langwatch-scenario 0.3.0__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {langwatch_scenario-0.3.0.dist-info → langwatch_scenario-0.4.0.dist-info}/METADATA +140 -79
- langwatch_scenario-0.4.0.dist-info/RECORD +18 -0
- scenario/__init__.py +223 -9
- scenario/agent_adapter.py +111 -0
- scenario/cache.py +132 -8
- scenario/config.py +154 -10
- scenario/error_messages.py +8 -38
- scenario/judge_agent.py +435 -0
- scenario/pytest_plugin.py +223 -15
- scenario/scenario_executor.py +428 -136
- scenario/scenario_state.py +205 -0
- scenario/script.py +361 -0
- scenario/types.py +193 -20
- scenario/user_simulator_agent.py +249 -0
- scenario/utils.py +252 -2
- langwatch_scenario-0.3.0.dist-info/RECORD +0 -16
- scenario/scenario.py +0 -238
- scenario/scenario_agent_adapter.py +0 -16
- scenario/testing_agent.py +0 -279
- {langwatch_scenario-0.3.0.dist-info → langwatch_scenario-0.4.0.dist-info}/WHEEL +0 -0
- {langwatch_scenario-0.3.0.dist-info → langwatch_scenario-0.4.0.dist-info}/entry_points.txt +0 -0
- {langwatch_scenario-0.3.0.dist-info → langwatch_scenario-0.4.0.dist-info}/top_level.txt +0 -0
scenario/judge_agent.py
ADDED
@@ -0,0 +1,435 @@
|
|
1
|
+
"""
|
2
|
+
Judge agent module for evaluating scenario conversations.
|
3
|
+
|
4
|
+
This module provides the JudgeAgent class, which evaluates ongoing conversations
|
5
|
+
between users and agents to determine if success criteria are met. The judge
|
6
|
+
makes real-time decisions about whether scenarios should continue or end with
|
7
|
+
success/failure verdicts.
|
8
|
+
"""
|
9
|
+
|
10
|
+
import json
|
11
|
+
import logging
|
12
|
+
import re
|
13
|
+
from typing import List, Optional, cast
|
14
|
+
|
15
|
+
from litellm import Choices, completion
|
16
|
+
from litellm.files.main import ModelResponse
|
17
|
+
|
18
|
+
from scenario.cache import scenario_cache
|
19
|
+
from scenario.agent_adapter import AgentAdapter
|
20
|
+
from scenario.config import ModelConfig, ScenarioConfig
|
21
|
+
|
22
|
+
from .error_messages import agent_not_configured_error_message
|
23
|
+
from .types import AgentInput, AgentReturnTypes, AgentRole, ScenarioResult
|
24
|
+
|
25
|
+
|
26
|
+
logger = logging.getLogger("scenario")
|
27
|
+
|
28
|
+
|
29
|
+
class JudgeAgent(AgentAdapter):
|
30
|
+
"""
|
31
|
+
Agent that evaluates conversations against success criteria.
|
32
|
+
|
33
|
+
The JudgeAgent watches conversations in real-time and makes decisions about
|
34
|
+
whether the agent under test is meeting the specified criteria. It can either
|
35
|
+
allow the conversation to continue or end it with a success/failure verdict.
|
36
|
+
|
37
|
+
The judge uses function calling to make structured decisions and provides
|
38
|
+
detailed reasoning for its verdicts. It evaluates each criterion independently
|
39
|
+
and provides comprehensive feedback about what worked and what didn't.
|
40
|
+
|
41
|
+
Attributes:
|
42
|
+
role: Always AgentRole.JUDGE for judge agents
|
43
|
+
model: LLM model identifier to use for evaluation
|
44
|
+
api_key: Optional API key for the model provider
|
45
|
+
temperature: Sampling temperature for evaluation consistency
|
46
|
+
max_tokens: Maximum tokens for judge reasoning
|
47
|
+
criteria: List of success criteria to evaluate against
|
48
|
+
system_prompt: Custom system prompt to override default judge behavior
|
49
|
+
|
50
|
+
Example:
|
51
|
+
```python
|
52
|
+
import scenario
|
53
|
+
|
54
|
+
# Basic judge agent with criteria
|
55
|
+
judge = scenario.JudgeAgent(
|
56
|
+
criteria=[
|
57
|
+
"Agent provides helpful responses",
|
58
|
+
"Agent asks relevant follow-up questions",
|
59
|
+
"Agent does not provide harmful information"
|
60
|
+
]
|
61
|
+
)
|
62
|
+
|
63
|
+
# Customized judge with specific model and behavior
|
64
|
+
strict_judge = scenario.JudgeAgent(
|
65
|
+
model="openai/gpt-4.1-mini",
|
66
|
+
criteria=[
|
67
|
+
"Code examples are syntactically correct",
|
68
|
+
"Explanations are technically accurate",
|
69
|
+
"Security best practices are mentioned"
|
70
|
+
],
|
71
|
+
temperature=0.0, # More deterministic evaluation
|
72
|
+
system_prompt="You are a strict technical reviewer evaluating code quality."
