_sequence(
|
|
288
539
|
self,
|
|
289
540
|
input_pattern: str,
|
lattice_subtraction/cli.py
CHANGED
|
@@ -153,9 +153,12 @@ def main():
|
|
|
153
153
|
# Batch process directory (GPU handles parallelism)
|
|
154
154
|
lattice-sub batch input_dir/ output_dir/ --pixel-size 0.56
|
|
155
155
|
|
|
156
|
-
# Batch with visualizations
|
|
156
|
+
# Batch with visualizations (4-panel with threshold curve)
|
|
157
157
|
lattice-sub batch input_dir/ output_dir/ -p 0.56 --vis viz_dir/
|
|
158
158
|
|
|
159
|
+
# Batch with limited visualizations (only first 10)
|
|
160
|
+
lattice-sub batch input_dir/ output_dir/ -p 0.56 --vis viz_dir/ -n 10
|
|
161
|
+
|
|
159
162
|
# CPU batch with parallel workers (use -j only with --cpu)
|
|
160
163
|
lattice-sub batch input_dir/ output_dir/ -p 0.56 --cpu -j 8
|
|
161
164
|
|
|
@@ -502,6 +505,12 @@ def process(
|
|
|
502
505
|
default=None,
|
|
503
506
|
help="Generate comparison visualizations in this directory",
|
|
504
507
|
)
|
|
508
|
+
@click.option(
|
|
509
|
+
"-n", "--num-vis",
|
|
510
|
+
type=int,
|
|
511
|
+
default=None,
|
|
512
|
+
help="Number of visualizations to generate (default: all)",
|
|
513
|
+
)
|
|
505
514
|
@click.option(
|
|
506
515
|
"-v", "--verbose",
|
|
507
516
|
is_flag=True,
|
|
@@ -528,6 +537,7 @@ def batch(
|
|
|
528
537
|
config: Optional[str],
|
|
529
538
|
recursive: bool,
|
|
530
539
|
vis: Optional[str],
|
|
540
|
+
num_vis: Optional[int],
|
|
531
541
|
verbose: bool,
|
|
532
542
|
quiet: bool,
|
|
533
543
|
cpu: bool,
|
|
@@ -617,7 +627,8 @@ def batch(
|
|
|
617
627
|
|
|
618
628
|
# Generate visualizations if requested
|
|
619
629
|
if vis:
|
|
620
|
-
|
|
630
|
+
limit_msg = f" (limit: {num_vis})" if num_vis else ""
|
|
631
|
+
logger.info(f"Generating visualizations in: {vis}{limit_msg}")
|
|
621
632
|
viz_success, viz_total = generate_visualizations(
|
|
622
633
|
input_dir=input_dir,
|
|
623
634
|
output_dir=output_dir,
|
|
@@ -625,6 +636,8 @@ def batch(
|
|
|
625
636
|
prefix=prefix,
|
|
626
637
|
pattern=pattern,
|
|
627
638
|
show_progress=True,
|
|
639
|
+
limit=num_vis,
|
|
640
|
+
config=cfg,
|
|
628
641
|
)
|
|
629
642
|
logger.info(f"Visualizations: {viz_success}/{viz_total} created")
|
|
630
643
|
|
lattice_subtraction/config.py
CHANGED
|
@@ -64,6 +64,13 @@ class Config:
|
|
|
64
64
|
# Enabled by default when GPU is available
|
|
65
65
|
use_kornia: bool = True
|
|
66
66
|
|
|
67
|
+
# GPU device ID for multi-GPU support. None = auto-select (GPU 0 for single-GPU mode)
|
|
68
|
+
# When using multi-GPU batch processing, this is set automatically per worker
|
|
69
|
+
device_id: Optional[int] = None
|
|
70
|
+
|
|
71
|
+
# Internal flag to suppress status messages (used by batch workers)
|
|
72
|
+
_quiet: bool = False
|
|
73
|
+
|
|
67
74
|
def __post_init__(self):
|
|
68
75
|
"""Validate and set auto-calculated parameters."""