|
73
|
+
)
|
74
|
+
|
75
|
+
# Use in scenario
|
76
|
+
result = await scenario.run(
|
77
|
+
name="coding assistant test",
|
78
|
+
description="User asks for help with Python functions",
|
79
|
+
agents=[
|
80
|
+
coding_agent,
|
81
|
+
scenario.UserSimulatorAgent(),
|
82
|
+
judge
|
83
|
+
]
|
84
|
+
)
|
85
|
+
|
86
|
+
print(f"Passed criteria: {result.passed_criteria}")
|
87
|
+
print(f"Failed criteria: {result.failed_criteria}")
|
88
|
+
```
|
89
|
+
|
90
|
+
Note:
|
91
|
+
- Judge agents evaluate conversations continuously, not just at the end
|
92
|
+
- They can end scenarios early if clear success/failure conditions are met
|
93
|
+
- Provide detailed reasoning for their decisions
|
94
|
+
- Support both positive criteria (things that should happen) and negative criteria (things that shouldn't)
|
95
|
+
"""
|
96
|
+
role = AgentRole.JUDGE
|
97
|
+
|
98
|
+
model: str
|
99
|
+
api_key: Optional[str]
|
100
|
+
temperature: float
|
101
|
+
max_tokens: Optional[int]
|
102
|
+
criteria: List[str]
|
103
|
+
system_prompt: Optional[str]
|
104
|
+
|
105
|
+
def __init__(
|
106
|
+
self,
|
107
|
+
*,
|
108
|
+
criteria: Optional[List[str]] = None,
|
109
|
+
model: Optional[str] = None,
|
110
|
+
api_key: Optional[str] = None,
|
111
|
+
temperature: float = 0.0,
|
112
|
+
max_tokens: Optional[int] = None,
|
113
|
+
system_prompt: Optional[str] = None,
|
114
|
+
):
|
115
|
+
"""
|
116
|
+
Initialize a judge agent with evaluation criteria.
|
117
|
+
|
118
|
+
Args:
|
119
|
+
criteria: List of success criteria to evaluate the conversation against.
|
120
|
+
Can include both positive requirements ("Agent provides helpful responses")
|
121
|
+
and negative constraints ("Agent should not provide personal information").
|
122
|
+
model: LLM model identifier (e.g., "openai/gpt-4.1-mini").
|
123
|
+
If not provided, uses the default model from global configuration.
|
124
|
+
api_key: API key for the model provider. If not provided,
|
125
|
+
uses the key from global configuration or environment.
|
126
|
+
temperature: Sampling temperature for evaluation (0.0-1.0).
|
127
|
+
Lower values (0.0-0.2) recommended for consistent evaluation.
|
128
|
+
max_tokens: Maximum number of tokens for judge reasoning and explanations.
|
129
|
+
system_prompt: Custom system prompt to override default judge behavior.
|
130
|
+
Use this to create specialized evaluation perspectives.
|
131
|
+
|
132
|
+
Raises:
|
133
|
+
Exception: If no model is configured either in parameters or global config
|
134
|
+
|
135
|
+
Example:
|
136
|
+
```python
|
137
|
+
# Customer service judge
|
138
|
+
cs_judge = JudgeAgent(
|
139
|
+
criteria=[
|
140
|
+
"Agent is polite and professional",
|
141
|
+
"Agent addresses the customer's specific concern",
|
142
|
+
"Agent offers appropriate solutions or next steps",
|
143
|
+
"Agent does not make promises the company cannot keep"
|
144
|
+
],
|
145
|
+
temperature=0.1
|
146
|
+
)
|
147
|
+
|
148
|
+
# Technical accuracy judge
|
149
|
+
tech_judge = JudgeAgent(
|
150
|
+
criteria=[
|
151
|
+
"Code examples compile without errors",
|
152
|
+
"Security vulnerabilities are not introduced",
|
153
|
+
"Best practices are recommended"
|
154
|
+
],
|
155
|
+
system_prompt="You are a senior software engineer reviewing code for production use."