|
|
69
76
|
if self.pixel_ang <= 0:
|
lattice_subtraction/core.py
CHANGED
|
@@ -83,21 +83,31 @@ class LatticeSubtractor:
|
|
|
83
83
|
|
|
84
84
|
Auto mode tries PyTorch+CUDA first, then PyTorch CPU, then NumPy.
|
|
85
85
|
Prints user-friendly status message about which backend is active.
|
|
86
|
+
|
|
87
|
+
Uses config.device_id if specified for multi-GPU support.
|
|
86
88
|
"""
|
|
87
89
|
backend = self.config.backend
|
|
88
90
|
self._gpu_message_shown = getattr(self, '_gpu_message_shown', False)
|
|
89
91
|
|
|
92
|
+
# Check if quiet mode (suppress messages for batch workers)
|
|
93
|
+
quiet = getattr(self.config, '_quiet', False)
|
|
94
|
+
if quiet:
|
|
95
|
+
self._gpu_message_shown = True
|
|
96
|
+
|
|
97
|
+
# Get device ID from config (None means auto-select GPU 0)
|
|
98
|
+
device_id = self.config.device_id if self.config.device_id is not None else 0
|
|
99
|
+
|
|
90
100
|
# Auto mode: try GPU first, then CPU
|
|
91
101
|
if backend == "auto":
|
|
92
102
|
try:
|
|
93
103
|
import torch
|
|
94
104
|
if torch.cuda.is_available():
|
|
95
|
-
self.device = torch.device('cuda')
|
|
105
|
+
self.device = torch.device(f'cuda:{device_id}')
|
|
96
106
|
self.use_gpu = True
|
|
97
107
|
# Only print once per session (batch processing reuses subtractor)
|
|
98
108
|
if not self._gpu_message_shown:
|
|
99
|
-
gpu_name = torch.cuda.get_device_name(
|
|
100
|
-
print(f"✓ Using GPU: {gpu_name}")
|
|
109
|
+
gpu_name = torch.cuda.get_device_name(device_id)
|
|
110
|
+
print(f"✓ Using GPU {device_id}: {gpu_name}")
|
|
101
111
|
self._gpu_message_shown = True
|
|
102
112
|
else:
|
|
103
113
|
self.device = torch.device('cpu')
|
|
@@ -116,7 +126,7 @@ class LatticeSubtractor:
|
|
|
116
126
|
try:
|
|
117
127
|
import torch
|
|
118
128
|
if torch.cuda.is_available():
|
|
119
|
-
self.device = torch.device('cuda')
|
|
129
|
+
self.device = torch.device(f'cuda:{device_id}')
|
|
120
130
|
self.use_gpu = True
|
|
121
131
|
else:
|
|
122
132
|
import warnings
|
|
@@ -2,12 +2,12 @@
|
|
|
2
2
|
Visualization utilities for lattice subtraction results.
|
|
3
3
|
|
|
4
4
|
This module provides functions to create comparison visualizations
|
|
5
|
-
showing original, processed, and
|
|
5
|
+
showing original, processed, difference images, and threshold optimization curves.
|
|
6
6
|
"""
|
|
7
7
|
|
|
8
8
|
import logging
|
|
9
9
|
from pathlib import Path
|
|
10
|
-
from typing import Optional, Tuple
|
|
10
|
+
from typing import Optional, Tuple, List
|
|
11
11
|
|
|
12
12
|
import numpy as np
|
|
13
13
|
|
|
@@ -22,6 +22,56 @@ logging.getLogger('PIL.PngImagePlugin').setLevel(logging.WARNING)
|
|
|
22
22
|
logger = logging.getLogger(__name__)
|
|
23
23
|
|
|
24
24
|
|
|
25
|
+
def compute_threshold_curve(
|
|
26
|
+
image: np.ndarray,
|
|
27
|
+
config,
|
|
28
|
+
n_points: int = 21,
|
|
29
|
+
) -> Tuple[np.ndarray, np.ndarray, float, float]:
|
|
30
|
+
"""
|
|
31
|
+
Compute quality scores across a range of thresholds.
|
|
32
|
+
|
|
33
|
+
Args:
|
|
34
|
+
image: Original image array
|
|
35
|
+
config: Config object with processing parameters
|
|
36
|
+
n_points: Number of threshold points to evaluate
|
|
37
|
+
|
|
38
|
+
Returns:
|
|
39
|
+
Tuple of (thresholds, quality_scores, optimal_threshold, optimal_quality)
|
|
40
|
+
"""
|
|
41
|
+
from .threshold_optimizer import ThresholdOptimizer
|
|
42
|
+
|
|
43
|
+
optimizer = ThresholdOptimizer(config)
|
|
44
|
+
|
|
45
|
+
# Prepare FFT data once
|
|
46
|
+
subtracted, radial_mask, box_size = optimizer._prepare_fft_data(image)
|
|
47
|
+
|
|
48
|
+
# Evaluate across threshold range
|
|
49
|
+
thresholds = np.linspace(
|
|
50
|
+
optimizer.min_threshold,
|
|
51
|
+
optimizer.max_threshold,
|
|
52
|
+
n_points
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
# Use GPU batch if available
|
|
56
|
+
if optimizer.use_gpu:
|
|
57
|
+
qualities, peak_counts = optimizer._compute_quality_batch_gpu(
|
|
58
|
+
subtracted, radial_mask, thresholds
|
|
59
|
+
)
|
|
60
|
+
else:
|
|
61
|
+
qualities = []
|
|
62
|
+
for t in thresholds:
|
|
63
|
+
q, _ = optimizer._compute_quality(subtracted, radial_mask, t)
|
|
64
|
+
qualities.append(q)
|
|
65
|
+
qualities = np.array(qualities)
|
|
66
|
+
|
|
67
|
+
# Find optimal
|
|
68
|
+
best_idx = np.argmax(qualities)
|
|
69
|
+
optimal_threshold = thresholds[best_idx]
|
|
70
|
+
optimal_quality = qualities[best_idx]
|
|
71
|
+
|
|
72
|
+
return thresholds, qualities, optimal_threshold, optimal_quality
|
|
73
|
+
|
|
74
|
+
|
|
25
75
|
def create_comparison_figure(
|
|
26
76
|
original: np.ndarray,
|
|
27
77
|
processed: np.ndarray,
|
|
@@ -81,19 +131,106 @@ def create_comparison_figure(
|
|
|
81
131
|
return fig
|
|
82
132
|
|
|
83
133
|
|
|
134
|
+
def create_comparison_figure_with_threshold(
|
|
135
|
+
original: np.ndarray,
|
|
136
|
+
processed: np.ndarray,
|
|
137
|
+
thresholds: np.ndarray,
|
|
138
|
+
quality_scores: np.ndarray,
|
|
139
|
+
optimal_threshold: float,
|
|
140
|
+
optimal_quality: float,
|
|
141
|
+
title: str = "Lattice Subtraction Comparison",
|
|
142
|
+
figsize: Tuple[int, int] = (24, 6),
|
|
143
|
+
dpi: int = 150,
|
|
144
|
+
):
|
|
145
|
+
"""
|
|
146
|
+
Create a 4-panel comparison figure with threshold optimization curve.