|
156
|
+
)
|
157
|
+
```
|
158
|
+
"""
|
159
|
+
# Override the default system prompt for the judge agent
|
160
|
+
self.criteria = criteria or []
|
161
|
+
self.api_key = api_key
|
162
|
+
self.temperature = temperature
|
163
|
+
self.max_tokens = max_tokens
|
164
|
+
self.system_prompt = system_prompt
|
165
|
+
|
166
|
+
if model:
|
167
|
+
self.model = model
|
168
|
+
|
169
|
+
if ScenarioConfig.default_config is not None and isinstance(
|
170
|
+
ScenarioConfig.default_config.default_model, str
|
171
|
+
):
|
172
|
+
self.model = model or ScenarioConfig.default_config.default_model
|
173
|
+
elif ScenarioConfig.default_config is not None and isinstance(
|
174
|
+
ScenarioConfig.default_config.default_model, ModelConfig
|
175
|
+
):
|
176
|
+
self.model = model or ScenarioConfig.default_config.default_model.model
|
177
|
+
self.api_key = (
|
178
|
+
api_key or ScenarioConfig.default_config.default_model.api_key
|
179
|
+
)
|
180
|
+
self.temperature = (
|
181
|
+
temperature or ScenarioConfig.default_config.default_model.temperature
|
182
|
+
)
|
183
|
+
self.max_tokens = (
|
184
|
+
max_tokens or ScenarioConfig.default_config.default_model.max_tokens
|
185
|
+
)
|
186
|
+
|
187
|
+
if not hasattr(self, "model"):
|
188
|
+
raise Exception(agent_not_configured_error_message("TestingAgent"))
|
189
|
+
|
190
|
+
@scenario_cache()
|
191
|
+
async def call(
|
192
|
+
self,
|
193
|
+
input: AgentInput,
|
194
|
+
) -> AgentReturnTypes:
|
195
|
+
"""
|
196
|
+
Evaluate the current conversation state against the configured criteria.
|
197
|
+
|
198
|
+
This method analyzes the conversation history and determines whether the
|
199
|
+
scenario should continue or end with a verdict. It uses function calling
|
200
|
+
to make structured decisions and provides detailed reasoning.
|
201
|
+
|
202
|
+
Args:
|
203
|
+
input: AgentInput containing conversation history and scenario context
|
204
|
+
|
205
|
+
Returns:
|
206
|
+
AgentReturnTypes: Either an empty list (continue scenario) or a
|
207
|
+
ScenarioResult (end scenario with verdict)
|
208
|
+
|
209
|
+
Raises:
|
210
|
+
Exception: If the judge cannot make a valid decision or if there's an
|
211
|
+
error in the evaluation process
|
212
|
+
|
213
|
+
Example:
|
214
|
+
The judge evaluates conversations like this:
|
215
|
+
|
216
|
+
```
|
217
|
+
Conversation so far:
|
218
|
+
User: "I need help with authentication"
|
219
|
+
Agent: "I can help! What authentication method are you using?"
|
220
|
+
User: "JWT tokens"
|
221
|
+
Agent: "Here's how to implement JWT securely: [detailed code example]"
|
222
|
+
|
223
|
+
Judge evaluation:
|
224
|
+
- ✓ Agent provides helpful responses
|
225
|
+
- ✓ Agent asks relevant follow-up questions
|
226
|
+
- ✓ Security best practices are mentioned
|
227
|
+
|
228
|
+
Decision: CONTINUE (all criteria being met so far)
|
229
|
+
```
|
230
|
+
|
231
|
+
Note:
|
232
|
+
- Returns empty list [] to continue the scenario
|
233
|
+
- Returns ScenarioResult to end with success/failure
|
234
|
+
- Provides detailed reasoning for all decisions
|
235
|
+
- Evaluates each criterion independently
|
236
|
+
- Can end scenarios early if clear violation or success is detected
|
237
|
+
"""
|
238
|
+
|
239
|
+
scenario = input.scenario_state
|
240
|
+
|
241
|
+
messages = [
|
242
|
+
{
|
243
|
+
"role": "system",
|
244
|
+
"content": self.system_prompt
|
245
|
+
or f"""
|
246
|
+
<role>
|
247
|
+
You are an LLM as a judge watching a simulated conversation as it plays out live to determine if the agent under test meets the criteria or not.