|
|
147
|
+
|
|
148
|
+
Layout: [Original] [Subtracted] [Difference] [Threshold vs Quality]
|
|
149
|
+
|
|
150
|
+
Args:
|
|
151
|
+
original: Original image array
|
|
152
|
+
processed: Processed (lattice-subtracted) image array
|
|
153
|
+
thresholds: Array of threshold values tested
|
|
154
|
+
quality_scores: Array of quality scores for each threshold
|
|
155
|
+
optimal_threshold: The optimal threshold that was selected
|
|
156
|
+
optimal_quality: Quality score at optimal threshold
|
|
157
|
+
title: Figure title
|
|
158
|
+
figsize: Figure size in inches (width, height)
|
|
159
|
+
dpi: Resolution for saving
|
|
160
|
+
|
|
161
|
+
Returns:
|
|
162
|
+
matplotlib Figure object
|
|
163
|
+
"""
|
|
164
|
+
import matplotlib.pyplot as plt
|
|
165
|
+
|
|
166
|
+
# Compute difference
|
|
167
|
+
difference = original - processed
|
|
168
|
+
|
|
169
|
+
# Create figure with 4 panels (1 row, 4 columns)
|
|
170
|
+
fig, axes = plt.subplots(1, 4, figsize=figsize)
|
|
171
|
+
|
|
172
|
+
# Contrast limits from original
|
|
173
|
+
vmin, vmax = np.percentile(original, [1, 99])
|
|
174
|
+
|
|
175
|
+
# Panel 1: Original
|
|
176
|
+
axes[0].imshow(original, cmap='gray', vmin=vmin, vmax=vmax)
|
|
177
|
+
axes[0].set_title(f'Original\n{original.shape}')
|
|
178
|
+
axes[0].axis('off')
|
|
179
|
+
|
|
180
|
+
# Panel 2: Lattice Subtracted
|
|
181
|
+
axes[1].imshow(processed, cmap='gray', vmin=vmin, vmax=vmax)
|
|
182
|
+
axes[1].set_title(f'Lattice Subtracted\n{processed.shape}')
|
|
183
|
+
axes[1].axis('off')
|
|
184
|
+
|
|
185
|
+
# Panel 3: Difference (removed lattice)
|
|
186
|
+
diff_std = np.std(difference)
|
|
187
|
+
axes[2].imshow(
|
|
188
|
+
difference,
|
|
189
|
+
cmap='RdBu_r',
|
|
190
|
+
vmin=-diff_std * 3,
|
|
191
|
+
vmax=diff_std * 3
|
|
192
|
+
)
|
|
193
|
+
axes[2].set_title('Difference (Removed Lattice)')
|
|
194
|
+
axes[2].axis('off')
|
|
195
|
+
|
|
196
|
+
# Panel 4: Threshold vs Quality Score curve
|
|
197
|
+
axes[3].plot(thresholds, quality_scores, 'b-', linewidth=2, label='Quality Score')
|
|
198
|
+
axes[3].axvline(x=optimal_threshold, color='r', linestyle='--', linewidth=2,
|
|
199
|
+
label=f'Optimal: {optimal_threshold:.3f}')
|
|
200
|
+
axes[3].scatter([optimal_threshold], [optimal_quality], color='r', s=100, zorder=5)
|
|
201
|
+
axes[3].set_xlabel('Threshold', fontsize=11)
|
|
202
|
+
axes[3].set_ylabel('Lattice Removal Efficacy', fontsize=11)
|
|
203
|
+
axes[3].set_title(f'Threshold Optimization\nOptimal = {optimal_threshold:.3f}')
|
|
204
|
+
axes[3].legend(loc='best', fontsize=9)
|
|
205
|
+
axes[3].grid(True, alpha=0.3)
|
|
206
|
+
axes[3].set_xlim(thresholds.min(), thresholds.max())
|
|
207
|
+
|
|
208
|
+
# Title
|
|
209
|
+
plt.suptitle(title, fontsize=14)
|
|
210
|
+
plt.tight_layout()
|
|
211
|
+
|
|
212
|
+
return fig
|
|
213
|
+
|
|
214
|
+
|
|
84
215
|
def save_comparison_visualization(
|
|
85
216
|
original_path: Path,
|
|
86
217
|
processed_path: Path,
|
|
87
218
|
output_path: Path,
|
|
219
|
+
config = None,
|
|
88
220
|
dpi: int = 150,
|
|
89
221
|
) -> None:
|
|
90
222
|
"""
|
|
91
|
-
Create and save a comparison visualization for a single image pair.
|
|
223
|
+
Create and save a 4-panel comparison visualization for a single image pair.
|
|
224
|
+
|
|
225
|
+
Includes threshold optimization curve showing how the optimal threshold
|
|
226
|
+
was selected based on lattice removal efficacy.
|
|
92
227
|
|
|
93
228
|
Args:
|
|
94
229
|
original_path: Path to original MRC file
|
|
95
230
|
processed_path: Path to processed MRC file
|
|
96
231
|
output_path: Path for output PNG file
|
|
232
|
+
config: Config object for threshold computation (optional, will use defaults)
|
|
233
|
+
dpi: Resolution for output images
|
|
97
234
|
"""
|
|
98
235
|
import matplotlib.pyplot as plt
|
|
99
236
|
import mrcfile
|
|
@@ -106,11 +243,32 @@ def save_comparison_visualization(
|
|
|
106
243
|
|
|
107
244
|
# Create title
|
|
108
245
|
name = original_path.name
|
|
109
|
-
short_name = name[:
|
|
110
|
-
title = f"Lattice Subtraction
|
|
246
|
+
short_name = name[:50] + "..." if len(name) > 50 else name
|
|
247
|
+
title = f"Lattice Subtraction: {short_name}"
|
|
248
|
+
|
|
249
|
+
# Try to compute threshold curve if config available
|
|
250
|
+
try:
|
|
251
|
+
if config is None:
|
|
252
|
+
# Create default config for threshold computation
|
|
253
|
+
from .config import Config
|
|
254
|
+
config = Config(pixel_ang=0.56) # Default K3 pixel size
|
|
255
|
+
|
|
256
|
+
# Compute threshold optimization curve
|
|
257
|
+
thresholds, quality_scores, optimal_threshold, optimal_quality = \
|
|
258
|
+
compute_threshold_curve(original, config)
|
|
259
|
+
|
|
260
|
+
# Create 4-panel figure with threshold curve
|
|
261
|
+
fig = create_comparison_figure_with_threshold(
|
|
262
|
+
original, processed,
|
|
263
|
+
thresholds, quality_scores,
|
|
264
|
+
optimal_threshold, optimal_quality,
|
|
265
|
+
title=title, dpi=dpi
|
|
266
|
+
)
|
|
267
|
+
except Exception as e:
|
|
268
|
+
# Fallback to 3-panel if threshold computation fails
|
|
269
|
+
logger.debug(f"Could not compute threshold curve: {e}, using 3-panel view")
|
|
270
|
+
fig = create_comparison_figure(original, processed, title=title, dpi=dpi)
|
|
111
271
|
|
|
112
|
-
# Create and save figure
|
|
113
|
-
fig = create_comparison_figure(original, processed, title=title, dpi=dpi)
|
|
114
272
|
output_path.parent.mkdir(parents=True, exist_ok=True)
|
|
115
273
|
fig.savefig(output_path, dpi=dpi, bbox_inches='tight')
|
|
116
274
|
plt.close(fig)
|
|
@@ -124,9 +282,11 @@ def generate_visualizations(
|
|
|
124
282
|
pattern: str = "*.mrc",
|
|
125
283
|
dpi: int = 150,
|
|
126
284
|
show_progress: bool = True,
|
|
285
|
+
limit: Optional[int] = None,
|
|
286
|
+
config = None,
|
|
127
287
|
) -> Tuple[int, int]:
|
|
128
288
|
"""
|
|
129
|
-
Generate comparison visualizations for
|
|
289
|
+
Generate comparison visualizations for processed images in a directory.