|
248
|
+
</role>
|
249
|
+
|
250
|
+
<goal>
|
251
|
+
Your goal is to determine if you already have enough information to make a verdict of the scenario below, or if the conversation should continue for longer.
|
252
|
+
If you do have enough information, use the finish_test tool to determine if all the criteria have been met, if not, use the continue_test tool to let the next step play out.
|
253
|
+
</goal>
|
254
|
+
|
255
|
+
<scenario>
|
256
|
+
{scenario.description}
|
257
|
+
</scenario>
|
258
|
+
|
259
|
+
<criteria>
|
260
|
+
{"\n".join([f"{idx + 1}. {criterion}" for idx, criterion in enumerate(self.criteria)])}
|
261
|
+
</criteria>
|
262
|
+
|
263
|
+
<rules>
|
264
|
+
- Be strict, do not let the conversation continue if the agent already broke one of the "do not" or "should not" criterias.
|
265
|
+
- DO NOT make any judgment calls that are not explicitly listed in the success or failure criteria, withhold judgement if necessary
|
266
|
+
</rules>
|
267
|
+
""",
|
268
|
+
},
|
269
|
+
*input.messages,
|
270
|
+
]
|
271
|
+
|
272
|
+
is_last_message = (
|
273
|
+
input.scenario_state.current_turn == input.scenario_state.config.max_turns
|
274
|
+
)
|
275
|
+
|
276
|
+
if is_last_message:
|
277
|
+
messages.append(
|
278
|
+
{
|
279
|
+
"role": "user",
|
280
|
+
"content": """
|
281
|
+
System:
|
282
|
+
|
283
|
+
<finish_test>
|
284
|
+
This is the last message, conversation has reached the maximum number of turns, give your final verdict,
|
285
|
+
if you don't have enough information to make a verdict, say inconclusive with max turns reached.
|
286
|
+
</finish_test>
|
287
|
+
""",
|
288
|
+
}
|
289
|
+
)
|
290
|
+
|
291
|
+
# Define the tools
|
292
|
+
criteria_names = [
|
293
|
+
re.sub(
|
294
|
+
r"[^a-zA-Z0-9]",
|
295
|
+
"_",
|
296
|
+
criterion.replace(" ", "_").replace("'", "").lower(),
|
297
|
+
)[:70]
|
298
|
+
for criterion in self.criteria
|
299
|
+
]
|
300
|
+
tools = [
|
301
|
+
{
|
302
|
+
"type": "function",
|
303
|
+
"function": {
|
304
|
+
"name": "continue_test",
|
305
|
+
"description": "Continue the test with the next step",
|
306
|
+
"strict": True,
|
307
|
+
"parameters": {
|
308
|
+
"type": "object",
|
309
|
+
"properties": {},
|
310
|
+
"required": [],
|
311
|
+
"additionalProperties": False,
|
312
|
+
},
|
313
|
+
},
|
314
|
+
},
|
315
|
+
{
|
316
|
+
"type": "function",
|
317
|
+
"function": {
|
318
|
+
"name": "finish_test",
|
319
|
+
"description": "Complete the test with a final verdict",
|
320
|
+
"strict": True,
|
321
|
+
"parameters": {
|
322
|
+
"type": "object",
|
323
|
+
"properties": {
|
324
|
+
"criteria": {
|
325
|
+
"type": "object",
|
326
|
+
"properties": {
|
327
|
+
criteria_names[idx]: {
|
328
|
+
"enum": [True, False, "inconclusive"],
|
329
|
+
"description": criterion,
|
330
|
+
}
|
331
|
+
for idx, criterion in enumerate(self.criteria)
|
332
|
+
},
|
333
|
+
"required": criteria_names,
|
334
|
+
"additionalProperties": False,
|
335
|
+
"description": "Strict verdict for each criterion",
|
336
|
+
},
|
337
|
+
"reasoning": {
|
338
|
+
"type": "string",
|
339
|
+
"description": "Explanation of what the final verdict should be",
|
340
|
+
},
|
341
|
+
"verdict": {
|
342
|
+
"type": "string",
|
343
|
+
"enum": ["success", "failure", "inconclusive"],
|
344
|
+
"description": "The final verdict of the test",
|
345
|
+
},
|
346
|
+
},
|
347
|
+
"required": ["criteria", "reasoning", "verdict"],
|
348
|
+
"additionalProperties": False,
|
349
|
+
},
|
350
|
+
},
|
351
|
+
},
|
352
|
+
]
|
353
|
+
|
354
|
+
enforce_judgment = input.judgment_request
|
355
|
+
has_criteria = len(self.criteria) > 0
|
356
|
+
|
357
|
+
if enforce_judgment and not has_criteria:
|
358
|
+
return ScenarioResult(
|
359
|
+
success=False,
|
360
|
+
messages=[],
|
361
|
+
reasoning="TestingAgent was called as a judge, but it has no criteria to judge against",
|
362
|
+
)
|
363
|
+
|
364
|
+
response = cast(
|
365
|
+
ModelResponse,
|
366
|
+
completion(
|
367
|
+
model=self.model,
|
368
|
+
messages=messages,
|
369
|
+
temperature=self.temperature,
|
370
|
+
max_tokens=self.max_tokens,
|
371
|
+
tools=tools,
|
372
|
+
tool_choice=(
|
373
|
+
{"type": "function", "function": {"name": "finish_test"}}
|
374
|
+
if (is_last_message or enforce_judgment) and has_criteria
|
375
|
+
else "required"
|
376
|
+
),
|
377
|
+
),
|
378
|
+
)
|
379
|
+
|
380
|
+
# Extract the content from the response
|
381
|
+
if hasattr(response, "choices") and len(response.choices) > 0:
|
382
|
+
message = cast(Choices, response.choices[0]).message
|
383
|
+
|
384
|
+
# Check if the LLM chose to use the tool
|
385
|
+
if message.tool_calls:
|
386
|
+
tool_call = message.tool_calls[0]
|
387
|
+
if tool_call.function.name == "continue_test":
|
388
|
+
return []
|
389
|
+
|
390
|
+
if tool_call.function.name == "finish_test":
|
391
|
+
# Parse the tool call arguments
|
392
|
+
try:
|
393
|
+
args = json.loads(tool_call.function.arguments)
|
394
|
+
verdict = args.get("verdict", "inconclusive")
|
395
|
+
reasoning = args.get("reasoning", "No reasoning provided")
|
396
|
+
criteria = args.get("criteria", {})
|
397
|
+
|
398
|
+
passed_criteria = [
|
399
|
+
self.criteria[idx]
|
400
|
+
for idx, criterion in enumerate(criteria.values())
|
401
|
+
if criterion == True
|
402
|
+
]
|
403
|
+
failed_criteria = [
|
404
|
+
self.criteria[idx]
|
405
|
+
for idx, criterion in enumerate(criteria.values())
|
406
|
+
if criterion == False
|
407
|
+
]
|
408
|
+
|
409
|
+
# Return the appropriate ScenarioResult based on the verdict
|
410
|
+
return ScenarioResult(
|
411
|
+
success=verdict == "success" and len(failed_criteria) == 0,
|
412
|
+
messages=messages,
|
413
|
+
reasoning=reasoning,
|
414
|
+
passed_criteria=passed_criteria,
|
415
|
+
failed_criteria=failed_criteria,
|
416
|
+
)
|
417
|
+
except json.JSONDecodeError:
|
418
|
+
raise Exception(
|
419
|
+
f"Failed to parse tool call arguments from judge agent: {tool_call.function.arguments}"
|
420
|
+
)
|
421
|
+
|
422
|
+
else:
|
423
|
+
raise Exception(
|
424
|
+
f"Invalid tool call from judge agent: {tool_call.function.name}"
|
425
|
+
)
|
426
|
+
|
427
|
+
else:
|
428
|
+
raise Exception(
|
429
|
+
f"Invalid response from judge agent, tool calls not found: {message.__repr__()}"
|
430
|
+
)
|
431
|
+
|
432
|
+
else:
|
433
|
+
raise Exception(
|
434
|
+
f"Unexpected response format from LLM: {response.__repr__()}"
|
435
|
+
)
|