|
|
130
290
|
|
|
131
291
|
Args:
|
|
132
292
|
input_dir: Directory containing original MRC files
|
|
@@ -136,6 +296,8 @@ def generate_visualizations(
|
|
|
136
296
|
pattern: Glob pattern for finding processed files
|
|
137
297
|
dpi: Resolution for output images
|
|
138
298
|
show_progress: Show progress bar
|
|
299
|
+
limit: Maximum number of visualizations to generate (None = all)
|
|
300
|
+
config: Config object for threshold computation (optional)
|
|
139
301
|
|
|
140
302
|
Returns:
|
|
141
303
|
Tuple of (successful_count, total_count)
|
|
@@ -152,6 +314,12 @@ def generate_visualizations(
|
|
|
152
314
|
logger.warning(f"No processed files found matching '{prefix}{pattern}' in {output_dir}")
|
|
153
315
|
return 0, 0
|
|
154
316
|
|
|
317
|
+
# Apply limit if specified
|
|
318
|
+
total_available = len(output_files)
|
|
319
|
+
if limit is not None and limit > 0:
|
|
320
|
+
output_files = output_files[:limit]
|
|
321
|
+
logger.info(f"Limiting to {limit} visualizations (of {total_available} available)")
|
|
322
|
+
|
|
155
323
|
successful = 0
|
|
156
324
|
total = len(output_files)
|
|
157
325
|
|
|
@@ -184,11 +352,12 @@ def generate_visualizations(
|
|
|
184
352
|
successful += 1
|
|
185
353
|
continue
|
|
186
354
|
|
|
187
|
-
# Generate visualization
|
|
355
|
+
# Generate visualization with 4-panel layout
|
|
188
356
|
save_comparison_visualization(
|
|
189
357
|
original_path=input_path,
|
|
190
358
|
processed_path=processed_path,
|
|
191
359
|
output_path=viz_path,
|
|
360
|
+
config=config,
|
|
192
361
|
dpi=dpi,
|
|
193
362
|
)
|
|
194
363
|
successful += 1
|
|
@@ -1,17 +0,0 @@
|
|
|
1
|
-
lattice_sub-1.1.4.dist-info/licenses/LICENSE,sha256=2kPoH0cbEp0cVEGqMpyF2IQX1npxdtQmWJB__HIRSb0,1101
|
|
2
|
-
lattice_subtraction/__init__.py,sha256=zLLC1T_bGZMDpZTcywjloIsV1vvIhsBbj_P9h7YFPqw,1737
|
|
3
|
-
lattice_subtraction/batch.py,sha256=sTDWEL5FlEx2HFaJsTZRXyzLQoNCgUqRo900eZ6kq68,12005
|
|
4
|
-
lattice_subtraction/cli.py,sha256=fWZ3ueahQXPQ_ApzS345AdslsMF0-6HIAIvan2IFHkk,23597
|
|
5
|
-
lattice_subtraction/config.py,sha256=dh8EJFzJEEXwwggQ46rBMHsuVOExQWM-kCfonT94_fE,8111
|
|
6
|
-
lattice_subtraction/core.py,sha256=QzE5CLv92XPoyuw8JcMAGIeSEVgfwSkHgG86WlHAjMo,15790
|
|
7
|
-
lattice_subtraction/io.py,sha256=uHku6rJ0jeCph7w-gOIDJx-xpNoF6PZcLfb5TBTOiw0,4594
|
|
8
|
-
lattice_subtraction/masks.py,sha256=HIamrACmbQDkaCV4kXhnjMDSwIig4OtQFLig9A8PMO8,11741
|
|
9
|
-
lattice_subtraction/processing.py,sha256=tmnj5K4Z9HCQhRpJ-iMd9Bj_uTRuvDEWyUenh8MCWEM,8341
|
|
10
|
-
lattice_subtraction/threshold_optimizer.py,sha256=yEsGM_zt6YjgEulEZqtRy113xOFB69aHJIETm2xSS6k,15398
|
|
11
|
-
lattice_subtraction/ui.py,sha256=Sp_a-yNmBRZJxll8h9T_H5-_KsI13zGYmHcbcpVpbR8,9176
|
|
12
|
-
lattice_subtraction/visualization.py,sha256=pMZKcz6Xgs98lLaZbvGjoMIyEYA_MLRracVxpQStC3w,5935
|
|
13
|
-
lattice_sub-1.1.4.dist-info/METADATA,sha256=hPnPdJSHoP4DL_2R-frH5982ftSw4ggVpxiZsFcoNRM,12581
|
|
14
|
-
lattice_sub-1.1.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
15
|
-
lattice_sub-1.1.4.dist-info/entry_points.txt,sha256=o8PzJR8kFnXlKZufoYGBIHpiosM-P4PZeKZXJjtPS6Y,61
|
|
16
|
-
lattice_sub-1.1.4.dist-info/top_level.txt,sha256=BOuW-sm4G-fQtsWPRdeLzWn0WS8sDYVNKIMj5I3JXew,20
|
|
17
|
-
lattice_sub-1.1.4.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|